
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-6, January 2014

33

Retrieval Number: E1909113513/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Software Reuse and Reengineering: With A Case

Study

Prabhot Kaur Chahal, Amritpal Singh

ABSTRACT: Reuse of existing system has been regarded as a

feasible solution to solve the problem of software Productivity

and Quality. In this paper, the reference paradigms for setting up

of reuse reengineering processes, has been explained.

Approaches to reengineering and reuse are also discussed.

In Product development an important step is to have a clear

and correct set of systems requirements. When a product is

produced by a variety of models with different set of features, it is

desirable to make the requirements Reusable. But this imposes

certain restrictions on the Requirements development that are

described here.

KEYWORDS: System Requirements, Re-engineering, Reuse,

Salvaging, Restructuring

I. INTRODUCTION

When software has been developed our long periods of time,

it is often difficult and costly to ensure that it meets the best

industry practice and standard at all times. So it is better re-

engineer software to improve functionality, efficiency and

maintainability of the code. This is a cost effective way of

upgrading customers, resources and improving productivity.

Existing applications may be adapted or converted to

improve their functionality or user image, and to take

advantage of current best practice techniques. The result is

that the customer’s initial investment in the software is

preserved fully. And the applications are made more

reliable, robust, efficient, and easier to use.

What is software re-engineering?

There is no universally accepted definition of software re-

engineering.

1) The IBM user Group GUIDE[1] (GUIDE 1989)

defines software re-engineering as “the process of

modifying the internal mechanism of a system or

program or the data structures of the system or

program without its functionality”

2) CHIKOFSKY AND CROSS[2] defines software re-

engineering (chikofsky,1990) as: “The examination

and alteration of a subject system to reconstitute it in a

new form and subsequent implementation of that

form”

3) ARNOLD[3] defines software re- engineering (Arnold

1990, Arnold 1993) as: “Any activity that improves

one’s understanding of software / improves the

software itself”

In this definition, the interpretation of “software” is quite

broad.

It includes source code, design records, and other sources of

documentation.

This definition partitions software re-engineering into two

sets of activities.

Manuscript received January 15, 2014.

Prabhjot Kaur Chahal:- Graduated from BCET, Gurdaspur in stream

IT in the year 2012 and pursuing my MTech in CSE from GNDU,
Amritsar, India.

Amritpal Singh:- Graduated from BCET, Gurdaspur in stream IT in

year 2010 and pursuing MTech from BCET, Gurdaspur,India.

1) The first set consists of activities supporting program

understanding, such as browsing, measurement, and

reverse re-engineering

2) The second set includes activities geared towards

software evolution, such as re-documentation, re-

structuring and re-modularization.

Strategic reengineering refers to the process during which

software systems are re-developed in order to meet

company's long-term strategic plans. Strategic reengineering

lifecycle involves four phases, namely a preliminary phase

of business and Information System (IS) planning,

reengineering planning, building a reusability framework

and reengineering of software. The structure of the strategic

reengineering process is shown:

s

Figure 1: phases of strategic reengineering [4]

Definition of software reuse

Software Reuse can be defined as [5,6]:

1) “the process of creating software systems from existing

software systems, rather than building software

systems from scratch”

2) “the systematic process of developing software from a

stock of building blocks, so that similarities in

requirements and/or architecture between applications

can be exploited to achieve substantial benefits in

productivity, quality and business performance”.

3) “the ability to use software routines over again in new

applications”. This is one of the benefits of other

technology.

Software Reuse and Reengineering: With A Case Study

34 Retrieval Number: E1909113513/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Why Reuse Software?

A good software reuse process facilities the increase of

productivity, quality, and reliability and the decrease of

costs and implementation time. An initial investment is

required to start a software reuse process, but that

investment pays for itself in a few reuses. In short, the

development of a reuse process and repository produces a

base of knowledge that improves in quality after every

reuse, minimising the amount of development work required

for future projects and ultimately reducing the risk of new

projects that are based on repository knowledge.

Software salvaging

Software salvaging is representation specialty for recovering

software assets for reuse. Software salvaging is part of the

reengineering.

Software Salvaging Process:

Raw Material

classify

Prospecting means to determine what software parts are

worth further attention.

Transformation means modified and certified so that it

meets style and quality criteria for insertion into the

repository.

Software salvaging refers to a reengineering activity for

recovering software assets for reuse. It can be done in the

 large extent i.e allowing the entire system to be

reused.

 Small extent i.e obtaining software building blocks

for reuse,

 Populating a repository with parts and

relationships

 Recovering object oriented objects and classes

from non-object-oriented software.

Three Salvaging Approaches:

Domain- Independent Software Salvaging(using software

metrics to find redundant code, use of plagiarism detection

program, use of McCabe cyclomatic complexity to find

control flow reducdancies)

1) Domain-Dependent software salvaging

(uses information about the software applications or

design history to find parts from code)

2) Object Salvaging tries to find OO objects from non-OO

code.

3) E.g. creation of “ C++” classes and object instances

from software written in “C”

II. A PARADIGM FOR REUSE REENGINEERING

PROCESSES

The importance of high-level organizational paradigms in

setting up software processes (production, evolution,

certification) is well known [7]. In our case, this model has

the function not only of guiding the creation of new

processes (by means of suitable tailoring and instantiation

operations) but also and above all of learning from these. In

particular, for identification, delimitation, classification of

theoretical, methodological and technological problems, for

which solutions have not yet been proposed, so as to locate

in the process and thus experiment the limitations and

qualities of any solutions adopted the paradigm must be

useful for the identification, delimitation and classification.

The paradigm defined for RE
2
 is shown in figure 2.

In order to model the process, the paradigm is characterized

in sequential phases, each of which includes a set of

homogeneous activities aiming to produce objects that are

and therefore characteristic of the process.

The phase are:

 Candidature phase

 Election phase

 Qualification phase

 Classification and Storage phase

 Search and Display phase

Figure 2: the RE

2
Paradigm

1) The Candidature phase includes the set of activities that

start from source code analysis and a set of software

components is produced, each making up a module.

2) Election phase includes the set of activities that start

from the set of candidates to make up a module and

produce a set of reusable modules.

3) The Qualification phase includes the set of activities

that produce the functional and interface specifications

of each reusable module.

4) The Classification and Storage phase includes the set of

activities for classifying the reusable module on the

basis a reference taxonomy and for organizing and

populating a repository or a system of repositories for

the produced modules.

5) The Search and Display phase includes the set of

activities concerned with the organization and creation

of the "front end user" in order to navigate through the

repositories with the help of visual supports.

III. PRINCIPLES OF REENGINEERING AND

REUSE [8]

The three views that should be considered when developing

requirements and that should also be considered important

when the requirements are reengineered

1. The view of the stakeholders: the requirements are

specified by the stakeholders. Stakeholders are the one

who show interest in the on the several possible points.

Stakeholders can be customers, consumers, management.

One party that show interest, its interest is winded up and

the requirements are worked accordingly.

2. The view of the development team: the responsibility of

the development team is to fulfil the demand of

requirements in the form of a product. The requirements

are mapped accordingly into the product based on it. The

logic of the system

behaviour is depicted by the

system requirements in total.

It is not necessary in most

prospecting transformation

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-6, January 2014

35

Retrieval Number: E1909113513/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

cases to specify the logical behaviour of the system in the

sequences of algorithmic steps. Rather, the system

requirements are structured in the break down into

modules, tasks, algorithms. It happens that some of the

details are left for the implementation but still they can be

derived from the system logic behaviour.

3. The view of the tester: the testers are the one who checks

and maps the views given by the stakeholder and the

views given by developer. The requirements given by the

stakeholder are moulded in to the product by developer.

The requirements verification is done and the input-output

relation is tested along with behavioural response.

With consideration for these views, a set of principles or

guidelines for reengineering and reusing requirements were

developed.

IV. CASE STUDIES

Case studies based on the effects of reuse on the quality,

productivity and economics:

Reuse is not the new concept, but it has been used for

improving the quality and productivity of the software now

a days.

To prove this concept true that reuse increase quality and

productivity case studies were performed at Hewlette-

Parkard. Hewlette- Parckard [7] found that reuse

significantly play a positive effect on the software

development. In the case studies he presented two metrices

from two HP reuse programs that showed that with the

quality improvement the productivity is also increased.

Here, the terms used in this case study are defined as

follows:

 Work products are the software- development process

products or by-products: like code, design and test

plans.

 Reuse is defined as the use of these work products

without modification in some other software.

 Leverage reuse is modifying existing work products to

meet specific system requirements.

 Producer is the one who creates the reusable products.

 Consumer is the one who uses that reusable product for

creating other software.

 Time-to- market is defined as the time taken for a

software to get completed and delivered into the

market for customers to use it.

Software reuse is not free as it requires resources to create

and maintain reusable work products, a reuse library or

tools. An economic analysis method has been developed to

evaluate the costs and benefits of the reuse, which is also

applied to multiple reuse programs at HP.

Case study 1:

The first case study was done in the Manufacturing

Productivity section of HP’s software technology division.

The MP section produces large-application software for

manufacturing resource planning. The study was started in

1983.

Originally the motive of this was just to increase the

engineering productivity. But the MP section has discovered

reuse for maintaining the burden and support product

enhancement.

Technical aspect

 MP engineers practiced reuse by using generated code

and other work products such as applications and

architecture utilities and files.

 The data reported only the use of reusable work-

products, not the generated code.

 Total code size for the 685 reusable work products was

55,000 lines of non-comment source statements.

 The reusable work products were written in Pascal and

SPL, system programming language for the HP 3000

computer system.

 The development and target operating system was

MYPEXL, the multiprogramming Environment.

Case study 2:

 The second case program is within the San Diego

Technical Graphics Division, which develops,

enhances, and maintains firmware for plotters and

printer.

 The STG reuse program began in 1987. Among the

program’s goals was the same to reduce the

development cost and see how the productivity quality

gets effected.

 This could be done by reducing duplication and

providing consistent functionality across products.

 The reusable work product analyzed here is 20,000 non

comment source statements written in C.

 The development operating system was HPUX and the

target operating systems were PSOS and an internal

one.

Observations of these studies.:

At HP, data was collected from these use rese programs and

conducted a REUSE ASSESSMENT[7], which is an

analytical and diagnostic method used to evaluate both

qualitative and quantitative aspects of a reuse program. And

then part of this assessment includes the data on the

improved quality,productivity, and economics attributes to

reuse is analyzed and documentaed.

The graphs will show the effects of each attribute on the two

programs. A comparative study of these to programs along

with the attributes is also depicted.

The first attribute is”

 Code Quality:

The first thing which come in the mind of every consumer

or user is the quality of the product. The quality is the main

aspect on which the developer has to focus. Sometimes the

imbalance between the attributes of quality, time etc may

occur. This may due the reason that to fulfil one attribute’s

aspect one has to give up the other.

In gerenal if we talk about our day to day life, we shop alot

of househol things and the first thing which we try to

achieve is the best quality in less price. That same concept is

applicable in software world also, the reason is that the same

humans are dealing and the same thinking is mostly found.

The graph given below shows the code of quality. The

quality of the code, which means the correctness and

errorness of the source code for a program.

Software Reuse and Reengineering: With A Case Study

36 Retrieval Number: E1909113513/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Figure 3: Code Quality Graph

Here the defects per thousand non-comment source

statements is calculated of each program. Because quality

works products are used multiple times, the effect fixes from

each reuse accumulate, resulting in higher quality. More

important, reuse provides incentives to prevent and remove

defects earlier in the life cycle because the cost of

prevention and debugging can be amortized over greater

number of uses.

Figure 3 above tells the quality results. The MP section data

shows a defect-density rate for reused code of about 0.9

defects per thousand non-comment source statements

(KNCSS). Compared to the new code with 4.1 defects/

KNCSS. Using reused code in combination with new code

.in which 68% of the product was from reused work

products)

Resulted in 2.0 defects/KNCSS, a 51% reduction in defect

density compared to new code. If the effects of generated

code is taken into account, the achievement is of a total

defect-destiny reduction of 76% compared to new code.

The same thing was observed in STG, a positive feedback is

observed in case of reuse. They estimated the actual defect-

density rate for reused code to be 0.4 defects/KNCSS,

compared to 1.7 defects/KNCSS for new code. A product

that incorporated the STG reusable work product had a 31%

reuse level and a defect-density rate of about 1.3

defects/KNCSS, a 24% reduction in defect-density.

The second attribute is:

 Code of Productivity

Reuse improves productivity because the life cycle now

require less input to obtain the same output. For example,

reuse can reduce labour costs by encouraging specialization

in areas such as user interfaces. Because of their experience,

specialists usually accomplish tasks more efficiently than

non-specialists. Or productivity may increase simply

because fewer work products are created from scratch. For

example, if the reused work products are already

documented and tested, the new products require less work

in these areas. A product’s maintainability and reliability is

improved, thereby reducing maintenance labour costs.

Figure 4: Code of Productivity

Productivity is improved by reuse, by reducing the amount

of time and labour needed to develop and maintain a

software product. Figure 4 shows another similar project in

MP section reported a productivity rate of 0.7

KNCSS/engineering month for new code. Its product ,

which was composed of 385 reused code, had a productivity

rate of 1.1 KNCSS/engineering month, a 57% increase in

productivity over development from scratch.

The STG division estimates a productivity rate of 0.5

KNCSS/engineering month for new code. in contrast, its

released product comprising 31% reused code had a

productivity rate of 0.7 KNCSS/engineering month, a 40%

improvement.

Additional effort in creating reusable code in

STG[7]

Figure 5 shows percent increase in engineering months by

life-cycle phase (except maintenance) in creating a reusable

software work product in the STG division.. the data shows

that the most significant increase were in the investigation

and external design phases. This is because the producer of

the work product required a greater amount of time to

understand the multiple contexts in which the work product

will be reused.

Figure 5: Additional Effort in creating reusable code in

STG

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-6, January 2014

37

Retrieval Number: E1909113513/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

The third attribute is:

 Reusable case study economics

Reuse effort if not carefully planned and properly carried

out, oftentimes becomes an inhibitor rather than a catalyst to

software productivity and quality. Despite numerous articles

in the areas of domain analysis, component classification,

automated component storage/retrieval tools, reuse metrics,

etc., only a handful have managed to address the economics

of software reuse. In order to be successful, not only must a

reuse program be technically sound, it must also be

economically worthwhile. After all, reducing costs and

increasing quality were the two main factors that drove

software reuse into the software mainstream.

The comparision of the two programs MP & STG in

economics attribute is depicted below.

It is based on the various factors like: time horizon, gross

cost, gross savings, return on investment

Figure 6: Reuse Case Study Economics [8]

III. CONCLUSION:

A software that is reengineered for the bases of reuse, is

found to be far more successful as it shows a remarkable

diversification in terms of quality, productivity and

economics as compared to the new software development.

By applying the principles of the reengineering the

requirements for reuse defined herein enable a more

effective and efficient evolution of models within a product

family during development life cycle. Domain-specific

software development offers a comprehensive framework

for a reuse and reengineering based on revitalizing the

existing systems and resulting with a new more

maintainable systems.

REFERENCES

1. CHIKOFSKY, E. and Cross, J. H. (1990) “Reverse Engineering and

Design Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp.
13-17.

2. GUIDE, (1989) Application Reengineering, GUIDE Pub. GPP-208,

GUIDE International Corp., Chicago
3. ARNOLD, R. S. (1993). “A Road Map Guide to Software

Reengineering Technology,” in Software Reengineering, R. S. Arnold

(ed.), IEEE Computer Society Press.
4. Stan Jarzabek, “Strategic Reengineering of Software: Lifecycle

Approach”, 1993, IEEE

5. W. Tracz ed. "Tutorial: Software Reuse: Emerging Technology"
IEEE Computer Soc. Press. 1988

6. P. Freeman ed. "Tutorial: Software Reusability" Computer Soc. Press,

1987.
7. Engineering, Portici (Naples), Italy, Dec. 1991. V. R. Basili "Viewing

Maintenance as Reuse- Oriented Software Development" IEEE

Software.

8. Dr. Larisa Melikhova, Albert Elcock, Andrey A. Dovzhikov, Georgii

Bulatov, Dr. Dmitry 0. Vavilov, “Reengineering for System
Requirements Reuse: Methodology and Use-Case”, 2007, IEEE

9. Wayne C. Lim, “article of managed reuse organisational and

economics assessment” 1994, IEEE software
10. Software Engineering Course Given by: Arnon Netzer (ppt)

AUTHORS PROFILE

Prabhjot Kaur Chahal:- Graduated from BCET,

Gurdaspur in stream IT in the year 2012 and

pursuing my MTech in CSE from GNDU, Amritsar

Amritpal Singh:- Graduated from BCET,

Gurdaspur in stream IT in year 2010 and pursuing

MTech from BCET, Gurdaspur.

