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Instrumented System for the Solution of Static 

Problems on the Theory of Elasticity for a 

Multilayer Elastic Foundation  

A.G. Ovskiy 

Abstract- The article presents an instrumented system 

developed by the author on the basis of analytical methods. The 

essence of analytical methods is given in the text. The compute 

kernel of the instrumented system is represented by Maxima 

computer mathematics. Examples of instrumented system 

operation constitute the fully automated development of 

analytical solutions of static problems on the theory of elasticity 

for a multilayer elastic foundation in two-dimensional and three-

dimensional setting.  
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I. INTRODUCTION 

The developed instrumented system uses a new approach to 

the automation of solution of elasticity theory problem for 

an elastic foundation in two-dimensional and three-

dimensional setting. It is based on a combination of 

analytical and numerical methods. The method of general 

solution development with the help of simplifying symbols 

is used as the main analytical method for solution of 

elasticity theory problems. Further, symbolic integration 

methods are used – Fourier integrals, and then numerical 

integration methods – Simpson method, method of 

trapezoids, rectangles – for problems in two-dimensional 

setting, method of cells – for three-dimensional setting. 

II. MATHEMATICAL THEORY 

A. Two-Dimensional Case 

We are considering a layered elastic foundation composed 

of a number of horizontal layers with different elasticity 

characteristics. Thickness of the whole foundation is h, 

thickness and elastic constants of layers – hm, νm, Gm. m – 

layer number. An assumption is made – in the transition 

through the layer contact plane, motion and stress vectors 

vary in continuous manner. For the purpose of reducing 

notations, new notations are introduced for the sought 

quantities of motion and stress u, υ, τxy, σy: 
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Motion and stress in the first elastic foundation layer 

operating under conditions of plane-deformable sate, can be 

presented as follows: 
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where xxf i  sin),(   for 4,1i  and 

xxf i  cos),(   for 5,3,2i ; 

xxgi  cos),(   for 4,1i  and xxgi  sin),(   for 

5,3,2i ; 

Aik denotes the known functions, numerical form of 

operators L according to operation [6] for initial functions 
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functions Bik  are determined the same way as functions Aik 

from expressions of operation [6], but for initial functions: 
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i.e. it differs from Ribiere formula, where there first goes sin 

and then cos. 

Stress and motion in a random m layer of unbounded 

foundation. In case of continuity of motion and stress 

vectors in the transition through layer contact plane, they are 

determined by the formulae: 
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here, matrices *

ki
A  and *

ki
B  represent matrix product 

respectively 
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Unknown functions 
0

ku  and 
*0

ku are determined from 

boundary conditions on the plane.  

B. Three-Dimensional Case 

We are considering a layered elastic foundation composed 

of a number of horizontal layers with different elasticity 

characteristics.  
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Thickness of the whole foundation is h, thickness and elastic 

constants of layers – hm, νm, Gm. m – layer number. An 

assumption is made – in the transition through the layer 

contact plane, motion and stress vectors vary in continuous 

manner. For the purpose of reducing notations, new 

notations are introduced for the sought quantities of motion 

and stress u, υ, w, τxz, τyz, τxy,, σz, σx, σy: 
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Motion and stress in the first elastic foundation layer 

operating under conditions of stress sate, can be presented as 

follows:  
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where yxyxf i  cossin),,,(   for 7,4,1i , 

yxyxf i  sincos),,,(   for 8,5,2i , 

yxyxf i  coscos),,,(   for 9,6,3i ; 

yxyxgi  sincos),,,(   for 7,4,1i , 

yxyxgi  cossin),,,(   for 8,5,2i , 

yxyxgi  sinsin),,,(   for 9,6,3i ; 

yxyxi  sinsin),,,(   for 7,4,1i , 

yxxi  coscos),(   for 8,5,2i , 

yxyxi  sincos),,,(   for 9,6,3i ; 

yxyxi  coscos),,,(   for 7,4,1i , 

yxxi  sinsin),(   for 8,5,2i , 

yxyxi  cossin),,,(   for 9,6,3i ; 

Aik denotes the known functions, numerical form of 

operators L according to operation [6] for initial functions 
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functions Bik  are determined the same way as functions Aik 

from expressions of operation [6], but for initial functions: 
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functions Cik  for 
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functions Dik  for 
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Stress and motion in a random m layer of unbounded 

foundation. In case of continuity of motion and stress 

vectors in the transition through layer contact plane, they are 

determined by the formulae: 
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here, matrices *

ki
A  and *

ki
B  represent matrix product 

respectively 
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boundary conditions on a semispace.  

III. EXAMPLES 

The developed instrumented system performs operations of 

simplification and transfer of differential operators from 

symbolic presentation into the form of numerical series, and 

contracts the results being obtained. Rules of result 

processing depend on the parity of operators and presence of 

multiplication and division operations in the symbolic 

representation [6]. The system works with two-dimensional 

and tree-dimensional equations of the elasticity theory. 

A series of prepared operations for preprocessor are given in 

the following sequence of commands in the language of 

Maxima computer mathematics system: 

n_sloy:2$ 

U[0,2]:0$ U1[0,2]:U[0,2]$ 

U[0,3]:0$ U1[0,3]:U[0,3]$ 

Ph[3]:0$ 
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Ph[4]:1/2/%pi*p(lambda)*cos(alpha*(lambda-x))$ 

 

where n_sloy:2$ - is setting the number of layers. 

 

List 

 

U[0,2]:0$ U1[0,2]:U[0,2]$ 

U[0,3]:0$ U1[0,3]:U[0,3]$ 

 

initial functions of the problem [7]. 

A. Two-Dimensional Problem 

This is a problem on the equilibrium of two-layer elastic 

foundation under the impact of vertical evenly distributed 

load p applied along the top straight line of the foundation y 

= h. Foundation length is 
21 AA  , width is h. The segment 

under the load p  21,aa , at 
2211 AaaA  . An 

assumption is made that the foundation is located on hard 

land, and there is no friction with the land. 

For problem solution, a coordinate system shall be built, as 

it is shown in Figure 1. 

 
Figure 1: Multilayer elastic foundation, two-dimensional 

case  

On the initial line 0y  motion 
2U  and tangent stress equal 

0, in formula (2) we have to set 

0
** 0

4

0

4

0

2

0

2  uuuu . For determination of other 

unknown functions, boundary problem conditions on the top 

line y = h are used. Load p is presented in the form of 

Fourier integral: 
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We set the expressions for stress 
3U  and 

4U  from the 

boundary line y = h respectively equal to value (8) and 0, 

and we get a system of linear algebraic equations for 

determination of unknown initial functions 
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When evaluating from (9) functions 
0

iu  and )3,1(
*0 iui  

and presenting them in the form of (2), we find the stressed 

and deformed state of the semiplane. Expressions (2) are not 

integrable in primitive functions, so methods of numerical 

integration with finite bounds are used for building 

numerical solutions. Foundation boundaries A1 and A2 are 

set as finite as a computer operates a finite set of data. 

Initial data for computation: 

. 

Graphs of numerical solutions in the form of density 

functions are shown in Figure 2.  
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Figure 2: Results of solution of elasticity theory two-

dimensional problem 

B. Three-Dimensional Problem 

This is a problem on the equilibrium of two-layer elastic 

foundation under the impact of vertical evenly distributed 

load p applied along the top plane of the foundation z = h. 

Foundation length is 
21 AA  , width is 

21 BB  , height is 

h. The segments under the load p  21,aa  and  21,bb , at 

2211 AaaA   and 
2211 BbbB  . An assumption is 

made that the foundation is located on hard land, and there 

is no friction with the land. 

For problem solution, a coordinate system shall be built, as 

it is shown in Figure 3. 

 
Figure 3: Multilayer elastic foundation, three-

dimensional case 

 

For the initial plane 0z  motion 
3U  and tangent stress 

54 , UU  equal 0, so in formula (2) we have to set 

0
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and 0
****** 0
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5  uuuu . For determination of other 

unknown functions, boundary problem conditions on the top 

plane z = h are used. In the three-dimensional case, double 

integration is used; we take double Fourier integral of the 

load ),( p : 
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Further, with the help of the scheme developed by the 

author, equations are formed, wherefrom initial functions 

0

iu , )6,2,1(,,
***0**0*0 iuuu iii

 are found for zero 
0

iu  

, )5,4,3(,,
***0**0*0 iuuu iii

. On a computer, the 

computation is performed for finite bounds, because taking 

double integral of the expression (7) is a complicated task 

(integrals are not presented in known functions and can be 

calculated only in numerical terms). Such bounds are the 

variables A1 and A2, B1 and B2. 

Initial data for three-dimensional problem computation: 

 

General view of graphs for numerical three-dimensional 

problem solution is shown in Figure 4. 
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Figure 4: Results of solution of elasticity theory three-

dimensional problem 

IV. CONCLUSION 

The work describes the developed instrumented system of 

static problem solution in two-dimensional and three-

dimensional setting for an elastic multilayer foundation. It 

presents the main analytical methods used in the system for 

development of the set problem solutions. With the help of 

the developed instrumented system, it is possible to solve 

more complicated elasticity theory problems, analytical 

solutions whereof could not be previously obtained through 

analytical means by researchers. Software implementations 

of new algorithms for analytical solution development allow 

us using computers in new areas of mathematical modeling, 

where determinations of complex mathematical formulae 

are used. The instrumented system allows shifting the 

process of determining mathematical formulae of solutions 

on to a computer. It constitutes the software implementation 

of algorithms for building analytical solutions of elasticity 

theory static problems.  
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