
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4, Issue-1, March 2014

123

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2110034114/2014©BEIESP

Abstract—Computational fluid dynamics applications become

crucial for scientist to understand various Natural phenomenon.

These applications require high performance computing

resources that most small academic institutions cannot afford.

Elastic cloud clusters are best suited environment for those small

academic institutions to gain high performance computing power

and enable researchers to explore new trends in scientific

computing with reasonable cost. This work aims to study the

parallelism efficiency; in term of communication time and

execution time for a highly optimized parallel lattice Boltzmann

solver on elastic cloud clusters. On these elastic clusters we have

found that the lattice Boltzmann implementation is fully adaptive,

highly flexible and cost effective to use for solving complex large

fluid mechanical systems.

Index Terms—Computational Fluid Dynamics, Elastic Cloud

Computing, Multi-core Programming, Lattice Boltzmann.

I. INTRODUCTION

Scientific computing requires rapidly increasing number of

resources to deliver results for growing problem sizes in a

reasonable time frame. In the last decade, while the largest

academic institutions were able to afford expensive

supercomputers to conduct high quality researches in the

parallel processing field, other small institutions adopted
cheaper resources such as commodity clusters and grids.

Cloud computing offers cost-effective alternative solutions to

such institutions in which resources are leased from cloud

service providers only when needed rather than hosted in

their premises [1]. In the other side, cloud computing

promises a much more reliable platform than grids, as well as

much more scalable platform than the largest of commodity

clusters. Although there is several cloud computing

providers, such as Amazon [2] and Azure [3], the potential of

clouds remains unexplored. Our work aims to explore the

performance of cloud environment running scientific

applications.

A. Computational Fluid Dynamics

With the development in complexity of our real life and

interactivity with the living environment it is now crucial to

forecast future parameters affecting our lives to avoid sudden

changes and catastrophes. It is known that flooding, tornados,
and earth quakes, are the most killing machines of human.

Manuscript received on February, 2014.

Omran Malik Omer Awad, Department of Commuter Science,

Alneelain University – Faculty of Computer Science and Information

Technology, Khartoum, Sudan,

Prof. Awad Hag Ali Ahmed, Department of Computer Science,

Alneelain University – Faculty of Computer Science and Information

Technology

Prof. Abdelmonem Mohamed Ali Artoli, Computer Science

Department, College of Computer & Information Sciences King Saud

University, Riyadh, Kingdom of Saudi Arabia

These phenomena could be modeled as transport

differential equations which may be solved numerically to

obtain critical parameters affecting future changes and

estimate future changes. In recent years flooding, tsunami,

ice melting, economic catastrophes, and other sudden

catastrophes are happening more frequent and less

predictable. The lack of scientific approach to strategically

solve these issues is witnessed. This might be due to lack of

expertise and computational resources.
Fluid (gas, liquid, or mixtures) flows are governed by

partial differential equations (PDEs) which represent

conservation laws for the mass, momentum, and energy [4].

Solutions for these equations give us information on the

velocity fields, stresses, and fluid structure interiors. A few

analytic solutions on these equations exist for idealized cases.

In most of realistic models, the structure is divided into

blocks and domains and a numerical discretization for the

PDE applied at each cell/grid point.

Computational fluid dynamics is derived from both fluid

mechanics and computational techniques. It uses a set of
numerical methods, computational resources, and

visualization algorithms to enable us to solve the PDEs

equations that governs the flow for fluids in a given domain.

CFD is one of these branches that perfectly reflect the

utilization for scientific computing. It is well known that

CFD simulations require highly massive calculations that

could not be performed with ordinary personal [5]. The

computing power of today’s supercomputers is mainly

exploited in utilizing CFD solutions.

The Lattice Boltzmann Method (LBM) has been

developed in the last two decades as promising numerical

techniques for flows and other transport phenomena in fluids,
to provide an alternative to traditional computational fluid

dynamics (CFD) methods [6]. Unlike conventional numerical

methods based on macroscopic continuum equations, the

lattice Boltzmann method was developed from microscopic

models and mesoscopic kinetic equations. In this paper LBM

will be used for its known capabilities and suitability for

parallel computing. Due to its simple implementation,

straightforward parallelization and easy grid generation, the

capability of the lattice Boltzmann method has been

demonstrated in various complex applications including

Newtonian blood flow simulations, non-Newtonian and
suspension flows and complex geometry. As time-dependent

flow simulations are known to be computationally expensive,

a need for an efficient flow solver is crucial. Traditional

Navier-Stokes solvers frequently use artificial

compressibility and pressure projection methods to accelerate

convergence [7].

B. LBM Governing Equations

The dynamics of the fluid is modeled by the transport of

simple fictitious particles on

the nodes of a Cartesian grid

and is based on two steps;

Stochastic Simulation Efficiency of Parallel CFD

Solver on Elastic Cloud Environment

Omran Malik Omer Awad, Awad Hag Ali Ahmed, Abdelmonem M. Ali Artoli

Stochastic Simulation Efficiency of Parallel CFD Solver on Elastic Cloud Environment

124

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2110034114/2014©BEIESP

streaming to the neighboring nodes and colliding with local

node populations represented by the probability 𝑓𝑖 of a

particle moving with a velocity 𝑒𝑖 per unit time-step ∆𝑡 as

shown in Eq. (3), Populations are relaxed towards their

equilibrium states during a collision process [8] [9]. The most
common models are the D2Q9 model and D3Q19 model. We

focus in D2Q9 model here in the simulations. The

macroscopic variables are defined as functions of the particle

distribution functions in the following equations:

𝜌 = 𝑓𝑖
𝛽−1
𝑖=0 (1)

and

𝑢 =
1

𝜌
 𝑓𝑖𝑒𝑖

𝛽−1
𝑖=0 (2)

Where Eq. (1) and (2), represent macroscopic fluid density

and macroscopic velocity respectively. The particle

distribution functions at each lattice point are updated using

the following equation:

𝑓𝑖 𝑥 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡 = 𝑓𝑖 𝑥, 𝑡
𝑆𝑡𝑟𝑒𝑎𝑚𝑖 𝑛𝑔

−
 𝑓𝑖 𝑥 ,𝑡 − 𝑓𝑖

𝑒𝑞 𝑥 ,𝑡

𝜏

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 (3)

Where 𝑖 ∈ 0, 𝛽 − 1 is an index for discrete velocities

and τ is a relaxation parameter, which is related to the fluid

viscosity as detailed in the following sections.

The Eq. (3) apply for lattice points located inside the fluid

domain, but not for those at boundaries, where boundary

conditions should be applied to predict the absent particle

distribution functions, so the two steps streaming and

collisions should be treated separately in actual

implementations. The streaming step, where the particle

distribution functions are translated to the neighboring sites

according to the respective discrete velocity direction, see
[10].

The equilibrium distribution functions can be obtained

from the local Maxwell-Boltzmann (see the following

equation):

𝑓𝑖
𝑒𝑞 𝑥 = 𝜔𝑖𝜌 𝑥 1 + 3

𝑒𝑖

𝑐2 +
9

2

(𝑒𝑖∙𝑢)2

𝑐4 −
3

2

𝑢2

𝑐2
 (4)

Where 𝜔𝑖 are the weights for the particles and 𝑐 is the
propagation speed on the lattice, in most cases considered

𝑐 = 1.

For the D2Q9 model the velocity weights are:

 𝜔𝑖=0 =

4

9

𝜔𝑖= 1..4 =
1

9

𝜔𝑖= 5..8 =
1

36

 (5)

It is well known that lattice Boltzmann method by using

the single relaxation time approximation and particular

Maxwell-type distribution will recover the Navier-Stokes

equations [11].

The fluid viscosity is calculated according to the following

equation:

𝑣 =
(2𝜏−1)

6
 𝑒2𝛿𝑡 (6)

Where 𝑒 the lattice velocity.

II. ELASTIC COMPUTING PLATFORM

Elastic computing platforms (EC2) are based on Xen

virtualization technology [12]. This allows one physical

computer to be shared by several virtual instances, each of

which hosts different operating systems. Each virtual OS has

its own root, and lives in its own separate universe.

EC2 provides users with virtual instances based on Linux

operating systems. A range of 32-bit and 64-bit kernels

supporting the common Linux varieties such as Ubuntu and

Fedora Core are available. Amazon has made available a

number of Amazon Machine Images (AMIs) which can be

hosted on their computers. [2].
Our experiments have been conducted on five baseline

platform architectures that are offered by Amazon scientific

cloud computing services. These platforms are: four virtual

cores machine (m1.xlarge), eight virtual cores machine

(m2.4xlarge) and (c1.xlarge), eight (2 x Intel Xeon X5570,

quad-core with hyperthread) machine (cc1.4xlarge), sixteen

(2 x Intel Xeon E5-2670, eight-core with hyperthread)

machine (cc2.8xlarge). Table 1 summaries the architectures

used in our study.

Table 1 EC2 machine instances used for experiments

on Amazon Cloud
EC2 Instances m1 m2 c1 cc1 cc2

Cluster size

(n nodes)

16 8 8 8 4

Virtual CPUs per

machine

4 8 8 8 16

Computing Units

per core
1

2 3.25 2.5 2 x Intel

Xeon

X5570,

with

hyperthr

ead

2 x Intel

Xeon

E5-2670,

with

hyperthread

Memory size in

GB

15 68.4 7 22.5 60.5

Network

Interface

bandwidth

Hig

h

Hig

h

High 10 Gbps 10 Gbps

Support for H.W

virtualization

No No No No Yes

Grouped in one

place

No No Yes Yes Yes

System

Architecture

64-b

it

64-b

it

64-bit 64-bit 64-bit

Operating

System

Ubuntu 12 Centos 5.6

A. Elastic Cloud setup

We now describe the experimental setup in which we use

the performance evaluation method presented in section III.
For our experiments we build homogeneous environments

with 1 to 128 cores based on the five EC2 instance types., we

used the images based on Ubuntu 12 OS with Linux 2.6

kernel for the first three instances and Centos 5.6 with the

same kernel for cc1 and cc2 platforms. We used the

starcluster deployment tool programmed by MIT to facilitate

the cluster configuration. Using starcluster we configured all

machines with MPI-2 libraries based on the mpich2 [31]

implementation. Also the MIT deployment tools equipped

1
 One compute unit (CU) provides the equivalent CPU capacity of a 1.0-1.2

GHz 2007 Opteron or 2007 Xeon processor according to Amazon EC2

documentation

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4, Issue-1, March 2014

125

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2110034114/2014©BEIESP

with scripts to install Sun Grid Engine (SGE) as cluster

scheduler.

III. SIMULATION METHODOLOGY

In the following sections we will discuss the cluster

performance measurements. In our measurements we used

different approach that implements real CFD problem rather

than the industry standard benchmarks. Our benchmark

consists of two-dimensional tube flow tested on the five

different cloud platforms. the measurement metrics being

used is explained in section B.

Our code adopted the algorithm shown in Table 2. It is

executed under Linux OS.

Table 2 Lattice Boltzmann simulation algorithm

Lattice Boltzmann Algorithm

1 Allocate memory

2 Initialize parameters

3 Partition the domain

4 Do

5 Compute mass and momentum

6 MPI_Reduce computed mass & momentum

7 Set upper and lower velocity boundary conditions

8 Set inflow and outflow pressure boundary conditions

9 Collide lattice sites

10 Stream sties

11 Set Bounce back on links

12 Send boundary info to west neighbor

13 Send boundary info to east neighbor

14 Update periodic boundary

15 End do

16 Compute output

We choose to divide the problem space geometry into n

subdomains among x-axis. To ensure load balancing in

simple way, we set n=p, where p is the number of processors

involved in the solution. The subdomains then distributed

randomly to the processors in a way that each processor will

have one subdomain to process it. This technique has
enhanced communications and lead to better load balancing,

the disadvantage of this technique appear on small number of

processors which cause increase time in local calculations.

This drawback however is negligible when the code is

executed in modern multi-core processors. The domain

partitioning is illustrated in Fig. 1

A. Simulation Parameters

In this section we will describe the test benchmark
problem. The tube flow problem is the candidate; we

consider the tube geometry to be of 100 lattice units’ width

and 1000 lattice units’ length as shown in the following

figure.

The flow in the tube is considered to be at Re=100.

Reynolds number (Re) is used to perform dimensional

analysis of fluid dynamics problems, and as such can be used

to determine dynamic similarity between different

experimental cases [8] [11] [12].

To formulate the tube flow parameters we consider the

Reynolds number equations as follows [7]:

𝑅𝑒 =
𝑣𝐿

𝛾
 =

𝑣𝐷𝐻

𝛾
 (7)

Where v is the velocity, L is the characteristic length of the

tube, γ is the kinematic viscosity, 𝐷𝐻 is the characteristic tube

diameter length

𝛾 =
𝜇

𝜌
 (8)

Where μ is the dynamic viscosity of the fluid, ρ is the density

of the fluid.

The velocity can be obtained from the following equation:

𝑣 =
(2𝜏−1)

6
 𝑒2𝛿𝑡 (9)

The lattice distance scales selected to be of ∆𝑥 = 0.1 and

∆𝑦 = 0.1, the initial velocity in x-direction is selected to be

0.1 lattice unit, by using the Eq. (9) we get:

𝜏 =

6𝑣

𝑒2+1

2
 (10)

By substituting v=0.001 and e=0.1 in Eq. (10) we get τ=0.8

for relaxation time. Table 3 shows the complete parameters

for the simulation initial setup.

Table 3 Tube flow simulation parameters

Parameter (in Lattice Units) Value

 Initial fluid velocity in x-direction (𝑣𝑥) 0.1

 Initial fluid velocity in y-direction (𝑣𝑦) 0.0

 Relaxation Time (𝜏) 0.8

 Fluid density
2
 (𝜌) 1.0

 Number of lattice cells in x-direction (𝐿𝑥) 1000

 Number of lattice cells in y-direction (𝐿𝑦) 100

 Pertubation
3
 (Statistical fluctuations) 0.001

A. Execution Time

For all test beds, we first evaluate the solver execution time

which is measured in seconds. The way we measured this

metric is hardcoded in the solver itself by utilizing an

intrinsic function that is bundled in mpich-2 library. This

function is MPI_Wtime() which records the time at the

2
 Density of water in room temperature 𝜌 = 1000 𝐾𝑔/𝑚3

3
 Used to drive the flow in the tube in case of body force absence by

making pressure gradient in the tube

Fig. 2 Tube flow simulation geometry

Velocity

profile

Wall boundary

Fig. 1 Tube flow partitioning among x-axis

Stochastic Simulation Efficiency of Parallel CFD Solver on Elastic Cloud Environment

126

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2110034114/2014©BEIESP

beginning of the simulation code and at the end of the code.

Then we subtract the start time from the end time to get the

exact execution time as illustrated below.

This execution time computes the total execution including

communication time and idle.

B. Message Communication Time

Communication time metric is measures similarly to the

execution time except that we record the communication time

inside the simulation loop and accumulate the time in each

loop step. We record the starting time of communication just

before the message sending code line and record the ending

time write after the message sending code line. After the loop

is completed, the final value is recoded in the log file. The

following code illustrates the process of communication time
calculation.

Typical measurement for communication time increases as

the number of processing cores increase. And the

communication overhead becomes more influential.

IV. RESULTS

A. Results for Parallel Execution Time

To compare the least performing platform m1.xlarge

cluster execution time with it is ancestor (m2.4xlarge)

Amazon cloud cluster, we read the graph in Fig. 3. It shows

the execution time in seconds as a function of the number of

processing cores (in a logarithmic scale). It is to be noted that

for ideal behavior, execution time is inversely proportional to

the number of processors. From the aforementioned graph we

notice that the execution time is initially reduced one order of

magnitude (~O(n)) as the number of processing cores is

doubled. As the number of processor cores is increased to

more than 16 cores, the execution time fluctuates due to the
fact that inter-process communication between processing

elements becomes more dominant. The two clusters perform

similarly as the number of processors is more than 32.

In Fig. 4 an execution time comparison between m1.xlarge

and c1.xlarge clusters are presented. An interesting

phenomenon is observed in this figure. The cluster c1.xlarge

has less memory than m1.xlarge cluster but it is an 8-core.
Therefore the execution time is better than the m1.xlarge but

has greater communication overhead. Therefore, as the

number of processors is increased, the communication time

dominates. This is a property of the used solver.

In Fig. 5 we present an execution time comparison between

m1.xlarge and cc1.4xlarge Amazon clusters. We noticed that

cc1.4xlarge cluster execution time decreases consistently as
number of processing cores increase. cc1.4xlarge performed

better because the communication overhead is eliminated

using Amazon placement group. Also an interesting

phenomenon has been noticed. The execution time for both

clusters goes similarly up to 16 processes. This is because the

communication overhead is barely influencing the

performance. When the number of processing cores increased

(more than 16 processing cores) we noticed the influence of

the communication overhead.

In the following graph, see Fig. 6 an execution time

comparison between

m1.xlarge and cc2.8xlarge

the largest Amazon cluster

Fig. 5 Execution time for m1.xlarge and cc1.4xlarge

Amazon clusters

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128

To
ta

l E
xe

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of processing cores

m1.xlarge

cc1.4xlarge

Fig. 4 Execution time for m1.xlarge and c1.xlarge

Amazon clusters

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128To
ta

l E
xe

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of processing cores

m1.xlarge

c1.xlarge

Fig. 3 Execution time for m1.xlarge and

m2.4xlarge Amazon clusters

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128To
ta

l E
xe

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of processing cores

m1.xlarge

m2.4xlarge

Comm_StartTime = MPI_Wtime();
send_west(param.NX, param.NY, top
send_east(param.NX, param.NY, top
Comm_EndTime = MPI_Wtime();
total_comm_time += (Comm_EndTime-Comm_StartTime);

Sim_StartTime = MPI_Wtime();
/* Solver code */
/* Solver Code */
.

.

.
/* Solver Code */
Sim_EndTime = MPI_Wtime();

Execution_Time = Sim_EndTime-Sim_StartTime

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4, Issue-1, March 2014

127

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2110034114/2014©BEIESP

is presented. In this graph we noticed that the highest

performing clusters perform better when solvers are running

with greater number of processing cores.

Fig. 6 Execution time for m1.xlarge and cc2.8xlarge Amazon

clusters

B. Results for Message Communication Time

In Fig. 7 we present the communication time elapsed

during the simulation of our code on m1.xlarge and

m2.4xlarge Amazon clusters. From this figure we read that
the communication time for single processing core is Zero

(no message passing occurs). Starting from 2 processing

cores the execution time is increased linearly as the number

of processing cores is doubled. We noticed a fluctuation in

the performance of m1.xlarge due to fact that m1.xlarge

machines are placed randomly by Amazon in different

regions which affects the performance of network bandwidth.

However, the two clusters perform similarly as the number of

processors is more than 32.

In Fig. 8 we present a communication time comparison

between m1.xlarge and c1.xlarge clusters. We notice that

m1.xlarge outperform c1.xlarge cluster when the number of

processing cores is greater than 32. This is because the

communication overhead is dominating.

In Fig. 9 a message communication time comparison between

m1.xlarge and cc1.4xlarge is presented. Both clusters are

performing similarly with less communication time in

cc1.4xlarge.

Finally, in Fig. 10 we present a message communication time

between m1.xlarge and cc2.8xlarge clusters. We notice that

cc2.8xlarge is the best performing cluster among all the test

beds.

V. CONCLUSION

The comparison results were given in figures 1 – 10 which

compared execution time, communication time, the five test

beds. From these figures we can conclude that:

 Because infrastructure is rented, not purchased, the cost

is controlled, and the capital investment can be zero.

 General purpose platforms in Amazon could be used as

high performance cluster for simulating CFD

phenomena with reduced cost in comparison with high

end dedicated platforms for scientific cloud computing

in Amazon such as cc1.4xlarge and cc2.8xlarge

platforms.

FUTURE WORK

We are hoping to use the findings of this work to

implement a general purpose highly optimized, self-tuning,

less costing and robust CFD solver to be used for forecasting

and engineering problems.

ACKNOWLEDGE

Work conducted by the researchers is supported (in part)
by King Abdulaziz University – Faculty of Computing and

Information Technology – Khulais Branch.

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128

To
ta

l E
xe

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Number of processing cores

m1.xlarge

cc2.8xlarge

Fig. 10 Messages communication time comparison between m1.xlarge

and cc2.8xlarge Amazon clusters

1
2
4
8

16
32
64

128
256
512

1 2 4 8 16 32 64 128M
e

ss
ag

e
s

co
m

m
u

n
ic

at
io

n
 t

im
e

 in

se
co

n
d

s

Number of processing cores

m1.xlarge

cc2.8xlarge

Fig. 9 Messages communication time comparison between

m1.xlarge and cc1.4xlarge Amazon clusters

1
2
4
8

16
32
64

128
256
512

1 2 4 8 16 32 64 128

M
e

ss
ag

e
 c

o
m

m
u

n
ic

at
io

n
 t

im
e

 in

se
co

n
d

s

Number of processing cores

m1.xlarge

cc1.4xlarge

Fig. 8 communication time for m1.xlareg and c1.xlarge

Amazon clusters

1

4

16

64

256

1024

4096

1 2 4 8 16 32 64 128M
e

ss
ag

e
 c

o
m

m
u

n
ic

at
io

n
 t

im
e

 in

se
co

n
d

s

Number of processing cores

m1.xlarge

c1.xlarge

Fig. 7 communication time for m1.xlarge and m2.4xlarge Amazon

clusters

1

2

4

8

16

32

64

128

256

512

1 2 4 8 16 32 64 128M
e

ss
ag

e
 C

o
m

m
u

n
ic

at
io

n
 t

im
e

 in

se
co

n
d

s

Number of processing cores

m1.xlarge

m2.4xlarge

Stochastic Simulation Efficiency of Parallel CFD Solver on Elastic Cloud Environment

128

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2110034114/2014©BEIESP

REFERENCES

[1] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer and D.

Epema, "A Performance Analysis of EC2 Cloud Computing Services

for Scientific Computing," in Cloud Compting , Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering,

2010.

[2] "AWS Amazon Elastic Compute Cloud (EC2) – Scalable Cloud

Servers:," 2013. [Online]. Available: http://aws.amazon.com/ec2/.

[3] "Cloud Services - Windows Azure," Microsoft Co. Ltd., 2013.

[Online]. Available:

http://www.windowsazure.com/en-us/services/cloud-services/.

[4] M. J. H. Ferziger, "Computational Methods for Fluid Dynamics," 1996.

[5] P. Wesseling, "Principles of Computational Fluid Dynamics," 2001.

[6] Y. Yan, Flow and particle transport by the Lattice Boltzmann Method,

New York: ProQuest, 2008.

[7] X. He and L.-S. Luo, "Lattice Boltzmann model for the incompressible

Navier-Stokes equation," vol. Journal of Statistical Physics, no. 88,

1997.

[8] A. M. Artoli, "Mesoscopic Computational Haemodynamics," PHD

Thesis, 2003.

[9] A. M. Artoli, D. Kandhai, H. J. Hoefsloots, A. G. Hoekstra and P. M.

Sloot, "Lattice BGK simulations of flow in a symmetric bifurcation,"

Future Generation Computer Systems, vol. 20, no. 6, pp. 909-916,

2004.

[10] M. Geveler, D. Ribbrock, D. Goddeke and S. Turek,

"Lattice-Boltzmann Simulation of the Shallow-Water Equations with

Fluid-Structure Interaction on Multi- and Manycore Processors,"

Facing the Multicore-Challenge, vol. 6310, 2010.

[11] H. Chen, S. Chen and W. H. Matthaeus, "Recovery of the

Navier-Stokes equations using a lattice-gas Boltzmann method," The

American Physical Society, vol. 45, no. 8, 1992.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt and A. Warfield, "Xen and the art of

virtualization," in Proceedings of the Nineteenth ACM Symposium on

Operating systems principles, New York, USA, 2003.

[13] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and

Beyond, USA : Oxford University Press, 2002.

[14] A. M. Artoli, D. Kandhai, H. C. Hoefsloot and A. G. Hoekstra, "Lattice

Boltzmann, a Robust and Accurate Solver for Interactive

Computational Hemodynamics," Computational Science, vol. 2657,

pp. 1034-1043, 2003.

AUTHOR PROFILE

Omran Malik Omer Awad Ph.D. student at Alneelain University, Lecturer

at King Abdulaziz University – Khulais branch, Faculty of Computers and

Information Technology, Department of Information Technology. E-mail:

omranawad@hotmail.com

Prof. Awad Hag Ali Ahmed Ph.D., Department of Computing Science,

University of New Castle Upone-Tyne, England 1981. Vice-chancellor Al-

Neelain University 1997- 2005. External examiner and accreditor of

computing science and IT programs in many local and foreign Universities.

Publications (70+)

Prof. Abdel Monim Artoli Professor of computational science, Computer

Science Department, Vice-deanship for Development and Quality, Head of

Alumni Unit, Department of Computer Science, College of Computer &

Information Sciences, King Saud University

