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Abstract- In the present paper a discrete Poisson-Janardan 

distribution (PJD), of which the Sankaran’s (1970) discrete 

Poisson-Lindley distribution (PLD) is a particular case, has been 

obtained by compounding Poisson distribution with the Janardan 

distribution of Shanker et al (2013). The first four moments of 

this distribution have been obtained and the estimation of its 

parameters using the method of maximum likelihood and the 

method of moments has been discussed. The distribution has 

been fitted to some data-sets to test its goodness of fit and its 

fitting of two data sets has been presented. 
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I. INTRODUCTION 

The discrete Poisson-Lindley distribution (PLD) given by its 

probability mass function 
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has been introduced by Sankaran (1970) to model count 

data. The distribution arises from a Poisson distribution 

when its parameter follows the Lindley (1958) distribution 

with its probability density function 
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 The first four moments about origin of the discrete PLD 

(1.1) have been obtained as 
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Ghitany et al (2009) discussed the estimation methods for 

the discrete Poisson- Lindley distribution (1.1) and its 

applications. 

In this paper, a discrete Poisson-Janardan distribution (PJD) 

has been obtained by compounding a Poisson distribution 

with the Janardan distribution of Shanker et al (2013). The 

first four moments of this distribution have been obtained 

and the estimation of its parameters has been discussed. The 

discrete PJD has been fitted to some data sets used earlier by 

others for fitting the discrete PLD and it has been found to 

be more flexible than the discrete PLD for analyzing 

different types of count data. 

II. THE DISCRETE POISSON- JANARDAN 

DISTRIBUTION (PJD) 

Recently Shanker et al (2013) obtained a two-parameter 

Janardan distribution given by its probability density 

function 
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It can be seen that at 1  , it reduces to the one parameter 

Lindley distribution (1.2).This distribution has been found to 

be a better model than the one parameter Lindley 

distribution for analyzing waiting time, survival time and 

grouped mortality data. 

Suppose that the parameter   of the Poisson distribution 

follows the Janardan distribution (2.1). Thus, the two-

parameter Janardan mixture of Poisson distribution can be 

obtained as 
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We name this distribution as ‘A discrete Poisson -Janardan 

distribution (PJD)’. It can be seen that at 1  , this 

distribution reduces to the discrete Poisson-Lindley 

distribution (PLD) (1.1).  

III. MOMENTS 

The r th moment about origin of the discrete Poisson -

Janardan distribution (2.3) can be obtained as  
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From (2.2) we thus get 
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Obviously the expression under bracket is the r th moment 

about origin of the Poisson distribution. Taking 1r   in 

(3.2) and using the mean of the Poisson distribution, the 

mean of the discrete PJD is obtained as 
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Taking 2r   in (3.2) and using the second moment about 

origin of the Poisson distribution, the second moment about 

origin of the discrete PJD is obtained as 
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Similarly, taking 3r   & 4 in (3.2) and using the 

respective moments of the Poisson distribution, we get 

finally, after a little simplification, the third and the fourth 

moments about origin of the discrete PJD as 
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It can be seen that at 1  these moments reduce to the 

respective moments of the discrete PLD. 

Probability Generating Function: The probability 

generating function of the discrete PJD is obtained as 
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Moment Generating Function: The moment generating 

function of the discrete PJD is thus obtained as 
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IV. ESTIMATION OF PARAMETERS 

Moments Estimates of Parameters of PJD: The discrete 

PJD has two parameters to be estimated and so the first two 

moments are required to get the estimates of its parameters 

by the method of moments. 

 From (3.3) and (3.4) we have 
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Taking 
2b   in (4.1), we get  
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which gives a quadratic equation in b  as 

     22 8 4 6 4 0K b K b K                      (4.2) 

Replacing the first two population moments by the 

respective sample moments in (4.1), an estimate k of K can 

be obtained and using it in (4.2), an estimate b


 of b  can be 

obtained. Again substituting 
2b   in the expression for 

mean we get
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 Finally, an estimate of   can be obtained as  
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Maximum Likelihood Estimates of Parameters of PJD: 

Let 1 2, , , nx x x  be a random sample of size n  from  the 

discrete PJD  (2.3) and let xf  be the observed frequency in 

the sample corresponding to X x   1,2,...,x k such 

that 

1

k

x

x

f n
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 , where k  is the largest observed value 

having non-zero frequency. The likelihood function, L of 

the discrete PJD (2.3) is given by 
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The two log likelihood equations are thus obtained as  
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The two equations (4.5) and (4.6) do not seem to be solved 

directly. However, the Fisher’s scoring method can be 

applied to solve these equations. For, we have 
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The following equations for ̂  and ̂  can be solved 
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where 0 and 0 are the initial values of   and   

respectively. These equations are solved iteratively till 

sufficiently close values of ̂  and ̂  are obtained. 

V. GOODNESS OF FIT 

The discrete PJD has been fitted to a number of data- sets to 

which earlier the PLD has been fitted and it is found that to 

almost all these data-sets, the discrete PJD provides closer 

fits than those by the PLD. Here the fittings of the discrete 

PJD to two such data-sets have been presented in the 

following tables. The first data set is due to Kemp and 

Kemp (1965) which is regarding the distribution of mistakes 

in copying groups of random digits, the second is due to 

Beall (1940) regarding the distribution of Pyrausta nublilalis 

in 1937. 

The expected frequencies according to the discrete PLD 

have also been given in these tables for ready comparison 

with those obtained by discrete PJD. The estimates of the 

parameters have been obtained by the method of moments. 

Cochran (1952, 1954) suggested that for goodness- of- fit 

tests of unimodal distributions the minimum expected 

frequency can be as low as 1. In calculating the degrees of 

freedom (d.f) for chi-square goodness-of-fit tests, the 

expected frequencies less than 1 are combined with adjacent 

categories to get the minimum expected frequency of 1.  

Table 1: Distribution of mistakes in copying groups of 

random digits 

 
 

Table 2: Distribution of Pyrausta nublilalis in 1937 

      

 
It can be seen that the discrete PJD gives much closer fits 

than the discrete PLD and thus provides a better alternative 

to the discrete PLD for modeling different types of count 

data. 
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