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Abstract— A genetic algorithm using discrete cosine 

transformation is proposed to speedup the fractal encoder. By 

using discrete cosine coefficients, the optimal Dihedral 

transformation between the range block and domain block can be 

found to save a large number of the redundant MSE 

computations. Moreover, combining the discrete cosine 

transformation technique with the genetic algorithm, the length of 

the chromosome is shortened to smooth the landscape of the 

search space since the optimal Dihedral index was determined. 

Hence the encode velocity is accelerated further. Experiments 

show that the encoding speed of the proposed method is 100 times 

faster than that of the full search method, while the cost is the 

1.1dB loss at the retrieved image quality. 

 

Index Terms—Discrete Cosine Transform, Fractal Image 

Encode,  Genetic Algorithm. 

I. INTRODUCTION 

  Fractal image compression was original proposed by 

Barnsley and first realized by Jacquin in 1990. The 

underlying premise of fractal image compression is based on 

the partitioned iteration function system (PIFS) which utilized 

the self-similarity property in the image to achieve the 

purpose of compression. To encode an image according to the 

self-similarity property, each block must find the most similar 

domain block in a large domain pool. For the conventional 

full searching method, the encoding process is time 

consuming since a large amount of computations of similarity 

measurement are required to find the best match. Therefore, 

focal aim of fractal image compression is to speed up the 

encoder. In the past, some classification methods are adopted 

to reduce the encoding time. But, these methods either the 

speedup ratio is limited or the fractal encoding algorithm is 

complex. 

  Recently, the genetic algorithm is focused gradually. It was 

developed by John Holland in 1975 over the course of the 

1960s and 1970s and finally popularized by one of his 

students, David Goldberg. Genetic algorithm is a global 

search technique mimicking the natural selection and natural 

genetics. GA is capable of solving many large complex 

problems where other methods have experienced difficulties, 

especially when the search space has very rough landscape 

riddled with many local optima. Since natural images have 

such characteristics, GA is well suited for the search of the 

best match in fractal image compression [1].  

  In this paper, a genetic algorithm using discrete cosine 

transformation is proposed to speedup the fractal encoding 

speed.  
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First, by using the discrete cosine coefficients, the optimal 

Dihedral block between of the range block and domain block 

can be determined in advance. The range block does the 

similar match only with the Dihedral block. Another seven 

Dihedral blocks are ignored to save seven eighths redundant 

MSE computations. Further, combining the discrete cosine 

coefficients into the GA, the length of the chromosome in GA 

is shortened to smooth the landscape of the search space since 

the optimal Dihedral index was determined. Hence the encode 

velocity is accelerated further. Finally, the proposed method 

also attempts to compare with the full search method and 

baseline genetic algorithm to demonstrate the performance of 

the proposed method.  

II. GENETIC ALGORITHM 

  The term genetic algorithm, almost universally abbreviated 

nowadays to GA, was first used by John Holland, whose book 

Adaptation in Natural and Artificial Systems of 1975 was 

instrumental in creating what is now a flourishing field of 

research and application that goes much wider than the 

original GA. Many people now use the term evolutionary 

computing or evolutionary algorithms (EAs), in order to 

cover the developments of the last 10 years. However, in the 

context of metaheuristics, it is probably fair to say that GAs in 

their original form encapsulate most of what one needs to 

know. Holland’s influence in the development of the topic has 

been very important, but several other scientists with different 

backgrounds were also involved in developing similar ideas. 

The common thread in these ideas was the use of mutation and 

selection the concepts at the core of the neo-Darwinian theory 

of evolution. Other students of Holland’s had completed 

theses in this area before, but this was the first to provide a 

thorough treatment of the GA’s capabilities in optimization.  

 Nevertheless, using GAs for optimization is very popular, 

and frequently successful in real applications, and to those 

interested in metaheuristics, it will undoubtedly be the 

viewpoint that is most useful. Unlike the earlier evolutionary 

algorithms, which focused on mutation and could be 

considered as straightforward developments of hill-climbing 

methods, Holland’s GA had an extra ingredient the idea of 

recombination. It is interesting in this regard to compare some 

of the ideas being put forward in the 1960s in the field of 

operational research (OR). A popular technique, which 

remains at the heart of many of the metaheuristics described in 

this handbook, was that of neighbourhood search, which has 

been used to attack a vast range of combinatorial optimization 

problems. The basic idea is to explore ‘neighbours’ of an 

existing solution—these being defined as solutions obtainable 

by a specified operation on the base solution.  
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Basic Concept :  

 Assume we have a discrete search space X and a function  

 
 The general problem is to find  

 
 Here x is a vector of decision variables, and f is the 

objective function. We assume here that the problem is one of 

minimization, but the modifications necessary for a 

maximization problem are nearly always obvious. Such a 

problem is commonly called discrete or combinatorial 

optimization problems (COP).  

 One of the distinctive features of the GA approach is to 

allow the separation of the representation of the problem from 

the actual variables in which it was originally formulated. In 

line with biological usage of the terms, it has become 

customary to distinguish the ‘genotype’ the encoded 

representation of the variables, from the ‘phenotype’ the set of 

variables themselves. That is, the vector x is represented by a 

string s, of length l, made up of symbols drawn from an 

alphabet A , using a mapping  

 
In practice, we may need to use a search space 

 
to reflect the fact that some strings in the image A’ of under c 

may represent invalid solutions to the original problem. The 

string length l depends on the dimensions of both x and A and 

the elements of the string correspond to ‘genes’, and the 

values those genes can take to ‘alleles’. This is often 

designated as the genotype–phenotype mapping. Thus the 

optimization problem becomes one of finding where the 

function g(s) = f(c(s)) 

 
 It is usually desirable that c should be a bijection. (The 

important property of a bijection is that it has an inverse, i.e., 

there is a unique vector x for every string s, and a unique 

string s for every vector x.) In some cases the nature of this 

mapping itself creates difficulties for a GA in solving 

optimization problems. 

 Both Holland’s and Goldberg’s books claim that 

representing the variables by binary strings is in some sense 

‘optimal’, and although this idea has been challenged, it is still 

often convenient from a mathematical standpoint to consider 

the binary case. Certainly, much of the theoretical work in 

GAs tends to make this assumption. In applications, many 

representations are possible some of the alternatives that can 

be used in particular COPs. The original motivation for the 

GA approach was a biological analogy.  

 In the selective breeding of plants or animals, for example, 

offspring are sought that have certain desirable characteristics 

that are determined at the genetic level by the way the parents’ 

chromosomes combine. In the case of GAs, a population of 

strings is used, and these strings are often referred to in the 

GA literature as chromosomes. The recombination of strings 

is carried out using simple analogies of genetic crossover and 

mutation, and the search is guided by the results of evaluating 

the objective function f for each string in the population. 

Based on this evaluation, strings that have higher fitness (i.e., 

represent better solutions) can be identified, and these are 

given more opportunity to breed. It is also relevant to point 

out here that fitness is not necessarily to be identified simply 

with the composition f(c(s)); more generally, fitness is 

h(f(c(s))) where  f: R→ R  is a monotonic function. 

 Perhaps the most fundamental characteristic of genetic 

algorithms is that their use of populations of many strings. 

Holland also used mutation, but in his scheme it is generally 

treated as subordinate to crossover. Thus, in Holland’s GA, 

instead of the search moving from point to point as in NS 

approaches, the whole set of strings undergoes ‘reproduction’ 

in order to generate a new population.  

III. SELF SIMILARITY 

  Subsets of fractals when magnified appear similar or 

identical to the original fractal and to other subsets. This  

property  is  called  self-similarity  and  it  makes  fractals  

independent  of  scale  and  scaling.  Thus there is no 

characteristic size associated with a fractal. A typical image 

does not contain the type of self-similarity found in fractals. 

But, it contains a different sort of self-similarity. The figure 

2.2.1 shows regions of Lena that are self-similar at different 

scales. A portion of her shoulder overlaps a smaller region 

that is almost identical, and a portion of the reflection of the 

hat in the mirror is similar to a smaller part of her hat.   

 
Fig : Self Similarity In Lena Image. 

 The  difference  here  is  that  the  entire  image  is  not  

self-similar,  but  parts  of  the  image  are  self- similar with  

properly transformed parts of itself. Most naturally occurring 

images contain this type of self-similarity. It is this restricted 

redundancy that fractal image compression chemes attempt to 

eliminate. 

IV. PARTITIONED ITERATED FUNCTION SYSTEM 

(PIFS) 

 Fractal image compression uses a special type of IFS called 

a partitioned iterated function system (PIFS). A PIFS consists  

of  a  complete metric  space X, a collection  of  sub  domains 

Di  ⟶  X,  i =  1,2,.....n,  and  a  collection  of  contractive 

mappings   Di  ⟶ X, i = 1,2,.....n.  

 

 
Fig : A Partitioned Iterated Function System. 
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V. BASIC FRACTAL IMAGE ENCODING 

 The fundamental principle of fractal coding consists of the 

representation of an image by a contractive transform of 

which the fixed point is close to that image. Banach’s fixed 

point theorem guarantees that, within a complete metric 

space, the fixed point of such a transform may be recovered 

by iterated application thereof to an arbitrary initial element 

of that space. Images are represented within this framework 

by viewing them as vectors within a Hilbert space, the metric 

being derived from the inner product via the norm. 

  Encoding is not as simple, since there is no known algorithm 

for constructing the transform with the smallest possible 

distance, given the constraints on the transform, between the 

corresponding fixed point and the image to be encoded. The 

usual approach is based on the collage theorem, which 

provides a bound on the distance between the image to be 

encoded and the fixed point of a transform, in terms of the 

distance between the transform of the image and the image 

itself. A suitable, although suboptimal, transform may 

therefore be constructed as a “collage” or union of mappings 

from the image to itself, a sufficiently small “collage error” 

(the distance between the collage and the image) guaranteeing 

that the fixed point of that transform is close to the original 

image. 

 
Fig.: One Of The Block Mappings In A PIFS 

Representation. 

 In the original approach, devised by Barnsley, this 

transform was composed of the union of a number of affine 

mappings on the entire image—an iterated function system 

(IFS). While a few impressive examples of image modeling 

were generated by this method, no automated encoding 

algorithm was found. Fractal compression became a practical 

reality with the introduction by Jacquin1 of the partitioned 

IFS (PIFS), which differs from an IF in that each of the 

individual mappings operates on a subset of the image, rather 

than the entire image. Since the image support is tiled by 

“range blocks,” each of which is mapped from one of the 

“domain2 blocks” as depicted in Fig.2.4.1, the combined 

mappings constitute a transform on the image as a whole. The 

transform minimizing the collage error within this framework 

is constructed by individually minimizing the collage error for 

each range block, which requires locating the domain block 

which may be made closest to it under an admissible block 

mapping. This transform is then represented by specifying, 

for each range block, the identity of the matching domain 

block together with the block mapping parameters 

minimizing the collage error for that block. Distances are 

usually measured by the MSE, equivalent to the distance 

derived from the inner product, since optimization3 of the 

standard block mappings is simple under this measure [5].  

 Let an original image be partitioned into non-overlapping 

regions called range blocks (R) and overlapping regions 

called domains blocks (D). The size of each domain block 

should be larger than that of the range block to satisfy the 

property of contraction. Let D’ denote the down sampled 

domain block of D and the D’ size is equal to the size of R. 

The transformations are composed of a geometric 

transformation and a massic transformation. The geometric 

transformation consists of moving the domain block to the 

location of the range block and adjusting the size of domain 

block to match the size of range block. The massic 

transformation adjusts the intensity and orientation of the 

pixels in the domain block after it has been operated on by the 

geometric transformation. The geometric and massic 

transformation ti can be depicted as follows:  

 

 
 where si controls the contrast and oi controls the 

brightness. z = f (x, y) is the gray level value at (x, y) and Ai, 

Bi, Mi, Ni can be used to denote the eight-symmetry such as:  

Identity mapping   

 Rotation by 90 degrees  

 Rotation by 180 degrees  

 Rotation through -90 degrees 

 Reflection about mid-vertical axis  

 Reflection about mid-horizontal axis  

 Reflection about diagonal  

 Reflection about cross diagonal.  

Ei and Fi are used for position offset. The i in si and oi denotes 

one of the above mentioned eight symmetries.  

 In practice, we compare a range block and down sampled 

domain blocks using MSE metric as follows : 

 
Where ak represents the pixel value of the sampled domain 

blocks (D’) after eight transformations and bk represents the 

pixel value of the range blocks and the block size for both R 

and D’ is n by n. This MSE metric allows easy computation 

for optimal values of si and oi. in equation of ti. This will give 

us contrast and brightness settings that make the affine 

transformed ak values have the least squared distance from 

the bk values. The minimum of MSE occurs when the partial 

derivatives with respect to si and oi are zero, which occurs 

when 

 

 
 There are many best matching criteria to choose. The MSE 

is usually used in fractal image coding and the minimal MSE 

always denotes better matching. We use equation of MSE to 

find the optimal si and oi and then quantize them for storage 

or transmission. In addition, the encoder must record the 

position of the best matched domain block (D’) and its 

transformation for each range 

block so as to reconstruct the 

decoded block on the decoder 
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side.   

 Suppose the data to be dealt with is 512 × 512 pixel image 

in which each pixel can be one of the 256 levels of gray( 

ranging from black to white). Let Ri be the 8x8 pixel 

non-overlapping range block (i=1,..,4096) and let D be the 

collection of all the 16×16 overlapped sub-squares of the 

image. The collection of D contains 497×497=247009 

squares when we shift the position of D with one pixel at one 

step. For each Ri, search through all of collection of Di to find 

the one which minimizes the MSE as equation of MSE; that is, 

find the part of the image that most looks like the image above 

R. There are 8 ways to map one square onto another, so that 

this means comparing 8×247009=1976072 squares with each 

of the 4096 range blocks. In addition, we must fulfill the 

down-sampling operation for each Di to get the same size of R 

to carry out the later MSE computation. Choosing 1 from each 

2×2 sub-square of Di or averaging the 2×2 sub-square 

corresponding to each pixel of R can achieve the goal of 

down-sampling. It is obvious that the huge computation is 

needed from the above descriptions about the conventional 

fractal encoding. The time to search the best matched domain 

block for every range block is a time consuming job in 

practical application. Therefore, we develop a new encoding 

algorithm to reduce the time in this research. A lot of people 

have been making efforts in fractal improvement. Some 

investigate region-based image coding methods and some 

combine fractal with other algorithm such as wavelet in, 

genetic algorithms, discrete cosine transform. Saupe and 

Jacob employ a variance condition to decide whether or not to 

quadtree partition a block further. C.K. Lee and W.K. Lee use 

the variance matching technique. The best matched domain 

block is searched within the searching window for in the 

neighborhood of the domain block with the closet variance to 

that of the range block. Some uses a non-symmetric window 

to search the for the best matched domain block based on the 

local variance method. Almost all of them used the 

characteristic of image content to pruning the unnecessary 

computation to decrease time [2].  

VI. FRACTAL IMAGE ENCODE 

 The fractal image compression is based on the local self 

similarity property in a nature image. The fundamental idea is 

coming from the Partitioned Iterated Function System (PIFS). 

Suppose the original gray level image f is of size 256×256 . 

Let the range pool R be defined as the set of all no overlapping 

blocks of size 8×8 of the image f, which makes up (256/8)2 = 

1024 blocks. For obeying the Contractive Mapping 

Fixed-Point Theorem, the domain block must exceed 2 times 

than the range block in length. Thus, let the domain pool D be 

defined as the set of all possible blocks of size 16×16 of the 

image f, which makes up (256-16+1)2 =58081 blocks.  

 For each range block v from the R, the fractal affine 

transformation is constructed by searching all of the domain 

blocks in the D to find the most similar one and the parameters 

representing the fractal affine transformation will form the 

fractal compression code of v. To execute the similarity 

measure between range block and domain block, the size of 

the domain block must be first sub sampled to 8×8 such that 

its size is the same as v. Let u denote a sub-sampled domain 

block. The similarity of two image blocks u and v of size n×n 

is measured by mean square error (MSE) defined as 

 

 
Fig.: The Diagram Of Eight Transformations In The Dihedral 

Group. 

 The fractal affine transformation allows the eight 

transformations of the domain block u in the Dihedral. The 

eight transformations Tk : k = 0,1, …. 7 can be expressed by 

the diagrams in Fig. 1. Thus for a given block from the range 

pool, there are 58081×8 = 464,648 MSE computations must 

be done in order to obtain the most similar block from the 

domain pool. Thus, in total, one needs 1024×464,648 = 

475,799,552 MSE computations to encode the whole image 

using this full search compression method. The fractal affine 

transformation also allows the contrast scaling p and the 

brightness offset q on the transformed blocks. Thus the 

similarity is to minimize the quantity d = ║p .uk + q -v║ . 

Here, p and q can be computed directly by,  

 
respectively, where N is the number of pixels of the range 

block and  

 Finally, as u runs over all the 58081 blocks in the domain 

pool, a set of parameters tx , ty , p, q, and k are obtained and 

constitute the fractal compression code of v, in which tx and ty 

represent the position of the domain block. For 256× 256 

image, both tx and ty require 8 and 8 bits, respectively. For 

contrast p, brightness q, and the Dihedral index k , 5, 7 and 3 

bits are required, respectively. Hence one needs 31 bits in 

total to encode a range block. Finally, as v runs over all 1024 

blocks in the range pool, the encoding process is 

completed[1].  

VII. PROPOSED METHOD 

  In this section, we propose a genetic algorithm using discrete 

cosine transformation. First, two discrete cosine coefficients: 

the lowest vertical coefficient F(1, 0) and the lowest 

horizontal coefficient F(0,1) are used to determine the optimal 

Dihedral index between the range block and domain block. 

The technique saves seven eighths MSE computations. 

Second, the discrete cosine transformation will be combined 

into the genetic algorithm in order to reduce the MSE 

computations further. To execute the similar match between 

the range block and domain block, the lowest vertical 

coefficient F(1, 0) and the lowest horizontal coefficient F(0,1) 

will be used to determine the optimal Dihedral block.  

  The quantity F(m, n) is the 

DCT of an image block f (i, j) of 

size N× N defined by  
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where m, n = 0,1, …. N -1 and  

 
Typically, for N = 8 , we have  

 

Where   

  The magnitude of F(1, 0) reflects the intensity variation 

between the left half and right  half of the image block f and 

the magnitude of F(0,1) reflects the intensity variation 

between the upper half and lower half. Moreover, their signs 

also show respectively the varied direction of the brightness 

from shine to dark at horizontal and vertical. If F(1, 0) >0, the 

brightness at the left half is higher than the one at the right 

half. Opposite, if F(1, 0) <0, the brightness at the left half is 

smaller than the one at the right half. Similarly, If F(0,1) 

>0,the brightness at the upper is higher than the one at the 

lower. On the contrary, if F(0,1) <0, the brightness at the 

upper is smaller than the one at the lower. Hence, if the 

domain block is taken the Dihedral transformation such that 

both of the magnitude relation and the brightness varied 

direction of F(1, 0) and F(0,1) of the range block and the 

transformed block are the same, the MSE is the least and the 

transformed block is the optimal. The range block does the 

similar match only with the optimal transformed block. The 

others are ignored to save seven eighths MSE computations.  

Once the optimal transformed block of the domain block is 

determined by the F(1, 0) and F(0,1) , the technique is 

combined into the genetic algorithm to reduce the MSE 

computations further. The setup of the proposed method is 

summarized as follows:  

Chromosome Formation : 

  For traditional GA method, the chromosome is composed of 

x-coordinate and y-coordinate of an image and the Dihedral 

index. The complicate landscape reduces the evolutionary 

velocity of the GA is slower and hard to find the better 

solution. But for the proposed GA method, the chromosome is 

only formed by x-coordinate and y-coordinate of an image 

since the Dihedral index has determined in advance. The 

chromosome is shortened and the landscape is smoother. 

Hence the evolutionary velocity for GA can be speedup and 

the optimal solution can be found. 

Fitness Function:  

  The distance of both range block and sub-sampled domain 

block is measured by MSE. The fitness value is defined as the 

reciprocal of MSE 

 Initial Population :  

  Chromosomes are initialized randomly. The major questions 

to consider are firstly the size of the population, and secondly 

the method by which the individuals are chosen. The size of 

the population has been approached from several theoretical 

points of view, although the underlying idea is always of a 

trade-off between efficiency and effectiveness. Intuitively, it 

would seem  that there should be some ‘optimal’ value for a 

given string length, on the grounds that too small a population 

would not allow sufficient room for exploring the search 

space effectively, while too large a population would so 

impair the efficiency of the method that no solution could be 

expected in a reasonable amount of time.  

  Unfortunately, from this viewpoint, it appeared that the 

population size should increase as an exponential function of 

the string length. In Reeves , the initial principle was adopted 

that, at the very least, every point in the search space should 

be reachable from the initial population by crossover only. 

This requirement can only be satisfied if there is at least one 

instance of every allele at each locus in the whole population 

of strings. On the assumption that the initial population is 

generated by a random sample with replacement (which is a 

conservative assumption in this context), the probability that 

at least one allele is present at each locus can be found. For 

binary strings this is easily seen to be from which we can 

calculate that, for example, a population of size 17 is enough 

to ensure that the required probability exceeds 99.9% for 

strings of length 50. For q-ary alphabets, the calculation is 

somewhat less straightforward, but expressions are given in 

that can be converted numerically into graphs for specified 

confidence levels.  

  The results of this work suggested that a population size of 

would be sufficient to cover the search space. Finally, as to 

how the population is chosen, it is nearly always assumed that 

initialization should be random. Rees and Koehler, using a 

model-based approach that draws on the theoretical work of 

Vose , have demonstrated that sampling without replacement 

is preferable in the context of very small populations. More 

generally, it is obvious that randomly chosen points do not 

necessarily cover the search space uniformly, and there may 

be advantages in terms of coverage if we use more 

sophisticated statistical methods, especially for non-binary 

alphabets. One such simple idea is a generalization of the 

Latin hypercube which can be illustrated as follows.  

Suppose each gene has 5 alleles, labelled We choose the 

population size to be a multiple of 5, say m, and the alleles in 

each ‘column’ are generated as an independent random 

permutation of which is then taken modulo 5.  

 
Fig : An Example Of Latin Hypercube Sampling For L=6 And 

A=5. 

  Figure  shows an example for a population of size 10. For 

this figure note that each allele occurs exactly twice for each 

gene. To obtain search space coverage at this level with 

simple random initialization would need a much larger 

population. Another point to 

mention here is the possibility of 

‘seeding’ the initial population 

with known good solutions. 
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Some reports have found that including a high-quality 

solution, obtained from another heuristic technique, can help 

a GA find better solutions rather more quickly than it can from 

a random start. However, there is also the possibility of 

inducing premature convergence [3]. 

Selection :  

 Selection mechanism selects two parents from the mating 

pool to execute  the crossover operation. In our proposed 

method, the ranking selection is adopted to avoid precocity of 

population and maintain the good genes to end into the 

offspring. 

The basic idea of selection is that it should be related to 

fitness, and the original scheme for its implementation is 

commonly known as the roulette-wheel method. It uses a 

probability distribution for selection in which the selection 

probability of a given string is proportional to its fitness. 

 
Fig : A Simple Example Of Roulette-Wheel Selection (RWS). 

For figure suppose that there are 5 strings in a population with 

fitness{32, 9, 17, 17, 25} respectively. The probability of 

selection of each individual is proportional to the area of a 

sector of a roulette wheel(or equivalenatly to the angle 

subtended at the centre). The no on the spokes of the wheel 

are the cumulative probabilities for use by a pseudo random 

no generator. On the left we have standard roulette wheel 

selection, with a single pointer that has to be spun 5 times. On 

the right we have SUS, using 5 connected equally spaced 

pointers; one spin provides 5 selections 

 Pseudo-random numbers are used one at a time to choose 

strings for parenthood. For example, in Figure 3.3.2, the 

number 0.13 would select string 1, the number 0.68 would 

select string 4. Finding the appropriate number for a given 

pseudo-random number r requires searching an array for 

values that bracket r this can be done in time for a population 

of size M.  

  However, RWS has a high stochastic variability, and the 

actual number of times that chromosome C is selected in any 

generation may be very different from its expected value For 

this reason, sampling without replacement may be used, to 

ensure that at least the integral part of is achieved, with 

fractions being allocated using random sampling. In practice, 

Baker’s stochastic universal selection (SUS) is a particularly 

effective way of realizing this outcome. Instead of a single 

choice at each stage, we imagine that the roulette wheel has an 

equally spaced multi-armed spinner. Spinning the wheel 

produces simultaneously the values for all the chromosomes 

in the population. From the viewpoint of statistical sampling 

theory, this corresponds to systematic sampling. 

Experimental work by Hancock clearly demonstrates the 

superiority of this approach, although much published work 

on applications of GAs still appears to rely on the basic 

roulette-wheel method. 

  An associated problem is that of finding a suitable measure 

of fitness for the members of the population. Simply using the 

objective function values f (x) is rarely sufficient, because the 

scale on which f (x) is measured is important. (For example, 

values of 10 and 20 are much more clearly distinguished than 

1010 and 1020.) Further, if the objective is minimization 

rather than maximization, a transformation is clearly required. 

Some sort of scaling is thus usually applied, and Goldberg 

gives a simple algorithm to deal with both minimization and 

maximization. The method is cumbersome, however, and it 

needs continual re-scaling as the search progresses. Two 

alternatives provide more elegant solutions [3]. 

Crossover :  

 The crossover operation is used on the two parents to 

generate the temporarily offspring. In our proposed method, 

the uniform crossover is used.  

Given the stress on recombination in Holland’s original work, 

it might be thought that crossover should always be used, but 

in fact there is no reason to suppose that it has to be so. 

Further, while we could follow a strategy of 

crossover-AND-mutation to generate new offspring, it is also 

possible to use crossover-OR-mutation. There are many 

examples of both in the literature. The first strategy initially 

tries to carry out crossover, then attempts mutation on the off 

spring (either one or both). It is conceivable that in some cases 

nothing actually happens at all with this strategy the offspring 

are simply clones of the parents.  

 Others always do something, either crossover of mutation, 

but not both. (Even then, cloning is still possible with 

crossover if the parents are too alike.) The mechanism for 

implementing such choices is customarily a randomized rule, 

whereby the operation is carried out if a pseudo-random 

uniform deviate exceeds a threshold value. In the case of 

crossover, this is often called the crossover rate, often denoted 

by the symbol. For mutation, we have a choice between 

describing the number of mutations per string, or per bit; 

bit-wise mutation, at a rate denoted by is more common. In the 

-OR- case, there is the further possibility of modifying the 

relative proportions of crossover and mutation as the search 

progresses.  

 Davis has argued that different rates are appropriate at 

different times: high crossover at the start, high mutation as 

the population converges. He has further suggested that the 

operator proportions could be adapted online, in accordance 

with their track record in finding new high-quality 

chromosomes [3].  

Mutation:  

 The mutation operation is applied to the temporarily 

offspring to generate the chromosome of the next generation. 

Its goal is to maintain the diversity of the population and to 

avoid pre-maturity.  

 Firstly, we note that in the case when 

crossover-OR-mutation is used, we must first decide whether 

any mutation is carried out at all. Assuming that it is, the 

concept of mutation is even simpler than crossover, and again, 

this can easily be represented as a bit-string. We generate a 

mask such as using a Bernoulli distribution at each locus with 

a small value of p in this case. (The above example would then 

imply that the 2nd and 6th genes are assigned new allele 

values.) However, there are different ways of implementing 

this simple idea that can make a substantial difference to the 

performance of a GA. The naive 

idea would be to draw a random 

number for every gene in the 

string and compare it to but this 
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is potentially expensive in terms of computation if the strings 

are long and the population is large.  

 An efficient alternative is to draw a random variate from a 

Poisson distribution with parameter where is the average 

number of mutations per chromosome. A common value for is 

1 in other words, if l is the string length, the (bit-wise) 

mutation rate is which as early as 1964 was shown to be in 

some sense an ‘optimal’ mutation rate. Having decided that 

there are (say) m mutations, we draw m random numbers 

(without replacement) uniformly distributed between 1 and l 

in order to specify the loci where mutation is to take place. In 

the case of binary strings, mutation simply means 

complementing he chosen bit(s).  

 More generally, when there are several possible allele 

values for each gene, if 0 1 0 0 0 1  we decide to change a 

particular allele, we must provide some means of deciding 

what its new value should be. This could be a random choice, 

but if (as in some cases) there is some ordinal relation between 

allele values, it may be more sensible to restrict the choice to 

alleles that are close to the current value, or at least to bias the 

probability distribution in their favour. It is often suggested 

that mutation has a somewhat secondary function, that of 

helping to preserve a reasonable level of population diversity 

an insurance policy which enables the process to escape from 

sub-optimal regions of the solution space, but not all authors 

agree. Proponents of evolutionary programming, for example, 

consider crossover to be an irrelevance, and mutation plays 

the major role. Perhaps it is best to say that the balance 

between crossover and mutation is often a problem-specific 

one, and definite guidelines are hard to give.  

 However, several authors have suggested some type of 

adaptive mutation: for example, Fogarty experimented with 

different mutation rates at different loci. Reeves varied the 

mutation probability according to the diversity in the 

population (measured in terms of the coefficient of variation 

of fitnesses). More sophisticated procedures are possible, and 

anecdotal evidence suggests that many authors use some sort 

of diversity maintenance policy [3].  

Stopping Criterion:  

 W hen a pre-specified number of iteration is reached, the 

evolutionary process is stopped. 

 Connecting the above operational strategies, a GA 

algorithm incorporates with the discrete cosine 

transformation is proposed. The detailed steps are given as 

follows.  

 Initially, set the population size, the crossover mask, 

crossover rate, mutation mask, mutation rates.  

1. Calculate the F(1, 0) and F(0,1) of all the range blocks 

and domain blocks. 

2. Generate the initial population of chromosomes 

randomly. 

3. Find the optimal Dihedral blocks for all the 

chromosomes. Calculate the fitness values of these 

chromosomes based on the style of the optimal 

transformed block. 

4. Rank the chromosomes according to their fitness values. 

5. If a pre-specified number of iterations is reached, then 

stop and record the fractal code. Otherwise, go to next 

step. 

6. Select the parent chromosomes according to the select 

mechanism. 

7. Perform the uniform crossover to generate the 

temporary offspring. 

8. Perform the mutation operation on the temporary 

offspring to generate the chromosomes of the next 

generation and go to step 3) [1]. 

VIII. PERFORMANCE COMPARISON 

 The images Lena and Pepper are tested to demonstrate the 

encoding time and retrieved quality of the proposed in 

comparison to the full searching method and tradition GA 

method. The parameters of the traditional GA method are the 

same as the ones of the proposed GA method. The size of the 

tested images is 256×256. The sizes of the range block and 

domain block are chosen to be 8×8 and 16×16, respectively. 

The software simulation is done using BCB on a Pentium 

2.0GHz, Windows XP PC. The related GA parameters are set 

as follows: 

 Population size=280 

 Crossover rate =0.6 

 Mutation rate=0.05 

 The number of iteration is 25 

 Elitism 

Table : The Performance Comparisons Of Full Search, 

Traditional GA, And Proposed GA Methods. 

Ima

ge 

Method PSNR(

dB) 

#MSE Time(se

c) 

Len

a 

Full search 28.91 475,799,55

2 

3141.8

8 

Traditional 

GA 

27.45 3,560,683 27.94 

Proposed 

GA 

27.81 3,438,296 30.17 

Pep

per 

Full search 29.84 475,799,55

2 

3139.9

1 

Traditional 

GA 

28.35 3,599,405 28.39 

Proposed 

GA 

28.43 3,447,345 31.02 

  Table shows some comparative results for full search 

method, traditional GA method, and proposed GA method, in 

which the GA parameters of both the proposed GA method 

and traditional GA method are the same. The table shows that, 

comparing with the traditional GA method, the encoding time 

of the proposed GA method is the 7.4%-8.5% slower than that 

of the traditional GA method. But at the quality of the 

retrieved image, the improvement is about 0.08dB-0.36dB.  

  Moreover, in comparison with full search method, the 

encoding velocity of the proposed GA method is about one 

hundred times faster than that of the full search method. The 

cost is about 1.1dB-1.4dB loss at the retrieved image. The 

quality of the retrieved image is acceptable relatively. The 

results of retrieved images by proposed GA, traditional GA, 

and full search methods are shown on Fig. 3.4.1. Fig. 3.4.1(a) 

is the original Lena image and Fig. 3.4.1(b) is the retrieved 

image using the full search method. Fig. 3.4.1(c) and Fig. 

3.4.1(d) are the retrieved images using the traditional GA 

method and proposed GA method, respectively[1].  

      



 

Genetic Algorithm Using Discrete Cosine Transform for Fractal Image Encode 

8 Retrieval Number: E1929113513/2014©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

  
(a)         (b) 

 

  
(c)          (d) 

Fig : (a).Original image, Lena of size 256×256. (b).Full 

searching method, MSE computations=475,799,552, 

PSNR=28.91 dB, Time=3141.88 sec. (c).Traditional GA 

method, MSE computations=3,560,683, PSNR=27.45 dB, 

Time=27.94 sec. (d).Proposed GA method, MSE 

computations =3,438,296, PSNR=27.81 dB, Time=30.17 

sec.[1] 

IX. CONCLUSION 

  In this, a genetic algorithm using discrete cosine 

transformation is proposed to speed up the fractal encoder.  

First, two discrete cosine coefficients are used to determine 

the optimal Dihedral transformation block between the range 

block and domain block. Only the optimal transformed block 

executed the similar match with the range block and the others 

are ignored to save seven eighths MSE computations.Second, 

combining the discrete cosine transformation technique with 

the genetic algorithm, a GA using discrete cosine 

transformation is proposed to reduce the MSE computations 

further. Experiments show that comparing with the traditional 

GA, the encoding speed of the proposed GA method is slower 

slightly than that of the traditional GA method.But the reward 

is the improvement of quality of the retrieved 

image.Compared with the full search method, the encoding 

time is 100 times faster, while the cost is the 1.1dB decay at 

the retrieved image quality [1].The performance of the 

traditional image coding system in terms of speed is greatly 

improved, which can raise the performance of coding system. 

The experimental results show that our proposed method 

makes the encoder much faster than the conventional fractal 

compression method. Compared to other published methods, 

the proposed method gets better performance in terms of 

running time. [2]There are some properties of fractals that 

make them ideal for other applications. Fractals have no 

characteristic size, and an encoded image can be decoded at 

any resolution. Realistic detail is artificially generated at all 

scales. Fractals perform very well for highly sampled, natural 

images. Synthetic images and half tones are not compressed 

by this method. The encoding step is time consuming, but the 

decoding step is very fast. All these properties make fractals a 

good choice for transmitting images over the Internet. The 

resolution independence property is desired, as target 

browsers have different resolutions. Images are encoded only 

once, but decoded many times. A sizeable portion of the 

images over the Internet are natural images. The decoding 

step works is the natural way that images load up in browsers 

[8]. A conclusion section is not required. Although a 

conclusion may review the main points of the paper, do not 

replicate the abstract as the conclusion. A conclusion might 

elaborate on the importance of the work or suggest 

applications and extensions.  
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