Improvement of the MATLAB/Simulink Photovoltaic System Simulator Based on a Two-Diode Model

Oday Mohammed Abdulwahhab

Abstract— This paper presents modeling and simulation for the PV cells, modules, and array, and building of blocks based on MATLAB / Simulink software package. The main aim of this work is the improvement of the PV solar cell simulator based on a two-diode model. This model is more accurate than the single diode model especially at low insolation levels; therefore this will gives more accurate prediction of the performance of the solar cell system. Most of the inputs to the simulator are given in the PV module datasheet, and the other (i.e. Rp and Rs) are estimated by an iteration method. The simulation model makes use of the two-diode model basic circuit equations of PV solar cell, taking the effect of sunlight irradiance and cell temperature into consideration on the output current V-I and output power V-P characteristics. The output current and cell power characteristics of PV module and PV array are simulated using the proposed model. The simulator is verified by applying the model to Kyocera Solar KC200GT and Solarex MSX-64 PV Modules.

Index Terms— Modeling, PV module/ Array, Simulation, MATLAB/Simulink

I. INTRODUCTION

A photovoltaic (PV) power generation has an increasing importance in the renewable energy market place due to this ability to quietly produce emission free power at the load. PV cells generate electric power by directly converting solar energy to electrical energy with no pollutant emission. Since the voltage and current output of a single PV cell is too small for practical usage, PV generation systems usually consist of series-parallel combinations of PV cells in order to obtain the required voltage and current output. These combinations, known as PV modules (or panels) and arrays, generate DC power that has to be converted to AC at standard power frequency in order to feed the loads.

The output characteristics of PV module depend on the solar insolation, the cell temperature and the output voltage of PV module. Since PV module has nonlinear characteristics, it is necessary to model it for the design and simulation of maximum power point tracking (MPPT) for PV system applications. The mathematical PV models used in computer simulation have been built for over the past four decades [1]-[3]. The most important contribution of this work is the execution of a generalized PV model for the modules and arrays using MATLAB/Simulink based on the two-diode PV cell model.

The most important component that affects the accuracy of a simulation is the PV cell modeling, which primarily involves the estimation of the non-linear I-V and P-V characteristics curves. The simplest model is the single-diode model i.e. a single diode connected in parallel with a photocurrent source Ipv, a shunt resistor Rp expressing a leakage current, and series resistor Rs describing an internal resistance to the current flow [4] as shown in Figure (1). It requires five parameters, namely the short-circuit current (Isc), the open circuit voltage (Voc), the diode ideality factor (A), the shunt resistor (Rp), and the series resistor (Rs). This model has a significant improvement in comparison with the old models, but it demands significant computational effort.

Figure (1) Single-diode model with Rs and Rp of PV solar cell

The single diode equation assumes a constant value for the ideality factor A. In reality the ideality factor is a function of voltage across the device. At high voltage, when the recombination in the device is dominated by the surfaces and the bulk regions the ideality factor is close to one. However at lower voltages, recombination in the junction dominates and the ideality factor approaches two. In fact, this cannot be perfectly modeled by a single-diode. The junction recombination is modeled by adding a second diode in parallel with the first one of Figure (1), this will leads to a more perfect model known as the two-diode model [5]. The inclusion of an additional diode increases the model parameters (i.e. Ipv, Io1, Io2, Rp, Rs, A1, and A2). The main aim now is how to reducing the model parameters, and that is done by calculating the values of some parameters (i.e. RP and RS) and assuming the values of some parameters like (A1, and A2).

In this paper, an improved modeling technique for the two-diode model is proposed. This model is known to have better accuracy, especially at low irradiance levels. However, previous researchers have avoided the use of this model in their PV simulators; this is because of the increasing in computational time. The input to the simulator is

Manuscript received on February, 2014

Oday Mohammed Abdulwahhab, Electronic Technique Dept. Institute of Technology/ Baghdad, Baghdad, Iraq.
information available in a standard PV module datasheet. The performances of the model are compared against the single-diode model [6] including Rs and Rp (Figure (1)) and validated with references KC200GT and MXS-64 PV Modules. A PV model simulator is built using MATLAB/Simulink to illustrate and verify the nonlinear V-I and V-P characteristics of the PV systems. Section II presents the equivalent circuit models of the PV solar cell devise, equations for (1) the output current from the PV module based on a two-diode model and the numerical calculation of the PV cell parameter specifications using Newton Raphson method. Kyocera Solar KC200GT and Solarex MSX-64 PV Modules are taken as the reference models for simulation, the building blocks for the PV module and array, simulation results for different temperature T and irradiance \(\lambda \) conditions, and discussion are presented in Section III. Finally conclusion of the modeling process is presented in section IV.

II. MODELING OF PHOTOVOLTAIC CELLS BASED ON TWO-DIODE MODEL

The cell two-diode model equivalent circuit is shown in Figure (2). For a given incident light intensity, at a given temperature, the implicit V-I relationship is given by [7]

\[
I = I_{pv} - I_{D1} - I_{D2} = \frac{V + IR}{R_p} - \frac{q(V + IR)}{AKT}
\]

where,

\[
I_{D1} = I_{o1}[\exp(\frac{q(V + IR)}{AKT}) - 1]
\]

And,

\[
I_{D2} = I_{o2}[\exp(\frac{q(V + IR)}{AKT}) - 1]
\]

where \(I_{o1} \) and \(I_{o2} \) are the reverse saturation currents of diode 1 and diode 2 (A). \(I_{pv} \) is the light generated current at nominal condition (25°C and 1000 W/m²), \(q \) is the electron charge (1.602×10⁻¹⁹ C), \(V \) is the voltage across the diode (V), \(k \) is Boltzmann's constant (1.3805×10⁻²³ J/K), \(T \) is the junction temperature (K), \(A1 \) and \(A2 \) are the diode 1 and diode 2 ideality factors, \(Rs \) is the series resistance of diode (\(\Omega \)), and \(Rp \) is the shunt resistance of diode (\(\Omega \)). The \(Io2 \) term in (3), compensates the recommission loss in the depletion region [8].

The performances of the model are compared against the single-diode model [6] including Rs and Rp (Figure (1)) and validated with references KC200GT and MXS-64 PV Modules. A PV model simulator is built using MATLAB/Simulink to illustrate and verify the nonlinear V-I and V-P characteristics of the PV systems. Section II presents the equivalent circuit models of the PV solar cell devise, equations for (1) the output current from the PV module based on a two-diode model and the numerical calculation of the PV cell parameter specifications using Newton Raphson method. Kyocera Solar KC200GT and Solarex MSX-64 PV Modules are taken as the reference models for simulation, the building blocks for the PV module and array, simulation results for different temperature T and irradiance \(\lambda \) conditions, and discussion are presented in Section III. Finally conclusion of the modeling process is presented in section IV.

II. MODELING OF PHOTOVOLTAIC CELLS BASED ON TWO-DIODE MODEL

The cell two-diode model equivalent circuit is shown in Figure (2). For a given incident light intensity, at a given temperature, the implicit V-I relationship is given by [7]

\[
I = I_{pv} - I_{D1} - I_{D2} = \frac{V + IR}{R_p} - \frac{q(V + IR)}{AKT}
\]

where,

\[
I_{D1} = I_{o1}[\exp(\frac{q(V + IR)}{AKT}) - 1]
\]

And,

\[
I_{D2} = I_{o2}[\exp(\frac{q(V + IR)}{AKT}) - 1]
\]

where \(I_{o1} \) and \(I_{o2} \) are the reverse saturation currents of diode 1 and diode 2 (A). \(I_{pv} \) is the light generated current at nominal condition (25°C and 1000 W/m²), \(q \) is the electron charge (1.602×10⁻¹⁹ C), \(V \) is the voltage across the diode (V), \(k \) is Boltzmann's constant (1.3805×10⁻²³ J/K), \(T \) is the junction temperature (K), \(A1 \) and \(A2 \) are the diode 1 and diode 2 ideality factors, \(Rs \) is the series resistance of diode (\(\Omega \)), and \(Rp \) is the shunt resistance of diode (\(\Omega \)). The \(Io2 \) term in (3), compensates the recommission loss in the depletion region [8].

The values of Rp and Rs are calculated by numerical iteration. In this paper, Rp and Rs are calculated simultaneously, similar to the procedure produced in [3]. The idea is to maximize the power point (Pmp) matching; i.e. to match the calculated peak power (Pmp,C) and the experimental peak power (Pmp,E) by iteratively increasing the value of Rs while simultaneously calculating the value of Rp. At maximum power point condition, equation (1) can be rewritten as:

\[
R_p = \frac{V_{mp} + I_{mp} R_s}{[V_{mp}(I_{pv} - I_{D1} - I_{D2}) - P_{max,E}]} \]

Substituting the open- and short-circuit conditions to find initial conditions for both resistances and that are given below:

\[
R_{so} = 0,
\]

\[
R_{po} = \frac{V_{oc} - V_{mp}}{I_{mp}}
\]

KC200GT [4] and Solarex MSX-64 [6] PV modules are chosen for illustration to obtain the correct value of RS. Rs is increased until Pmax:C becomes exactly equal to Pmax:E and the value of Rp is calculated simultaneously using equation (7). Moreover substituting the maximum power point (MPP) conditions we can get the values of (IPV Eq. (4), IO1 & IO2 Eq. (6).) This mechanism is shown in Figure (3). Now, by using Newton-Raphson method, the output current of the PV cell can be determined (using eq. (1)).
The PV cells are connected in series (Nₛ×Nₚ cells, where Nₚ= 1) to produce the PV module. Basic equation that describes the current output of PV module (I of the two-diode model presented in Figure (2) is given by equation (9)), the PV cell voltage-current relationship in equation (1) is modified for PV module and it is given by:

\[I = Nₚ × I_{pV} - Nₚ × I_0 \left[\exp \left(\frac{q}{Nₚ A₁ k T} \left(\frac{V + IR}{Nₚ A₁ k T} \right) - 1 \right) - \exp \left(\frac{q}{Nₚ A₂ k T} \left(\frac{V}{Nₚ A₂ k T} \right) - 1 \right) \right] \]

\[I = Nₚ × I_{pV} - Nₚ × I_0 \left[\exp \left(\frac{q}{Nₚ A₁ k T} \left(\frac{V}{Nₚ A₂ k T} \right) - 1 \right) - \exp \left(\frac{q}{Nₚ A₂ k T} \left(\frac{V}{Nₚ Aₚ k T} \right) - 1 \right) \right] \]

where \(I_{pv}, I_{o1}, I_{o2}, R_s, R_p, A_1, \) and \(A_2 \) are the parameters of the individual modules, \(N_s \) and \(N_p \) are the number of cells connected in series and parallel, respectively, \(N_{ss} \) and \(N_{pp} \) are the number of modules connected in series and parallel, respectively.

III. SIMULINK MODELING FOR PV SYSTEM

A. BUILDING OF PV MODULE AND ARRAY

A model of PV module with moderate complexity which includes the temperature independence of the photocurrent source, the ideality factor \(A \), series resistance \(R_s \), and shunt resistance \(R_p \) are considered based on the Shockley diode equation. It is important to build a generalized model suitable for all of the PV module and array, which is used to design and analyze a maximum power point. Bing illuminated with radiation of sunlight, PV cell converts part of the photovoltaic potential directly into electricity with both V-I and V-P output characteristics.

Figure (5a) shows a building block of a PV Module for any number of series connections of PV cells based on a two-diode model of solar cell. Figure (5b) shows the circuit under the building block based on equation (9). In order to make the PV model easier to use, a mask model for the proposed simulator model is designed to have a dialog box as shown in Figure (5c), in which the parameters of PV module can be configured in the same way for the MATLAB/ Simulink. The simulator of Figure (5) can be modified according to equation (10) to simulate a large PV array for any number of series and parallel connections of PV modules based on a two-diode model of solar cell, by increasing the values of \(N_{ss} \) and \(N_{pp} \) from one to any number in order to obtained the desired voltage and current. These models take irradiation, operating temperature, and model voltage as input and give the output current \(I_{pv} \), output voltage \(V_{pv} \), and output power \(P_{pv} \). All of the parameters for the inputs are available from the manufacture's datasheet.
Improvement of the MATLAB/ Simulink Photovoltaic System Simulator Based on a Two-Diode Model

B. THE SIMULATION RESULTS AND DISCUSSION

1. **PV CELL AND PV MODULE SIMULATION**

In this paper, the two-diode model is described and validated with Multi-Crystalline Kyocera Solar KC200GT and Solarex MSX-64. The specifications of the modules are summarized in Table I. Table II shows the computational parameter specifications of the proposed two-diode model circuit of Figure (2) that are obtained by the numerical iteration as mentioned above. The computational results are compared with a single diode model circuit of Figure (1). Figures (6 & 7) shows the V-I and V-P characteristics of single- and two-diode models for KC200GT module with different levels of illumination (\(\lambda=200, 400, 600, 800,\) and 1000W/m²) and constant temperature (T= 25°C). The current is increase with increasing insolation, but the voltage is almost constant, this indicates that the current is proportional to incident sunlight. Therefore the output power also increases when the solar insolation increase as displayed in Figure (7). The proposed two-diode model and the single-diode with Rs and Rp model give similar results. More accurate results are obtained from the two-diode model at low irradiance levels, especially in the neighborhood of the open circuit voltage (Voc). At open circuit voltage, the single-diode model shows a departure from the standard experimental data sheet in [4 & 6]; this suggests that the single-diode model is inappropriate when dealing with low irradiance levels.

![Figure 5](image)

Figure (5) (a) Building block of a PV module. (b) Circuit under the building block. (c) Dialog box of the Simulator PV Model (MSX-64).

<table>
<thead>
<tr>
<th>Description</th>
<th>Multi-Crystalline Kyocera Solar KC200GT</th>
<th>Solarex MSX-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum voltage (V_m)</td>
<td>26.3V</td>
<td>17.5V</td>
</tr>
<tr>
<td>Current at maximum power (I_m)</td>
<td>7.61A</td>
<td>3.66A</td>
</tr>
<tr>
<td>Open circuit voltage (V_oc)</td>
<td>32.9V</td>
<td>21.3V</td>
</tr>
<tr>
<td>Short circuit current (I_sc)</td>
<td>8.21A</td>
<td>4A</td>
</tr>
<tr>
<td>Total No. of cells in series (N_s)</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>Total No. of cells in parallel (N_p)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Temperature coefficient of V_oc(Koc)</td>
<td>-123mV/°C</td>
<td>+80=10mV/°C</td>
</tr>
<tr>
<td>Temperature coefficient of I_sc(Ksc)</td>
<td>3.18mV/°C</td>
<td>0.05°x0.015%/°C</td>
</tr>
</tbody>
</table>

Table (1) KC200GT and MXS 64 PV modules parameter specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Multi-Crystalline Kyocera Solar KC200GT</th>
<th>Solarex MSX-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{oc})</td>
<td>26.3V</td>
<td>17.5V</td>
</tr>
<tr>
<td>(I_{sc})</td>
<td>7.61A</td>
<td>3.66A</td>
</tr>
<tr>
<td>(V_{oc})</td>
<td>32.9V</td>
<td>21.3V</td>
</tr>
<tr>
<td>(I_{sc})</td>
<td>8.21A</td>
<td>4A</td>
</tr>
<tr>
<td>(V_{oc})</td>
<td>1.045 x 10^-6A</td>
<td>2.266 x 10^-6A</td>
</tr>
<tr>
<td>(V_{oc})</td>
<td>8.21A</td>
<td>4A</td>
</tr>
<tr>
<td>(R_s)</td>
<td>15.826Ω</td>
<td>166.19Ω</td>
</tr>
<tr>
<td>(R_s)</td>
<td>0.29Ω</td>
<td>0.34Ω</td>
</tr>
</tbody>
</table>

Table (2) The proposed two-diode PV module Parameter specifications

![Figure 6](image)

Figure (6) Single- and proposed two-diode model V-I output characteristics of the KC200GT PV module with different \(\lambda\)-constant T.

![Figure 7](image)

Figure (7) Single- and proposed two-diode model V-P output characteristics of the KC200GT PV module with different \(\lambda\)-constant T.
Figures (8 & 9) shows the V-I characteristics of single- and two-diode models for KC200GT and MSX-64 PV modules, respectively, with different levels of temperature (T= 0, 25, 50, 75, and 100oC) and constant insolation (λ=1000W/m²). The varying of temperature of the PV module will affects the photo generated and the saturation currents. The diode reverse saturation current of the PV module will increase with increases in temperature and this will reduces the open circuit voltage of the PV module as shown in Figures (8 & 9). As can be seen in Figures (8 & 9), respectively, the V-I curves computed by the two-diode model accurately match the experimental data in [4 & 6]; for all temperature conditions. On the other hand, at higher temperature, the results from the single-diode model depart from the measured values quite significantly.

Figure (8) Single- and proposed two-diode model V-I output characteristics of the KC200GT PV module with different T - constant λ.

Figure (9) Single- and proposed two-diode model V-I output characteristics of the MSX-64 PV module with different T - constant λ.

2 - PV ARRAY SIMULATION
The Simulink of Figure (5) can be used to simulate a large PV array configuration be defining the inputs Nss and Npp to the number of modules in series and parallel, respectively. Figures (10 & 11) shows the V-I and V-P curves generated for (Nss= 30×Npp=10) using KC200GT modules with different levels of illumination (λ= 200, 400, 600, 800, and 1000W/m²) and constant temperature (T=25oC). As can be seen from the figures, the output current and output power are increases with increasing the sunlight intensity and the number of modules connected in parallel. The voltage is constant with increasing illumination but it is increases with increasing the number of modules connected in series.

Figure (10) PV array V-I output characteristics for KC200GT module of 30x10 configuration with different constant T.

Figure (11) PV array V-P output characteristics for KC200GT module of 30x10 configuration with different λ - constant T.

The effects of temperature variations (for T= 25, 50, 75, and 100oC) on the V-I and V-P curves of the PV array (Nss=30×Npp=10) using KC200GT module are shown in Figures (12 & 13).

Figure (12) PV array V-I output characteristics for KC200GT module of 30x10 configuration with different T - constant λ.
Improvement of the MATLAB/ Simulink Photovoltaic System Simulator Based on a Two-Diode Model

IV. CONCLUSION

A MATLAB/ SIMULINK simulator for the PV system based on the basic equations of a two-diode model has been improved in this paper. The input parameters such as Vm, Im, Voc, Isc, ki, and kv are taken from the manufacturer’s datasheet, and the values of IPV, IO1, IO2, Rp, and Rs are calculated by using Newton-Raphson method, that is to reduce the number of input parameters. The proposed model outputs the V-I and V-P characteristics of the PV module and array as a function of the external parameters (input parameters) such as sunlight irradiance and temperature. The mask icon makes the block model more user-friendly and a dialog box lets the users easily configure the PV model. The accurateness of the simulator is verified with KC200GT and MSX-64 PV modules. As a result of the study, it is observed that the two-diode circuit model has been shown to be more accurate representation of solar cell behavior than the single-diode (with and without Rp and Rs) model, but the analysis is more complex and need more simulation time. Finally, the proposed model presented here facilitates a rapid determination of the solar cells circuit model parameters that are need by researchers and designers.

REFERENCES

Assist Lecturer Eng. Oday Mohammed Abdulwahhab

Received his B.Sc. in Electronic and Communications Engineering from the Faculty of Engineering- Al-Nahrain University- Baghdad, Iraq in 1996, and received the M.Sc. degree in Solid State Electronics Engineering from Faculty of Electrical Engineering, University of Technology- Baghdad, Iraq in 2000. Currently he is Assist Lecturer, Researcher and training supervisor, Dep. of Electronic Technique in the Institute of Technology/ Baghdad. His research interests include green energy generation, storage and Witricity, Electronic circuit design, Wired and Wireless Network Administration.