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Application of Sumudu Decomposition Method for
Solving Linear and Nonlinear Klein-Gordon
Equations

A. Ramadan, S. Al-luhaibi

Abstract In this paper, Sumudu decomposition method is
applied to solve various forms of linear and nonlinear Klein-
Gordon equations. The technique is a combined form of the
Sumudu transform method and the Adomian decomposition
method. The nonlinear term can easily be handled with the help
of Adomian polynomials which is considered to be a clear
advantage of this technique. We illustrate this technique with the
help of four examples. The results reveal that the proposed
algorithm is very efficient, simple and can be applied to other
nonlinear problems.
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l. INTRODUCTION

The Klein-Gordon equations appear in quantum field theory,
relativistic physics, dispersive wave-phenomena, plasma
physics , nonlinear optics and applied and physical sciences,
which are of the form[1,2]:

Uy (1) U, (x,t) +aUx,t) = g(x,t) , (1)
with the initial conditions
U(x,0)=h(x), U,(x,0)="f(x). 2

Nonlinear phenomena have important effects on applied
mathematics, physics and related to engineering; many such
physical phenomena are modeled in terms of nonlinear
partial differential equations as in, Eq. (1).

The importance of obtaining the exact or approximate
solutions of nonlinear partial differential equations in
mathematics, physics and engineering is still a significant
problem that needs new methods to discover exact or
approximate solutions. Various powerful mathematical
methods such as variational iteration method [3], homotopy
perturbation method [4], new iterative method [5] and
Adomian decomposition method [6] this method has proven
useful for solving algebraic, differential, integro-differential,
differential-delay and partial differential equations. In the
nonlinear case for ordinary differential equations and partial
differential equations, the method has the advantage of
dealing directly with the problem [7, 8]. These equations are
solved without transforming them to more simple ones. The
method avoids linearization, perturbation, discretization, or
any unrealistic assumptions [9, 10].

It was suggested in [11] that the noise terms appears
always for inhomogeneous equations. Most recently,
Wazwaz [12] established a necessary condition that is
essentially needed to ensure the appearance of "noise terms"
in the inhomogeneous equations.
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In the present paper, application of the Sumudu
decomposition method to solve the linear and nonlinear
Klein-Gordon equations.

1. SUMUDU TRANSFORM

In the early 90's, in [13] introduced a new integral
transform, named the Sumudu transform and applied it to
the solution of ordinary differential equation in control
engineering problems. The Sumudu transform, is defined
over the set of functions.

I

A={f@®)|3IM,7,7,>0, f(t)\<|v|e[’i], if te(-1) x[0,00) )

by the following formula

fu=s[f@]=Jy fue'd, uel-z,7,). @)
Some of the properties were established in [14, 15]. In [16],
further fundamental properties of this transform were also
established. Similarly, this transform was applied to the one-
dimensional neutron transport equation in [17]. In fact it was
shown that there is a strong relationship between Sumudu
and other integral transforms; see [18]. In particular the
relation between Sumudu transform and Laplace transforms
was proved in [19].

Further, in [20], the Sumudu transform was extended to
the distributions and some of their properties were also
studied in [21]. Recently, this transform is applied to solve
the system of differential equations; see [22].

Note that a very interesting fact about Sumudu transform
is that the original function and its Sumudu transform have
the same Taylor coefficients except the factor n; see [23].

Thus if f(t)=>7 oa.t"then F(u)=37 o nla,u”, see [18].
Similarly, the Sumudu transform sends
combinations, c(mM,N), into permutations, p(mM,n)and
hence it will be useful in the discrete systems.

1. BASIC IDEA OF SUMUDU DECOMPOSTION
METHOD (SDM)

To lllustrate the basic idea of this method, we consider a
general nonlinear non-homogeneous partial differential
equation [24, 25. 26]:

DU (x,t) + RU (x,t) + NU(x,t) = g(x,t) (5)

Ux0)=h(x), U,(x0)=f(x),
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where D is the second order linear differential operator
2

D :% , R is the linear differential operator of less order

than D, Nrepresents the general nonlinear differential
operator and g(X,t) is the source term. Taking the

Sumudu transform (denoted throughout this paper by S ) on
both sides of Eq. (5), we get:

S[DUx, t)]= S[RU (x,t)]+ S[NU (x,t)]= S[g(x.1)]. (6)
Using the differentiation property of the Sumudu transform
and above initial conditions, we have

S[DUX, t)]= Su?[g(x,t) ]+ h(x) +uf (x) - Su?[RU (x,t) + NU(x,1)]
@)

Now, applying the inverse Sumudu transform on both sides
of Eq. (3.3), we get

U(x, ) = G(x,t) =S [Su2[RU (x,t) + NU(x. 1], ®)
where G(X,t) represents the term arising from the source

term and the prescribed initial conditions. The second step
in Sumudu decomposition method is that we represent
solution as an infinite series given below

U t)= SU, (x 1), ©)
n=0

and the nonlinear term can be decomposed as:

NU(x,t):iﬂ,

where A, are
Uy, U, U,

p-Ld [N[i/ﬂuﬂ n=012
n'd2" GRS

Using Eqg. (9) and Eq. (10) in Eq. (8), we get
SU(x,t) =G(x,t)—s—1[3u2[R SU,(XD)+ 3 Anﬂ
n=0 n=0

(10)

Adomian  polynomials [27] of
U, and it can be calculated by formula

(11)

n=0
(12)
On comparing both sides of the Eq. (12), we get
Up(x,t) =G(x,1),

Uy (x,t) = —3—1[Su2[Ru0(x,t) + AQ]J,
U, (xt) = —S‘1[Su2[RU1(X,t) + Ai]J’
Us(x,t) =—S su?[RU, (x,t) + A,

(13)

In general the recursive relation is given by

Up(x,1) =G(x,1),

Upa () == [su2[RU, (x )+ A} n=0. (14)

Now first of all applying the Sumudu transform of the right

hand side of Eq. (14) then applying the inverse Sumudu
transform, we get the wvalues of UgU;,U,,...U,

respectively.

V. NUMERICAL APPLICATIONS

In this section, we use SDM in solving the linear and
nonlinear Klein-Gordon equations.

Example 4.1

Consider the following linear Klein-Gordon equation [28,
29, 30]:

Ui (X,1) —U,, (X, 1) +U(x,t) =0,
with the initial conditions

(15)
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U(x,0)=0, U;(x,0)=x.

By taking Sumudu transform for (15), we obtain
S[U(x,t)]=ux+u?S[U,, (x,t) —~Ux,1)]. (16)
By applying the inverse Sumudu transform for (16), we get
U(x 1) =t +Su?S[U (1) —Ux 1] (17)
Following the technique, if we assume an infinite series
solution of the form (9), we obtain

ZUMxt) X+S {u S{Z(Un)xx(x,t)—i(Un)(x,t)H (18)

n=0 n=0
Note that, Eg. (15), don't have nonlinear term, then A, =0.

From the relationship in (14), we obtain
Uy (x,t) =G(x,t) =xt,

U, (.1 =—S‘l[Suz[(UO)xx(x,t)+(UO)(x,t)]]z——

U, (x 1) = -5 su2[[Uy), (x.0) + U )x ]| = 2

120
19)U5(x,t) ==S7H|Su?|(U, ), (x,t) + (U, )(x t
193060 == 5[0, ) + U)o ]= 05
which in closed form gives exact solution
ot .
U(xt) = ZU (X, t)—x(t—§+ 5 7 ...szsm(t),
(20)

which is the same result obtained by homotopy perturbation
transform method [29], and variational iteration method
[30].
Example 4.2
Consider the following linear Klein-Gordon equation [28,
29, 30]:
Ui (X, 1) —U,, (X, 1) +U (x,t) =2sinXx,
with the initial conditions
U(x,0) =sinx, U;(x,0)=1.
By taking Sumudu transform for (21), we obtain
S[u(x,t)]=sinx+u+2u®sinx+u?S[U,, (x,t)-U(x,t)] (22)
By applying the inverse Sumudu transform for (22), we get
U(x,t) =t?sinx+sinx+t+ S’lluzs[uxx(x,t) —Ux,t)]J

(23)
Following the technique, if we assume an infinite series
solution of the form (9), we obtain

(21)

U (X t) =t?sinx+sinx+t

) - [u SL (Un)k0- S )(x.t)ﬂ'

(24)
Note that, Eq. (21), don't have nonlinear term, then A, =0.
From the relationship in (14), we obtain
Ug(x,1) =G(x,t) = tzsinx+sinx+t ,
U, (x,8) =—S H[su?[(Ug ), (x. 1) + Uo M 1)
:—tzsinx—i—ﬁsinx
3 3
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U, (1) =S [su2[(U, ), (x, 1)+ (U D]
£ 5 ¢4 , (25)
=—SinX+—+—sSinX
90 5" 3
U5 061) =52 [su%[U, ), () + U ) B)]
7 t6 8
=———sinXx———sinx
71790 7

which in closed form gives exact solution

U(xt) = ZU (x,1) smx+(t—£+i—..]

3 5 (26)

=sinx+sint

which is the same result obtained by homotopy perturbation
transform method [29], and variational iteration method
[30].

Example 4.3
Consider the following nonlinear Klein-Gordon equation
[28, 29, 30]:

Uy (%,1) =U , (X, 1) +U 2 (x,t) = x?t? (27)
with the initial conditions

U(x,0)=0, U;(x,0)=x.

By taking Sumudu transform for (27), we obtain
S[U(x,t)]=ux+2x2u’ + U25|_UXX(X,I) —U?(x, t)J. (28)

By applying the inverse Sumudu transform for (28) , we get
s 1lizs, 0 -U2n].

U(xt)=xt+—— T
Following the technique, if we assume an infinite series

solution of the form (9) and (10), we obtain

® x’t*
U (x,t) =xt +

I’E:O ( ) 12

+Sl{u25[ > )Xx(xt) ZAn(U)ﬂ.
n=0

In (30), A,(U)are Adomian polynomials that represent

nonlinear term. So Adomian polynomials are given as
follows:

A, U)=U’(x1). (31)
The few components of the Adomian polynomials are given
as follows:

A =Ug,
A =20y,
A, =2UU, +U2,

(29)

(30)

(32)

From the relationship in (14) we obtain

xt
X1)=G(x,t) =xt +——,
Up(x, 1) =G(x,t) = B

U, (xt) =-S5 2[su2[(Ug ), (% t)+A0(U)]J

~ t6 x4t10 3t 2t

7180 12960 252 12
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uz(x,o=—S‘1[Su2[(u1)xx(x,t)+Al(U)]]
X212 xf t6 x5tte

_— , (33)
71280 22680 180 18662400
1 3e3x’tt Xt
45360 15921360 252
which in closed form gives exact solution
U(xt) = SU;(x 1) =xt , (34)
i=0

which is the same result obtained by homotopy perturbation
transform method [29], and variational iteration method
[30].

Example 4.4

Consider the following nonlinear Klein-Gordon equation,
[28, 29, 30]:

Up (%,1) —U, (%, 1) +U 2 (x,1) =2x% —2t% + x*t*,  (35)
with the initial conditions

U(x,0)=0, U;(x,0)=0.

By taking Sumudu transform for (35), we obtain

S[U (x,1)]=2x%u® — 4u* + 24x*u® -

+ursju, (x ) -U2(x )]
By applying the inverse Sumudu transform for (36), we get
t4 4.6
X't
_+_
6 30
+suzslu o () -U2xn]
Following the technique, if we assume an infinite series
solution of the form (9) and (10), we obtain

— y2 2_
U(x,t) =x"t 37)

" .t X4
nZ:(;Um(x,t) =Xt -+
+S-1{uzs[i(un)xx(x,t)—iﬁh(u )ﬂ

(38)
In (38), A,(U)are Adomian polynomials that represent
nonlinear term. So Adomian polynomials are given as
follows:
A WU)=U (D).
n=

The few components of the Adomian polynomials are given
as follows:

Ay =Us
A =20V,
A, =2UU, +UZ,

(39)

(40)

From the relationship in (14), we obtain
X
X 1) =G(x,t) = x4 ——+ 21—
Up(x,1) =G(x,1) = =+t35
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U, (x,t) =-S5 [su?[(U,), (x.t) + A V)]
B X8tl4 N X4t12 B X6t10 B XthG
163800 11880 1350 18662400 (41)
t0 11xt® x*® t®
+ - +

3240 840 30 6

In a similar manner as above the solution U(x, t) is given by
U(xt) = SU; (x, ) =x22, (42)
i=0

Which is the same result obtained by homotopy
perturbation transform method [29], and variational iteration
method [30].

V. CONCLUSION

In this paper, the SDM has been applied to linear and
nonlinear Klein-Gordon equations with initial conditions.
Four examples have been presented. The results show that
the SDM is powerful and efficient technique in finding exact
and approximate solutions for nonlinear differential
equations amounts to an improvement of the performance of
the approach. The fact that the SDM solves nonlinear
problems without using He's polynomials is a clear
advantage of this technique. It is worth mentioning that the
method is capable of reducing the volume of the
computational work as compared to the classical methods
while still maintaining the high accuracy of the numerical
result; the size reduction amounts to an improvement of the
performance of the approach. The proposed technique has
shown to computationally efficient in these examples that
are important to researchers in the field of applied sciences.
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