
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

9

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2171054214/2014©BEIESP

Abstract—This paper involves structural design and

development of processing elements using Hardware Description

Language (HDL) using Altera or Xilinx softwares and

implements them on Field Programmable Gate Arrays (FPGAs).

In this paper, we will simulate and synthesize the various

parameters of processing elements by using VHDL on Xilinx ISE

13.1 and target it for SPARTAN 6 FPGA board. The output is

displayed by means of Liquid Crystal Display (LCD) interface.

The state of each output bit is shown by using Light Emitting

Diodes (LED). The processor can perform 2n number of

operations where n is the control bit. More number of designs can

be implemented on FPGA as per user’s needs.

Index Terms— FPGA, XILINX ISE 13.1, SPARTAN 6.

I. INTRODUCTION

This paper deals with the construction of processing elements

using VHDL and we will implement these elements on FPGA

to analyse the various design parameters. A processor is a

digital device that can perform computations involving

multiple steps. The term processor indicates the synonym for

the Central Processing Unit (CPU). The processor and

co-processors can be designed on software and hardware for

many applications like Digital Signal Processing (DSP),

Digital Image Processing (DIP) and video applications,

communication, networking, multi-media and many other

also. The processing elements carries our arithmetic and logic

operations and a sequencing and control unit that can change

the order of operation. The design and implementation of

FPGA based co-processors is of core significance in digital

technologies as it is an integral part of central processing unit.

This paper deals with the designing of 8 bit Arithmetic and

Logic Unit (ALU), memory and shift register. All the modules

described in the design are coded using VHDL with its degree

of concurrency to cope with the parallel nature of digital

hardware. The VHDL software interface used in this design

reduces the complexity and also provides a graphic

presentation of the system. The key advantage of VHDL when

used for systems design is that it allows the behavior of the

required system to be described (modeled) and verified

(simulated) before synthesis tools translate the design into

real hardware (gates and wires). This software not only

compiles the given VHDL code but also produces waveform

results.

II. METHODOLOGY

A processing element is a generic term used to refer a

hardware element that executes a stream of instructions.

Manuscript Received on May, 2014.

Prof. Manisha Khorgade, Electronics & Telecommunication

Engineering Dept, RGCER, Nagpur, India.

Prof Shweta Hajare, Electronics Engineering Dept, YCCE, Nagpur,

India.

Dr.P.K.Dakhole, Electronics Engineering Dept, YCCE, Nagpur, India.

In HDL, a processor is described at the bit level with little

formal distinction between the control logic and the data path.

The desired instruction set must somehow be externally

verified against this description of the processor. Each

processing element contains a data register file and three

computation units: an arithmetic/logic unit (ALU), a

multiplier and a shifter. Computational instructions for these

elements include both fixed-point and floating-point

operations, and each computational instruction can execute in

a single clock cycle.

The computational units in a processing element handle

different types of operations. The ALU performs arithmetic

and logic operations on fixed-point and floating-point data.

The multiplier does floating-point and fixed-point

multiplication and executes fixed-point multiply/add and

multiply/subtract operations.

Fig 01: Processing unit

The shifter completes logical shifts, arithmetic shifts, bit

manipulation, field deposit, and field extraction operations on

32-bit operands. Also, the Shifter can derive exponents. Data

flow paths through the computational units are arranged in

parallel. The output of any computation unit may serve as the

input of any computation unit on the next instruction cycle.

A. ALU

Since ALU is the main part of CPU, this arithmetic and logic

unit design is very important to know. ALU chip design

involves changing the logic functions into equivalent circuits

and creating fast switching networks.

There are two kinds of operations that an ALU can perform:

 First part deals with arithmetic computations and is

referred to as Arithmetic unit.

Structural Level Designing of Processing

Elements using VHDL

Manisha P. Khorgade, Shweta Hajare, P.K.Dakhole

ALU

MEMORY

UNIT

INPUT

UNIT

INPUT

INFORMATION

CONTROL

UNIT

OUTPUT

UNIT

RESULT OF

COMPUTATION

Structural Level Designing of Processing Elements using VHDL

10

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2171054214/2014©BEIESP

 It is capable of addition, subtraction, multiplication,

division, increment and decrement.

 Second part deals with the gated circuits in the shape of

AND, OR, XOR, inverter, rotate, left shift and right shift

which is referred to as Logic unit. Logic unit of ALU

does not need as many gates as required in Arithmetic

Unit and if done separately, the LOGIC unit can be

implemented using Complex Programmable Logic

Devices (CPLD) or other Programmable Logic Device

(PLD) technologies instead of using FPGA.

In general, the ALU includes storage places for input

operands, operands that are being added, the accumulated

result (stored in accumulator), and shifted results. The flow of

bits and operations performed in the subunits of the ALU is

controlled by gated circuits.

In this paper, we will design 8 bit ALU with 3 function select

inputs: Mode (M), Select inputs (S1 and S0). The mode input

(M) selects between a logic (M=0) and arithmetic (M=1)

operations.

Fig 02: Hardware representation of 8 bit ALU

Fig 03: Block diagram of 8 bit ALU

An ALU is chopped into several segments each incorporating

its specific operations. The ALU has been modelled with a

separate arithmetic unit, logic unit and shifter as indicated by

the circuit structure above. This modularization is closer to

reality, makes it easier to follow the processes and produces

better pre-optimized timing.

Table 01

Select

lines

Operation Function Implemen-

tation

000 Y<=A+B Addition Arithmetic

unit

001 Y<=A-B Subtrac-ti

on

Arithmetic

unit

010 Y<=/A NOT Logic unit

011 Y<=A nand B NAND Logic unit

100 Y<=A nor B NOR Logic unit

101 Y<=A and B AND Logic unit

110 Y<=A or B OR Logic unit

111 Y<=A xor B XOR Logic unit

The above table shows the status of select lines and operations

performed by ALU.

More out of ALU:

Carry-Out and Overflow

It is advantageous to act as if your ALU would only deal with

unsigned numbers as that way you can also deal with two‟s

complement numbers. However, there are now two conditions

that can mess us up in the systems, carry-out and overflow.

1. Carry-Out

The highest number we can display on the 7-Segment display

is „F‟ which symbolizes 15. We get this number for example

just by setting all A-switches high when all selection switches

and the carry-in switch are low. Up to now the output register

was: „1111‟. If we set the carry-in high too, then adding

another one now will set it to „0000‟ and we would have a 1 in

the fifth position. As this position however does not exist, this

number – our carry-out – is lost.

So in this case, we can increase the register. However, then we

cannot anymore display all the numbers the register can

contain on the 7-segment display. To take care of that, we can

use the decimal point of the 7-Segment display to show if we

have a carry-out or not and thus we can now display numbers

from 0 to 31 instead of only from 0 to 15.

2. Overflow

Carry-out does of course only make sense when we are

dealing with unsigned numbers, when we deal with two‟s

complement numbers we might get overflow which basically

means that our result will have the wrong sign. To exemplify

this, assume that you are adding the numbers 1001 and 1011

in 4-bit two‟s complement. This means of course, that both

numbers are negative then the result will be 0100, a positive

number, which is a completely wrong result.

There are now several ways to test for overflow however, the

easiest one is to follow the rule: „When the two numbers

coming in, have the same sign-bit, and the number going out

has a different one, then overflow has occurred‟. We can

implement this, using the other decimal point on the system

however, always pay attention now to the interpretation of

your output.

Carry-out is meaningless for signed numbers and overflow for

unsigned numbers.

B. MEMORY

Memory is the process in which information is stored,

encoded and retrieved.

 Input1

[7:0]

 Input2

[7:0]

Alu_ctl

[4:0]

Cin

8-bit

ALU

LCD

Outdat

a [15:0]

Cout

*
Negativ

e *
 Zero

*
Overflo

w *

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

11

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2171054214/2014©BEIESP

Memory structures are crucial in digital design system. All

memory structures have an address bus and a data bus. The

processing elements of the DSP applications must be mapped

with ALU, memory and shift register. As we are using 8 bit

ALU, hence input to the ALU will be of 8 bit. Accordingly, it

is able to perform 8 different tasks as per the requirement of

users. This would be achieved if we have a minimum memory

of 8 bit. Then the shift register should be also of 8 bit, so that

the shifting is done sequentially and the complete memory is

utilised.

The fastest possible memory option is to put everything in

local memory. Xilinx local memory is made up of large FPGA

memory blocks called Block RAM (BRAM). Embedded

processor accesses to BRAM happen in a single bus cycle.

Xilinx FPGA BRAM quantities differ by device. For

example, the 1.5 million gate Spartan-3 device (XC3S1500)

has a total capacity of 64KB, whereas the 400,000 gate

Spartan-3 device (XC3S400) has half as much at 32KB. An

embedded designer using FPGAs should refer to the device

family datasheet to review a specific chip‟s BRAM capacity.

If the designer‟s program fits entirely within local memory,

then the designer achieves optimal memory performance [7].

 Using various configuration options, Select RAM blocks

create RAM, ROM, FIFOs, large look-up tables, data width

converters, circular buffers, and shift registers, each

supporting various data widths and depths. Each block RAM

contains 18,432 bits of fast static RAM, 16K bits of which is

allocated to data storage and, in some memory configurations,

an additional 2K bits allocated to parity or additional "plus"

data bits.

Physically, the block RAM memory has two completely

independent access ports, labelled Port A and Port B. The

structure is fully symmetrical, and both ports are

interchangeable and both ports support data read and write

operations. Each memory port is synchronous, with its own

clock, clock enable, and write enable.

Fig 04: Block Random Access Memory (BRAM)

The two ports, Port A and Port B perform the following

functions:

1. Port A behaves as an independent single-port RAM

supporting simultaneous read and write operations using

a single set of address lines.

2. Port B behaves as an independent single-port RAM

supporting simultaneous read and write operations using

a single set of address lines.

3. Port A is the write port with a separate write address and

Port B is the read port with a separate read address. The

data widths for Port A and Port B can be different also.

4. Port B is the write port with a separate write address and

Port A is the read port with a separate read address. The

data widths for Port B and Port A can be different also.

Table 02

Input data Function

00 Port A is an independent single-port

RAM.

01 Port B is an independent single-port

RAM.

10 Port A is the write port.

Port B is the read port.

11 Port B is the write port.

Port A is the read port.

C. SHIFT REGISTER

Shift register is a register that is designed to allow the bits of

its contents to be moved to left or right. Shift registers can

have both parallel and serial inputs and outputs. These are

often configured as serial-in, parallel out (SIPO) or as

parallel-in, serial-out (PISO). There are also types that have

serial and parallel input and types with serial and parallel

output. There are also bi-directional shift registers which

allow shifting in both directions: Left to Right or Right to

Left.

(f) Rotate right (g) Rotate left

Fig 05: Basic data movement in shift register

Shift registers delay data by one clock time for each stage.

They will store a bit of data for each register. The data string

is presented at Data in and is shifted right one stage each time

Data advance is brought high. At each advance, the bit on the

far left (i.e., Data in) is shifted into the output. The bit on the

far right (i.e., Data out) is shifted out and lost.

III. IMPLEMENTATION

The standard FPGA design flow starts with the design entries

using hardware description language (HDL), such as Verilog

HDL or VHDL. The flow then goes through programming,

compilation, simulation and verification in FPGA hardware

[10]. There are two types of simulation:

PORT

A

PORT

B

Structural Level Designing of Processing Elements using VHDL

12

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2171054214/2014©BEIESP

Fig 06: FPGA Process

1. RTL (or functional) simulation: It allows us to verify

that the code is manipulating the input and output

respectively

2. Timing (or post place and route) simulation: It verifies

that the design meets timings and functions

appropriately.

The VHDL code which implies the hardware part of ALU is

downloaded on FPGA processor using JTAG cable

interfacing PC and the hardware element. When a VHDL

model is translated into the "gates and wires" that are mapped

onto a programmable logic device i.e., FPGA, then it is the

actual hardware being configured, rather than the VHDL code

being "executed" as if on some form of a processor chip.

We will create a design that will cause the LED to blink at a

speed that can be controlled by an input button. We can also

run other designs on the development board as well. For the

LED design, we will write VHDL code for 8 bit ALU,

memory and shift register. The device can accept two

numbers of 8 bit binary data and can perform

arithmetic/logical operations depending on the 3 bit operation

code given. The design of the elements is done through Xilinx

which will give simulation waveforms and synthesis report for

the design. When the design is running on FPGA board, we

can press an input switch to change the bits and can see the

respective change in output through LED‟s.

The function of FPGA is embedded on the kit along with

PROM, LCD, LEDs and DIP switches. A Joint Test Action

Group (JTAG) interface connects the FPGA chip with PROM

and leads to PC through a serial interface. Since FPGA is a

user programmable, therefore JTAG is of core significance.

After the process of compilation and simulation of the VHDL

design, the hardware realization is carried out and tested.

Here the 3-bit inputs will be given by means of two sets of

DIP switches and the output can be displayed on a LCD panel

and the result can be verified with the simulated output. The

status of the flag registers is indicated by a series of 8 bit

LED‟s. The provision of a select switch used in this hardware

enables the user to perform the required operation on the

FPGA processor.

IV. SIMULATION WAVEFORMS

Various designs and gates are implemented and processing

speed is analyzed by using PE. ALU, memory designs are also

simulated and analyzed speed of PE We have tried to

implement and then dumped it on Spartan 6 Kit. It give us

more accurate results using for analysis of PE performance.

This is purely a static implementation of PE on structural

basis using ALU,Memory and IO component. Few results are

as shown in following figures.

Fig 07: And Gate

Fig 08. OR gate

Fig0 9.Spartan 6 Kit

Design

Entry

Simulation

Synthesis

Place and

Route

Download

Design

Library

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

13

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2171054214/2014©BEIESP

V. APPLICATIONS

 Since ALU is the main part of the CPU, we can design

the CPU for the system. General decoding problems will

be solved for the system by using the ALU design. Since

ALU has huge applications, we can develop

micro-processors and micro-controllers.

 The Spartan-3E FPGA‟s abundant, fast and flexible

block RAMs provide invaluable on-chip local storage

for scratchpad memories, FIFOs, buffers, look-up

tables, and much more. Using unique capabilities, block

RAM implements such functions as shift registers, delay

lines, counters, and wide, complex logic functions.

 The serial in -serial out shift register can be used as a

time delay device.

The amount of delay can be controlled by:

1. The number of stages in the register

2. The clock frequency.

VI. CONCLUSION

The VHDL is a versatile language which has great flexibility

of designing component and FPGA embedded processor has

the power and ability to provide previously unachievable

flexibility and performance. One can design hardware in a

VHDL for FPGA implementation such as Xilinx ISE, Altera

Quartus to produce the RTL schematic of the desired circuit.

After that the generated schematic can be verified using

simulation software which shows the waveforms of inputs and

outputs of the circuit after generating the appropriate test

bench. We learned how to produce different arithmetic

operations and logical functions by using various select

signals for a single circuit. Rapid implementation of parallel

structures based on FPGAs using VHDL proves to be a very

efficient, cost- effective and attractive methodology for

design verification.

Verification of the designed static elements using Xilinx ISE

tool is implemented using Very High Speed Hardware

Descriptive Language and Xilinx Spartan 6 Field

Programmable Gate Array. Further enhancements can be

made on this system by adding more number of inputs with

increased number of bit size. Digital Signal Processing (DSP)

is being credited with lots of applications from VHDL designs

for reconfigurable PE.

REFERENCES

1. V. Khorasani, B. V. Vahdat, and M. Mortazavi, “Design and

implementation of floating point ALU on a FPGA processor”, IEEE

International Conference on Computing, Electronics and Electrical

Technologies (ICCEET), pp. 772-776, 2012.

2. Suchita Kamble, Prof .N. N. Mhala, “VHDL Implementation of 8-Bit

ALU”, IOSR Journal of Electronics and Communication Engineering

(IOSRJECE), ISSN : 2278-2834 Volume 1, Issue 1 (May-June 2012),

PP 07-1.

3. Prof. S. Kaliamurthy & Ms. U. Sownmiya, "VHDL design of

arithmetic processor", Global Journals Inc. (U.S.A), November 2011.

4. S.Kaliamurthy, R.Muralidharan, “VHDL Design of FPGA Arithmetic

Processor” International Conference on Engineering and ICT, 2007.

5. Charles H. Roth, Jr., "Digital system design using VHDL", PWS

publishing company, 2006.

6. B.Stephen Brown, V. Zvonko, “Fundamentals Of digital logic with

VHDL Design”, 2nd Edition, McGraw Hill International Edition,

2005.

7. Bryan H. Fletcher, “FPGA Embedded Processors”, Embedded Systems

Conference San Francisco 2005 ETP-367.

8. J. Bhaskar, “VHDL Primer”, Pearson Education, 3rd edition, 2000.

Douglas L.Perry, “VHDL”, tata mc grawhill, international edition

1999.

9. Module 4: Design of Embedded Processor, Lesson 20: Field

Programmable Gate Arrays and Applications, Version 2, EE IIT

Kharagpur.

AUTHORS PROFILE

Prof. Manisha Khorgade, She is a Assistanr Professor in

RGCER,Wanadongari,, persuing Ph D in embaded area consisting of 9

international publications in conference and journals.

Prof Shweta Hajare, She is a Assistant Professor in YCCE,

Wanadongari,Nagpur ,perusing PhD in VLSI area and published almost 12

publications at international level.

Prof. P.K.Dakhole. He is Professor and Dean in YCCE,

Wanadongari,Nagpur.He has doctorate in electronics engineering having

research area in VLSI, Embedded system. He has almost 27 international

publications.

