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Application of Sumudu Decomposition Method for 

Solving Linear and Nonlinear Klein-Gordon 

Equations 

A. Ramadan, S. Al-luhaibi 

Abstract In this paper, Sumudu decomposition method is 

applied to solve various forms of linear and nonlinear Klein-

Gordon equations. The technique is a combined form of the 

Sumudu transform method and the Adomian decomposition 

method.  The nonlinear term can easily be handled with the help 

of Adomian polynomials which is considered to be a clear 

advantage of this technique. We illustrate this technique with the 

help of four examples. The results reveal that the proposed 

algorithm is very efficient, simple and can be applied to other 

nonlinear problems. 

Keywords: Sumudu decomposition method; Sumudu 

transform; Adomian polynomials; Linear and nonlinear Klein-
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I. INTRODUCTION 

The Klein-Gordon equations appear in quantum field theory, 

relativistic physics, dispersive wave-phenomena, plasma 

physics , nonlinear optics and applied and physical sciences, 

which are of the form[1,2]: 

),(),),(),( txgtaUxtxUtxU xxtt  ,                    (1) 

 with the initial conditions 

      )()0,(),()0,( xfxUxhxU t  .              (2)  

  Nonlinear phenomena have important effects on applied 

mathematics, physics and related to engineering; many such 

physical phenomena are modeled in terms of nonlinear 

partial differential equations as in, Eq. (1).  

The importance of obtaining the exact or approximate 

solutions of nonlinear partial differential equations in 

mathematics, physics and engineering is still a significant 

problem that needs new methods to discover exact or 

approximate solutions. Various powerful mathematical 

methods such as variational iteration method [3], homotopy 

perturbation method [4], new iterative method [5] and 

Adomian decomposition method [6] this method has proven 

useful for solving algebraic, differential, integro-differential, 

differential-delay and partial differential equations. In the 

nonlinear case for ordinary differential equations and partial 

differential equations, the method has the advantage of 

dealing directly with the problem [7, 8]. These equations are 

solved without transforming them to more simple ones. The 

method avoids linearization, perturbation, discretization, or 

any unrealistic assumptions [9, 10].  

It was suggested in [11] that the noise terms appears 

always for inhomogeneous equations. Most recently, 

Wazwaz [12] established a necessary condition that is 

essentially needed to ensure the appearance of "noise terms" 

in the inhomogeneous equations. 
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  In the present paper, application of the Sumudu 

decomposition method to solve the linear and nonlinear 

Klein-Gordon equations. 

II. SUMUDU TRANSFORM 

In the early 90's, in [13] introduced a new integral 

transform, named the Sumudu transform and applied it to 

the solution of ordinary differential equation in control 

engineering problems. The Sumudu transform, is defined 

over the set of functions. 
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by the following formula 

      210
,,)()()( 

  udteutftfSuf t .     (4)     

Some of the properties were established in [14, 15].  In [16], 

further fundamental properties of this transform were also 

established. Similarly, this transform was applied to the one-

dimensional neutron transport equation in [17]. In fact it was 

shown that there is a strong relationship between Sumudu 

and other integral transforms; see [18]. In particular the 

relation between Sumudu transform and Laplace transforms 

was proved in [19]. 

    Further, in [20], the Sumudu transform was extended to 

the distributions and some of their properties were also 

studied in [21].   Recently, this transform is applied to solve 

the system of differential equations; see [22]. 

    Note that a very interesting fact about Sumudu transform 

is that the original function and its Sumudu transform have 

the same Taylor coefficients except the factor n; see [23]. 

Thus if 

0)( n

n
ntatf then 


0 !)( n

n
nuanuF , see [18]. 

Similarly, the Sumudu transform sends 

combinations, ),( nmc , into permutations, ),( nmp and 

hence it will be useful in the discrete systems. 

III. BASIC IDEA OF SUMUDU DECOMPOSTION 

METHOD (SDM)  

To Illustrate the basic idea of this method, we consider a 

general nonlinear non-homogeneous partial differential 

equation [24, 25. 26]: 

   ),(),(),(),( txgtxNUtxRUtxDU                (5) 

    ),()0,(),()0,( xfxUxhxU t   
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where D is the second order linear differential operator 

2

2

t
D




 , R  is the linear differential operator of less order 

than ND , represents the general nonlinear differential 

operator and ),( txg  is the source term. Taking the 

Sumudu transform (denoted throughout this paper by S ) on 

both sides of Eq. (5), we get: 

        ),(),(),(t)DU(x,S txgStxNUStxRUS  .  (6) 

Using the differentiation property of the Sumudu transform 

and above initial conditions, we have 

     ),(),()()(),(t)DU(x,S 22 txNUtxRUSuxufxhtxgSu 

                                                                                   (7) 

Now, applying the inverse Sumudu transform on both sides 

of Eq. (3.3), we get 

  ),(),(),(t)U(x, 21 txNUtxRUSuStxG   ,             (8) 

where ),( txG  represents the term arising from the source 

term and the prescribed initial conditions. The second step 

in Sumudu decomposition method is that we represent 

solution as an infinite series given below 
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0n
n t)(x,Ut)U(x, ,                                        (9) 

and the nonlinear term can be decomposed as: 
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nt)NU(x, A ,                                 (10)                          

where nA  are Adomian polynomials [27] of 

n210 ,...,,, UUUU  and it can be calculated by formula 

,...2,1,0,
!

1

00
n 






















nUN
d

d

n
A i

i

n

n






   .            (11) 

Using Eq. (9) and Eq. (10) in Eq. (8), we get 
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                                                                               (12)  

On comparing both sides of the Eq. (12), we get 

),(),(0 txGtxU  , 
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1 ),(),( AtxRUSuStxU   , 

  11
21

2 ),(),( AtxRUSuStxU   ,                 (13) 

  22
21

3 ),(),( AtxRUSuStxU   . 

  

In general the recursive relation is given by 

),(),(0 txGtxU  , 

   0,),(),( n
21

1  
 nAtxRUSuStxU nn .   (14) 

Now first of all applying the Sumudu transform of the right 

hand side of Eq. (14) then applying the inverse Sumudu 

transform, we get the values of n210 ,...,,, UUUU  

respectively. 

IV. NUMERICAL APPLICATIONS 

In this section, we use SDM in solving the linear and 

nonlinear Klein-Gordon equations. 

Example 4.1 

Consider the following linear Klein-Gordon equation [28, 

29, 30]: 

0),(),(),(  txUtxUtxU xxtt ,                                 (15) 

with the initial conditions 

xxUxU t  )0,(,0)0,( . 

By taking Sumudu transform for (15), we obtain 

   ),),(),( 2 tUxtxUSuuxtxUS xx  .                   (16) 

By applying the inverse Sumudu transform for (16), we get 

  ),),(),( 21 tUxtxUSuSxttxU xx   .            (17) 

Following the technique, if we assume an infinite series 

solution of the form (9), we obtain 
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Note that, Eq. (15), don't have nonlinear term, then 0nA . 

From the relationship in (14), we obtain 
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  

which in closed form gives exact solution 

)sin(...
!7!5!3

),(),(
753

0

tx
ttt

txtxUtxU
i

i 













 





,  

                                                                             (20)                                                                         

which is the same result obtained by homotopy perturbation 

transform method [29], and variational iteration method 

[30]. 

Example 4.2 

Consider the following linear Klein-Gordon equation [28, 

29, 30]: 

xtxUtxUtxU xxtt sin2),(),(),(  ,            (21) 

with the initial conditions 

1)0,(,sin)0,(  xUxxU t . 

By taking Sumudu transform for (21), we obtain 

   ),(),(sin2sin),( 22 txUtxUSuxuuxtxUS xx   (22) 

By applying the inverse Sumudu transform for (22), we get 

  ),),(sinsin),( 212 tUxtxUSuStxxttxU xx                    

                                     (23)          

Following the technique, if we assume an infinite series 

solution of the form (9), we obtain 
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Note that, Eq. (21), don't have nonlinear term, then 0nA . 

From the relationship in (14), we obtain 

txxttxGtxU  sinsin),(),( 2
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which in closed form gives exact solution 
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which is the same result obtained by homotopy perturbation 

transform method [29], and variational iteration method 

[30]. 

 

Example 4.3 

Consider the following nonlinear Klein-Gordon equation 

[28, 29, 30]: 
222 ),(),(),( txtxUtxUtxU xxtt  ,            (27) 

with the initial conditions 

xxUxU t  )0,(,0)0,( .            

By taking Sumudu transform for (27), we obtain 

   ),(),(2),( 2242 txUtxUSuuxuxtxUS xx  .   (28) 

By applying the inverse Sumudu transform for (28) , we get 
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Following the technique, if we assume an infinite series 

solution of the form (9) and (10), we obtain 
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In (30), )(UAn are Adomian polynomials that represent 

nonlinear term. So Adomian polynomials are given as 

follows: 

),()( 2 txUUAn  .                  (31) 

The few components of the Adomian polynomials are given 

as follows: 
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From the relationship in (14), we obtain 
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which in closed form gives exact solution 
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 which is the same result obtained by homotopy perturbation 

transform method [29], and variational iteration method 

[30]. 

Example 4.4 
Consider the following nonlinear Klein-Gordon equation, 

[28, 29, 30]: 
44222 22),(),(),( txtxtxUtxUtxU xxtt  ,     (35) 

with the initial conditions 

0)0,(,0)0,(  xUxU t .            

By taking Sumudu transform for (35), we obtain 
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By applying the inverse Sumudu transform for (36), we get 
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 Following the technique, if we assume an infinite series 

solution of the form (9) and (10), we obtain 
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In (38), )(UAn are Adomian polynomials that represent 

nonlinear term. So Adomian polynomials are given as 

follows: 
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The few components of the Adomian polynomials are given 

as follows: 
2
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From the relationship in (14), we obtain 
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  

In a similar manner as above the solution U(x, t) is given by 

 22

0
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 Which is the same result obtained by homotopy 

perturbation transform method [29], and variational iteration 

method [30]. 

V. CONCLUSION 

In this paper, the SDM has been applied to linear and 

nonlinear Klein-Gordon equations with initial conditions. 

Four examples have been presented. The results show that 

the SDM is powerful and efficient technique in finding exact 

and approximate solutions for nonlinear differential 

equations amounts to an improvement of the performance of 

the approach. The fact that the SDM solves nonlinear 

problems without using He's polynomials is a clear 

advantage of this technique. It is worth mentioning that the 

method is capable of reducing the volume of the 

computational work as compared to the classical methods 

while still maintaining the high accuracy of the numerical 

result; the size reduction amounts to an improvement of the 

performance of the approach. The proposed technique has 

shown to computationally efficient in these examples that 

are important to researchers in the field of applied sciences. 
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