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Chebyshev-Sinc Collocation Schemes for Solving a 

Class of Convection Diffusion Equations  

M. A. Ramadan, Talaat S. EL-Danaf, Hanem Galal 

Abstract-Tthis paper, is concerned with obtaining numerical 

solutions for a class of convection-diffusion equations (CDEs) 

with variable coefficients. Our approaches are based on 

collocation methods. These approaches implementing all four 

kinds of shifted Chebyshev polynomials in combination with 

Sinc functions to introduce an approximate solution for CDEs . 

This approximate solution can be expressed as a finite double 

summation from the product of Sinc functions and shifted 

Chebyshev polynomials. The time derivatives for all four kinds 

of shifted Chebyshev polynomials are expressed here as linear 

combinations from Chebyshev polynomials themselves. New 

formulas for the integer derivatives with respect to time t and 

space x, respectively of the unknown function with two 

variables is expressed in terms of the product of Sinc functions 

and shifted Chebyshev polynomials themselves also. Special 

attention is given to the numerical results obtained by the 

proposed approaches in order to demonstrate the accuracy and 

efficiency of the newly proposed approaches. 

Keywords: Chebyshev polynomials; Sinc functions - accuracy 

and efficiency- shifted Chebyshev polynomials. 

I. INTRODUCTION 

No one can deny that, partial differential equations have 

been the focus of many studies due to their frequent 

appearance in various applications in fluid mechanics, 

biology, physics and engineering ([3], [24]). The existence 

and uniqueness of solutions to fractional differential 

equations have been investigated in ([11], [19]). 

Consequently, considerable attention has been given to the 

solutions of time space CDEs. Diffusion equations are used 

to describe phenomena of anomalous diffusion in transport 

processes. Most partial differential equations do not have 

explicit analytical solutions, so the need to obtain 

approximate and numerical techniques is a problem of 

fundamental interest to many of authors. In the past few 

decades, several numerical methods to solve the partial 

differential equations have been studied. There are different 

numerical techniques based on spectral methods ([2], [4], 

[6], [10], [22]), finite differences methods ([13], [15], [16], 

[26], [27], [31]), operational methods [12] and some other 

approaches ([8], [9], [18], [29], [28], [30]). The authors in 

[21] introduced a new approach based on Sinc functions and 

Legendre polynomials for solving FCDEs. In this paper, 

several new approaches are introduced, these approaches are 

based on a combination of sinc functions with all four kinds 

of shifted Chebyshev polynomials.  
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The characteristic idea behind these approaches is to use the 

Sinc nodes as the space collocation points and the roots of 

all kinds of shifted Chebyshev polynomials as the time 

collocation points in order to reduce.  CDEs to those of 

solving systems of linear algebraic equations. The properties 

of shifted Chebyshev polynomials and Sinc functions are 

used to evaluate the un- known coefficients. The main 

advantage of these operational approaches is to convert 

CDEs into systems of linear algebraic equations. It not only 

simplifies the problem but also speeds up the computation.  

The main points included in this chapter are: 

1. The time derivatives of all four kinds of shifted 

Chebyshev polynomials are expressed in terms of shifted 

Chebyshev polynomials themselves also. 

2. The time derivatives at Sinc collocation points and 

the space derivatives for the unknown function u(x, t) are 

deduced in terms of shifted Chebyshev polynomials. 

In order to show the accuracy and efficiency of the proposed 

approaches, we apply the new approaches in order to obtain 

the numerical solution for the following time-space CDEs 

with variable coefficients 

𝑫𝒕
 𝟏 

𝒖 𝒙, 𝒕 + 𝒂𝟏 𝒙 𝑫𝒙
 𝟏 

𝒖 𝒙, 𝒕 + 𝒂𝟐 𝒙 𝑫𝒙
 𝟐 

𝒖 𝒙, 𝒕 

= 𝒈 𝒙, 𝒕 ,   𝒂 < 𝑥 < 𝑏,   0 ≤ 𝑡 ≤ 𝐿        1  

II.    THE PROBLEM AND ANALYTICAL SOLUTION 

The problem(1) with initial and boundary conditions as 

follows 

with initial condition 

     𝑢 𝑥, 0 = 𝑓 𝑥                                                            (2) 

and boundary conditions 

𝑢 𝑎, 𝑡 = 𝑢 𝑏, 𝑡                                                 (3) 

Such that a1 x , a2 x ,  are continuous functions. The 

structure of this paper is arranged in the following way: In 

section 2, we introduce the properties of all four kinds of 

shifted Chebyshev polynomials. In section 3, we introduce 

the fundamental relations and the description of the new 

approaches. In section4, the collocation method based on the 

proposed approaches is introduced. In section 5, numerical 

test examples for CDEs equations are given al differential 

equations, so we try to provide numerical methods to solve 

such problems. to show the accuracy and efficiency of the 

presented approaches. Finally, In section 6, the report ends 

with a brief conclusion and some remarks. 

III. PRELIMINARIES AND NOTATIONS 

The shifted Chebyshev polynomials 

The well-known shifted Chebyshev polynomials are defined 

on the interval [0, L]. We deal with all four kinds of shifted 

Chebyshev polynomials as 

follows: 
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𝟏.𝒔𝒕  Kind shifted Chebyshev polynomials. 

The explicit formulae of the 1.st kind shifted Chebyshev 

polynomials which are denoted by 𝑇𝑗
∗ 𝑡  of degree j is given 

by: 

          𝑇𝑗
∗ 𝑡 =  

 −1 𝑗−𝑘𝛤 
1

2
 𝑗 !𝛤 𝑗 +𝑘 

𝛤 𝑗  𝛤 𝑘+
1

2
  𝑗−𝑘 !𝑘!𝐿𝑘

𝑗
𝑘=0 𝑡𝑘                      (4) 

Where, 𝑇𝑗
∗ 0 =  −1 𝑗 ,      𝑇𝑗

∗ 𝐿 = 1. The orthogonality 

condition for these polynomials is: 

      𝑇𝑗
∗ 𝑡 𝑇𝑘

∗ 𝑡 𝜔 𝑡 
𝐿

0
𝑑𝑡 = 𝛿𝑗𝑘 1𝑘  ,                               (5)                                                  

where, the weight function  𝜔 𝑡 =
1

 𝐿𝑡−𝑡2
 , 1𝑘 =

𝑎𝑘

2
𝜋,

𝑤𝑖𝑡 𝑎0 = 2,     𝑎𝑘 = 1,    𝑘 ≥ 1.     
The function u(t) which belongs to the space of square 

integrable in [0, L], may be expressed in terms of shifted 

Chebyshev polynomials of the first kind as:  

 

         𝒖 𝒕 =  𝒄𝒊
∞
𝒊=𝟎 𝑻𝒊

∗ 𝒕                                                (6) 

where the coefficients 𝑐𝑖  are given by: 

            𝒄𝒊 =
𝟏

𝒉𝟏𝒊
 𝒖 𝒕 𝑻𝒊

∗ 𝒕 𝝎 𝒕  𝒅𝒕
𝑳

𝟎
,     𝒊 = 𝒐, 𝟏, 𝟐, …       

  

𝟐.𝒏𝒅  Kind shifted Chebyshev polynomials. 

The explicit formulae of the 2
nd

 kind shifted Chebyshev 

polynomials which are denoted by 𝑈𝑗
∗ 𝑡   of degree j is 

given by:  

        𝑈𝑗
∗ 𝑡 =  

 −1 𝑗−𝑘𝛤 
1

2
  𝑗 +1 !𝛤 𝑗 +𝑘+2 

𝛤 𝑗 +2 𝛤 𝑘+
3

2
  𝑗−𝑘 !𝑘!𝐿𝑘

𝑗
𝑘=0 (7)                                                 

where, 𝑈𝑗
∗ 0 = 2𝑗 −1 𝑗 ,      𝑈𝑗

∗ 𝐿 = 2𝑗.The orthogonality 

condition of these polynomials is: 

             𝑈𝑗
∗ 𝑡 𝑈𝑘

∗ 𝑡 𝜔 𝑡 
𝐿

0
𝑑𝑡 = 𝛿𝑗𝑘 2𝑘  ,                        (8) 

where, the weight function  

𝜔 𝑡 =  𝐿𝑡 − 𝑡2, 2𝑘 =
 𝑘 + 1 ! 𝛤  

1
2
 𝐿2𝛤  𝑘 +

3
2
 

𝛤  𝑘 +
3
2
  2𝑘 + 2 ! 𝑘! 𝛤 𝑘 + 2 

 . 

The function u(t) which belongs to the space of square 

integrable in [0, L], may be expressed in terms of shifted 

Chebyshev polynomials of the second kind as 

                                             𝑢 𝑡 =  𝑐𝑖
∞
𝑖=0 𝑈𝑖

∗ 𝑡 ,       
where the coefficients  𝑐𝑖  are given by: 

     𝑐𝑖 =
1

2𝑖
 𝑢 𝑡 𝑈𝑖

∗ 𝑡 𝜔 𝑡  𝑑𝑡
𝐿

0
,   𝑖 = 𝑜, 1,                  (9) 

 

𝟑.𝒓𝒅  Kind shifted Chebyshev polynomials. 

The explicit formulae of the 3
.rd

 kind shifted Chebyshev 

polynomials which are denoted 

By 𝑉𝑗
∗ 𝑡  of degree j is given by: 

  𝑉𝑗
∗ 𝑡 =  

 2𝑗  !! −1 𝑗−𝑘𝛤 𝐽 +
1

2
 𝛤 𝑗 +𝑘+1 

 2𝑗−1 !!𝛤 𝑗 +1 𝛤 𝑘+
1

2
  𝑗−𝑘 !𝑘 !𝐿𝑘

𝑗
𝑘=0 𝑡𝑘  .           (10) 

Where 

𝑉𝑗
∗ 0 =

 2𝑗 !!  −1 𝑗𝛤  𝐽 +
1
2
 

𝛤  
1
2
  2𝑗 − 1 !! 𝑗!

,

𝑉𝑗
∗ 𝐿 =

 2𝑗 !! 𝛤  𝐽 +
3
2
 

𝛤  
3
2
  2𝑗 − 1 !! 𝑗!

 .   

The orthogonality condition of these polynomials is:  

           𝑉𝑗
∗ 𝑡 𝑉𝑘

∗ 𝑡 𝜔 𝑡 
𝐿

0
𝑑𝑡 = 𝛿𝑗𝑘 3𝑘  ,                        (11) 

where, the weight function 

𝜔 𝑡 = 𝑥−0.5 𝐿 − 𝑥 0.5,3𝑘 =
 2𝑘 !!𝐿𝛤 𝑘+

3

2
 𝛤 𝑘+

1

2
 

 2𝑘−1 !! 2𝑘+1 !𝑘!𝛤 𝑘+1 
 . 

The function V (t) which belongs to the space of square 

integrable in [0, L], may be expressed in terms of shifted 

Chebyshev polynomials of the third kind as: 

𝑢 𝑡 =  𝑐𝑖

∞

𝑖=0

𝑉𝑖
∗ 𝑡 , 

where the coefficients  𝑐𝑖  are given by: 

     𝑐𝑖 =
1

3𝑖
 𝑢 𝑡 𝑉𝑖

∗ 𝑡 𝜔 𝑡  𝑑𝑡
𝐿

0
,         𝑖 = 𝑜, 1,2, …      (12) 

 

4
th

 kind shifted Chebyshev polynomials. 

The explicit formulae of the 4
.th

 kind shifted Chebyshev 

polynomials which are denoted 

By 𝑊𝑗
∗ 𝑡  of degree j is given by: 

     𝑊𝑗
∗ 𝑡 =  

 2𝑗  !! −1 𝑗−𝑘𝛤 𝑗 +
3

2
 𝛤 𝑗 +𝑘+1 

 2𝑗−1 !!𝛤 𝑗 +1 𝛤 𝑘+
3

2
  𝑗−𝑘 !𝑘 !𝐿𝑘

𝑗
𝑘=0 𝑡𝑘  .        (13) 

where,  𝑊𝑗
∗ 0 =

 2𝑗 !!  −1 𝑗 𝛤  𝐽 +
3
2
 

𝛤  
3
2
  2𝑗 − 1 !! 𝑗!

,

𝑊𝑗
∗ 𝐿 =

 2𝑗 !! 𝛤  𝐽 +
1
2
 

𝛤  
1
2
  2𝑗 − 1 !! 𝑗!

 .  

The orthogonality condition of these polynomials is:  

           𝑊𝑗
∗ 𝑡 𝑊𝑘

∗ 𝑡 𝜔 𝑡 
𝐿

0
𝑑𝑡 = 𝛿𝑗𝑘 4𝑘  ,                     (14) 

where, the weight function  
𝜔 𝑡 = 𝑥0.5 𝐿 − 𝑥 −0.5,     3𝑘

=  
 2𝑘 !! 𝐿𝛤  𝑘 +

3
2
 𝛤  𝑘 +

1
2
 

 2𝑘 − 1 !!  2𝑘 + 1 ! 𝑘! 𝛤 𝑘 + 1 
   

The function W(t) which belongs to the space of square 

integrable in [0, L], may be expressed in terms of shifted 

Chebyshev polynomials of the fourth kind as: 

𝑢 𝑡 =  𝑐𝑖

∞

𝑖=0

𝑊𝑖
∗ 𝑡 , 

where the coefficients ci are given by: 

      𝑐𝑖 =
1

4𝑖
 𝑢 𝑡 𝑊𝑖

∗ 𝑡 𝜔 𝑡  𝑑𝑡
𝐿

0
,      𝑖 = 𝑜, 1,2, …      (15) 

IV.   SINC FUNCTIONS PROPERTIES 

In this subsection, we state the main properties of Sinc 

functions which will be used here. Sinc functions are used in 

the literature to solve numerically some kinds of differential 

equations ([7], [20], [23]). The Sinc functions are defined on 

the whole real line -∞< x <∞: 

    𝑆𝑖𝑛𝑐 𝑥 =  
sin  𝜋𝑥  

𝜋𝑥
,

1,
              𝑓𝑜𝑟        𝑥≠0;

𝑓𝑜𝑟        𝑥=𝑜 .
                         (16) 

The translated Sinc functions with evenly spaced nodes are 

given 

 𝑆 𝑘,   𝑥 =

𝑆𝑖𝑛𝑐  
𝑥−𝑘


  

𝑠𝑖𝑛 
𝜋


 𝑥−𝑘  

𝜋


 𝑥−𝑘 

1,

 ,    𝑓𝑜𝑟      𝑥≠𝑘 ;
𝑓𝑜𝑟      𝑥=𝑘                               .

          (17) 

such that, h > 0 and k = 0,±1,±2, …. 

Sinc functions form an interpolating set of functions, which 

means 

 𝑆 𝑘,   𝑗 = 𝛿𝑘𝑗 =  
1,
0,

                  𝑓𝑜𝑟        𝑘=𝑗 ;
𝑓𝑜𝑟        𝑘≠𝑗 .

               (18) 

The function f(x) which is defined on the real axis such that 

h > 0, then Whittaker cardinal 

expansion of f(x) whenever this 
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series converges has the following expression 

         𝐶 𝑓,   𝑥 =  𝑓 𝑘 𝑆𝑖𝑛𝑐  
𝑥−𝑘


 ∞

𝑘=−∞               

(19) 

This approximation can be defined over the finite interval  

(0, L) which used here using the one-to-one conformal map 

     ∅ 𝑧 = ln  
𝑧

𝐿−𝑧
                                                         (20) 

which maps the eye-shaped region 

 𝐷𝐸 =  𝑧 = 𝑥 + 𝑖𝑦:  𝑎𝑟𝑔  
𝑧

𝐿−𝑧
  < 𝑑 ≤

𝜋

2
  onto the 

infinite strip 𝐷𝑠 . 

Define the range of ψ = Φ
-1

 on the real line as Γ = ψ (u)  

DE : -∞< u <∞: 

The image which corresponds to the uniform nodes defined 

on the real line  𝑘 −∞  
∞ is expressed by 

      𝑥𝑘 =
𝐿 𝑒𝑥𝑝  𝑘 

1+𝑒𝑥𝑝  𝑘 
,             𝑘 = 0, ±1, ±2, ….                (21) 

The basis functions on (0, L) are taken to be the composite 

translated Sinc functions 

   𝑆𝑘 𝑥 = 𝑆 𝑘,   𝜊 ∅ 𝑥 =  𝑆𝑖𝑛𝑐  
∅ 𝑥 −𝑘


                 (22) 

the class of functions such that the known exponential error 

estimates exist for Sinc interpolation is denoted by B(DE) 

and is defined as follows  

 

Definition 4. Let B(DE) be the class of functions F which 

are analytic in DE , satisfy 

    𝑧 𝑑𝑧 
𝜓 𝑡+𝐿 

→ 𝑜,   𝑡 → ±∞, 

Where, 𝐿 =  𝑖𝑣:  𝑣 < 𝑑 ≤
𝜋

2
   and on the boundary of 𝐷𝐸  

,denoted by  𝜕𝐷𝐸   satisfy 

𝑁 𝐹 =   𝑓 𝑧  
𝜕𝐷𝐸

< ∞. 

Interpolation for function in B( 𝐷𝐸 ) is defined in the 

following theorem which shows that Sinc interpolation on 

B(𝐷𝐸) converges exponentially, 

 

Theorem 1. If  Ǿ ∈ B 𝐷𝐸 , then for all x ∈ Γ 

 𝑓 𝑥 −  𝑓 𝑥𝑘 ∞
𝑘=−∞ 𝑆𝑘 𝑥  ≤

𝑁 𝑓Ǿ 

2𝜋𝑑 sinh
𝜋𝑑



≤

                 
2𝑁 𝑓Ǿ 

𝜋𝑑
𝑒𝑥𝑝 −𝜋𝑑      

Moreover, if 

 𝑓 𝑥  ≤ 𝐶 𝑒𝑥𝑝 −𝛽 ∅ 𝑥   ,   𝑥 ∈ 𝛤, 
for some positive constants C and B, and if the selection 

 

 =  
𝜋𝑑

𝛽𝑁
≤

2𝜋𝑑

ln 2
, 

then 

 𝑓 𝑥 −  𝑓 𝑥𝑘 

𝑁

𝑘=−𝑁

𝑆𝑘 𝑥  ≤ 𝐶2 2  𝑒𝑥𝑝 − 𝜋𝑑𝛽𝑁 ,   𝑥

∈ 𝛤, 
Where 𝐶2 depends only 𝑓, 𝑑 and 𝛽, 
The derivatives of composite Sinc functions evaluated at the 

nodes are given as follows, [14] 

 𝛿𝑘𝑗
 0 

=  𝑆 𝑘,   𝜊 ∅ 𝑥   ∣𝑥=𝑥𝑗
=  

1,
0,

      𝑓𝑜𝑟        𝑘=𝑗 ;
𝑓𝑜𝑟        𝑘≠𝑗 .

       (23) 

𝛿𝑘𝑗
 1 

=
𝑑

𝑑∅
 𝑆 𝑘,   𝜊 ∅ 𝑥   ∣𝑥=𝑥𝑗

=
1


 

1,
 −1 𝑗−𝑘

𝑗−𝑘
,
    𝑓𝑜𝑟        𝑘=𝑗 ;

𝑓𝑜𝑟        𝑘≠𝑗 .
                           

                                                                                     (24) 

 𝛿𝑘𝑗
 2𝑟 

=

1

2𝑟  

 −1 𝑟𝜋2𝑟

2𝑟+1
,                                                         𝑓𝑜𝑟  𝑘 = 𝑗

 −1 𝑗−𝑘

 𝑗−𝑘 2𝑟
 

 −1 𝑠+1 2𝑟 !

 2𝑠+1 !
𝜋2𝑠𝑟−1

𝑠=0  𝑗 − 𝑘 2𝑠 ,         𝑓𝑜𝑟 𝑘 ≠ 𝑗

                       

                                                                                          

(25)  

 𝛿𝑘𝑗
 2𝑟+1 

=
1

2𝑟+1
 

0,                                                    𝑓𝑜𝑟       𝑘 = 𝑗;

 −1 𝑗−𝑘

 𝑗 − 𝑘 2𝑟+1
 

 −1 𝑠 2𝑟 + 1 !

 2𝑠 + 1 !
𝜋2𝑠

𝑟

𝑠=0
 𝑗 − 𝑘 2𝑠 , 𝑘 ≠ 𝑗  

   

                                                                                       

(26) 

 

with r= 1,2,3 …. 
for more details on Sinc functions and its properties see 

([14], [25]). 

V. INTEGER PARTIAL DERIVATIVES FOR 

CHEBYSHEV-SINC COLLOCATION METHOD 

In this section, we are going to explain the fundamental 

relations of the different approaches which are used to solve 

CDEs (1-3) numerically and obtain their different 

collocation schemes. 

The first approach 

It is suggested that the solution u(x; t) can be approximated 

in terms of the first (n + 1) shifted Chebyshev polynomials 

of the first kind and 2m + 1 Sinc functions as follows 

          𝑢𝑚 ,𝑛 𝑥, 𝑡 =   𝑐𝑖𝑗
𝑛
𝑗 =𝑜

𝑚
𝑖=−𝑚 𝑇𝑗

∗ 𝑡 𝑆𝑖 𝑥                                                

(27) 

where, cij are the unknown Sinc-Chebyshev coefficients. 

The approximate solution in (3.27) satisfies the boundary 

conditions (3.3) since  𝑆𝑖 𝑥  is equivalent to zero when x 

tends to a and b. To express the different sorts of derivatives 

with fractional and integer orders for the unknown function 

u(x,t) in terms of shifted Chebyshev polynomials and Sinc 

functions, we introduce the following theorem. 

Theorem 2. 

Let u(x,t) be approximated by Eq.(3.27) and also suppose 

that ʋ > 0 and 𝑥𝑘  are the Sinc collocation points then, the 

following relations hold: 

 𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅    𝑐𝑘𝑗
𝑗
𝑘=1

𝑛
𝑗 =1

𝑛
𝑑=0 𝑏1𝑘𝑑 𝞷𝟏,𝟏𝑇𝑑

∗ 𝑡 ,     (28)                                    

 𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =1

𝑚
𝑖=−𝑚 𝞷𝟏,𝟐𝑇𝑗

∗ 𝑡            

(29)                                                             

 𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =1

𝑚
𝑖=−𝑚 𝞷𝟏,𝟑𝑇𝑗

∗ 𝑡           (30) 

where 

𝞷𝟏,𝟏 =
𝑗 !𝛤 0,5  −1 𝑗−𝑘𝛤 𝑗 +𝑘 𝛤 𝑘+1 

𝐿𝑘𝑘 !𝛤 𝑘+
1

2
  𝑗−𝑘 !𝛤 𝑗  𝛤 𝑘 

,     𝞷𝟏,𝟐 = Ǿ 𝑥𝑘 𝛿𝑖 ,𝑘
 1 

  

        𝞷𝟏,𝟑 =   ∅″   𝑥𝑘 𝛿𝑖 ,𝑘
 1 

+  ∅′ 𝑥𝑘  
2
𝛿𝑖 ,𝑘

 2 
  

Proof. 

  𝑫𝒕
 𝟏 

 𝒖 𝒙𝒌, 𝒕  =   𝒄𝒊𝒋𝑺𝒊 𝒙𝒌 𝑫𝒕
 𝟏 𝒏

𝒋=𝟏
𝒎
𝒊=−𝒎  𝑻𝒋

∗ 𝒕  ,   (31) 



Chebyshev-Sinc Collocation Schemes for Solving a Class of Convection Diffusion Equations  

83 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication Pvt. Ltd. 

Retrieval Number: E1851113513/2014©BEIESP 

 𝑫𝒕
 𝟏 

 𝒖 𝒙𝒌, 𝒕  ≅

   𝒄𝒊𝒋
𝒋
𝒌=𝟏

𝒏
𝒋=𝟏

𝒎
𝒊=−𝒎

𝒋!𝜞 𝟎,𝟓  −𝟏 𝒋−𝒌𝜞 𝒋+𝒌 𝜞 𝒌+𝟏 

𝑳𝒌𝒌!𝜞 𝒌+
𝟏

𝟐
  𝒋−𝒌 !𝜞 𝒋 𝜞 𝒌 

𝜹𝒊,𝒌
 𝟎 

𝒕𝒌−𝟏     (32) 

  𝑫𝒕
 𝟏 

 𝒖 𝒙𝒌, 𝒕  ≅

  𝒄𝑲𝒋
𝒋!𝜞 𝟎,𝟓  −𝟏 𝒋−𝒌𝜞 𝒋+𝒌 𝜞 𝒌+𝟏 

𝑳𝒌𝒌!𝜞 𝒌+
𝟏

𝟐
  𝒋−𝒌 !𝜞 𝒋 𝜞 𝒌 

𝒕𝒌−𝟏 
𝒋
𝒌=𝟏

𝒏
𝒋=𝟏              (33) 

Now,    𝑡𝑘−1  , can be expressed approximately in terms of 

shifted chebyshev series of the 1
,St

 kind so we have:  

    𝒕𝒌−𝟏 ≅  𝒃𝟏𝒌𝒅𝑻𝒅
∗  𝒕 ,𝑵

𝒅=𝟎                                      (34) 

where, 𝑏1𝑘𝑑   is obtained from (6) with u(t) = t
k-1

, then 𝑏1𝑘𝑑  

can be expressed by Hypergeometric functions as follows 

 𝒃𝟏𝒌𝒅 =
 −𝟏 𝒅𝑳𝒌−𝟏𝜞 𝒅+

𝟏

𝟐
 𝜞 𝒌−

𝟏

𝟐
 

𝜞 𝒅+𝟏 𝜞 𝒌 𝒉𝟏𝒅
    𝟑𝑭𝟐  

−𝒅,𝒅,𝒌−
𝟏

𝟐
;𝟏
𝟏

𝟐
,𝒌

 ,   (35) 

A combination of Eqs.(33), (34) and (35) leads to the 

desired result (28). 

𝑫𝒙
 𝟏 

 𝒖 𝒙𝒌, 𝒕  ≅

  𝒄𝒊𝒋  𝑫𝒙
 𝟏 

𝑺𝒊 𝒙𝒌  𝒏
𝒋=𝟏

𝒎
𝒊=−𝒎  𝑻𝒋

∗ 𝒕  ,                       (36) 

Which takes the form 

  𝑫𝒙
 𝟏 

 𝒖 𝒙𝒌, 𝒕  ≅

  𝒄𝒊𝒋  ∅′ 𝒙𝒌 
𝒅

𝒅∅
𝑺𝒊 𝒙𝒌  𝒏

𝒋=𝟏
𝒎
𝒊=−𝒎 𝑻𝒋

∗ 𝒕 .                  (37) 

A combination of Eqs. (36) and (37) leads to the desired 

result (29).  

    𝑫𝒙
 𝟐 

 𝒖 𝒙𝒌, 𝒕  ≅

  𝒄𝒊𝒋  𝑫𝒙
 𝟐 

𝑺𝒊 𝒙𝒌  𝒏
𝒋=𝟏

𝒎
𝒊=−𝒎  𝑻𝒋

∗ 𝒕  ,                       (38) 

 𝑫𝒙
 𝟐 

 𝒖 𝒙𝒌, 𝒕  ≅

  𝒄𝒊𝒋  ∅′′  𝒙𝒌 
𝒅

𝒅∅
𝑺𝒊 𝒙𝒌 +𝒏

𝒋=𝟏
𝒎
𝒊=−𝒎

∅′𝒙𝒌𝟐𝒅𝟐𝒅∅𝟐𝑺𝒊𝒙𝒌𝑻𝒋∗𝒕.                                (39) 

A combination of Eqs. (38) and (39) leads to the desired 

result (30).  

The second approach 

It is suggested that the solution u(x, t) can be approximated 

in terms of the first (n + 1) shifted Chebyshev polynomials 

of the second kind and 2m + 1 Sinc functions as follows 

  𝑢 𝑥, 𝑡 =   𝑐𝑖𝑗 𝑈𝑗
∗ 𝑡 𝑆𝑖 𝑥 ,𝑛

𝑗 =1
𝑚
𝑖=−𝑚                   (40) 

where,  𝑐𝑖𝑗   are the unknown Sinc-Chebyshev coefficients. 

The approximate solution in (40) satisfies the boundary 

conditions (3) since 𝑆𝑖 𝑥  is equivalent to zero when x tends 

to a and b. To express the different sorts of derivatives with 

fractional and integer orders for the unknown function u(x,t) 

in terms of shifted Chebyshev polynomials of the second 

kind and Sinc functions, we introduce the following 

theorem. 

Theorem 3. 

Let u(x,t) be approximated by Eq.( 40) and also suppose that 

ʋ  > 0 and  𝑥𝑘   are the Sinc collocation points then, the 

following relations hold:  

     𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

   𝑐𝑘𝑗
𝑗
𝑘=1

𝑛
𝑗 =1

𝑛
𝑑=0 𝑏2𝑘𝑑 𝞷𝟐,𝟏𝑈𝑑

∗ 𝑡 ,                            (41) 

     𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =0

𝑚
𝑖=−𝑚 𝞷𝟐,𝟐𝑈𝑗

∗ 𝑡 ,      (42) 

    𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =0

𝑚
𝑖=−𝑚 𝞷𝟐,𝟑𝑈𝑗

∗ 𝑡 .       (43) 

Where 

𝞷𝟏,𝟏 =
𝑗 !𝛤 0,5  −1 𝑗−𝑘𝛤 𝑗 +𝑘 𝛤 𝑘+1 

𝐿𝑘𝑘 !𝛤 𝑘+
1

2
  𝑗−𝑘 !𝛤 𝑗  𝛤 𝑘 

,      𝞷𝟏,𝟐 = Ǿ 𝑥𝑘 𝛿𝑖,𝑘
 1 

 

, 

𝞷𝟏,𝟑 =   ∅″   𝑥𝑘 𝛿𝑖,𝑘
 1 

+  ∅′ 𝑥𝑘  
2
𝛿𝑖 ,𝑘

 2 
  

Proof. 

         𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  =

  𝑐𝑖𝑗 𝑆𝑖 𝑥𝑘 𝐷𝑡
 1 𝑛

𝑗 =0
𝑚
𝑖=−𝑚  𝑈𝑗

∗ 𝑡  ,                            (44) 

𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  

≅    𝑐𝑖𝑗

𝑗

𝑘=1

𝑛

𝑗 =1

𝑚

𝑖=−𝑚

 𝑗 + 1 ! 𝛤 0,5  −1 𝑗−𝑘𝛤 𝑗 + 𝑘 + 2 𝛤 𝑘 + 1 

𝐿𝑘𝑘! 𝛤  𝑘 +
3
2
  𝑗 − 𝑘 ! 𝛤 𝑘 

𝛿𝑖 ,𝑘
 0 

𝑡𝑘−1 

                                                                                          (45) 

 𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝐾𝑗
 𝑗 +1 !𝛤 0,5  −1 𝑗−𝑘𝛤 𝑗 +𝑘+2 𝛤 𝑘+1 

𝐿𝑘𝑘 !𝛤 𝑘+
3

2
  𝑗−𝑘 !𝛤 𝑘 

𝑡𝑘−1𝑗
𝑘=1

𝑛
𝑗 =1          (46) 

Now,   𝑡𝑘−1   can be expressed approximately in terms of 

shifted chebyshev series of the 𝟐.𝒏𝒅 kind so we have: 

𝑡𝑘−1 ≅  𝑏2𝑘𝑑 𝑈𝑑
∗ 𝑡 ,

𝑁

𝑑=0

 

where, 𝑏2𝑘𝑑   is obtained from (6) with u(t)= t
k-1

, then 𝑏2𝑘𝑑  

can be expressed by Hypergeometric functions as follows 

  𝑏2𝑘𝑑 =
 −1 𝑑𝐿𝑘+1𝛤 𝑑+

3

2
 𝛤 𝑘+

1

2
 

𝛤 𝑑+1 𝛤 𝑘+2 2𝑑
   3 𝐹2  

−𝑑 ,𝑑 ,𝑘+
1

2
;1

3

2
,𝑘+2

 ,                                                 

                                                                                (48) 

A combination of Eqs.( 46), (47) and (48) leads to the 

desired result (41). 

     𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  𝐷𝑥
 1 

𝑆𝑖 𝑥𝑘  𝑛
𝑗 =0

𝑚
𝑖=−𝑚  𝑈𝑗

∗ 𝑡  ,                         

(49) 

    𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  ∅′ 𝑥𝑘 
𝑑

𝑑∅
𝑆𝑖 𝑥𝑘  𝑛

𝑗 =0
𝑚
𝑖=−𝑚 𝑈𝑗

∗ 𝑡 .                        (50) 

A combination of Eqs. (49) and (50) leads to the desired 

result (42).  

                      𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  𝐷𝑥
 2 

𝑆𝑖
𝑥𝑘 𝑛

𝑗 =1
𝑚
𝑖=−𝑚  𝑈𝑗

∗ 𝑡  ,    

                        (51) 
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𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗  ∅′′  𝑥𝑘 
𝑑

𝑑∅
𝑆𝑖 𝑥𝑘 +𝑛

𝑗 =0
𝑚
𝑖=−𝑚

∅′𝑥𝑘2𝑑2𝑑∅2𝑆𝑖𝑥𝑘𝑈𝑗∗𝑡                                   (52) 

A combination of Eqs. (51) and (52) leads to the desired 

result (43). 

The third approach 

It is suggested that the solution u(x, t) can be approximated 

in terms of the first (n + 1) shifted Chebyshev polynomials 

of the third kind and 2m + 1 Sinc functions as follows 

          𝑢 𝑥, 𝑡 =   𝑐𝑖𝑗 𝑉𝑗
∗ 𝑡 𝑆𝑖 𝑥 ,𝑛

𝑗 =1
𝑚
𝑖=−𝑚            (53) 

where,  𝑐𝑖𝑗  are the unknown Sinc-Chebyshev coefficients. 

The approximate solution in (53) satisfies the boundary 

conditions (3) since  𝑆𝑖 𝑥   is equivalent to zero when x 

tends to a and b. To express the different sorts of derivatives 

with fractional and integer orders for the unknown function 

u(x, t) in terms of shifted Chebyshev polynomials of the 

third kind and Sinc functions, we introduce the following 

theorem. 

Theorem 4. 

Let u(x,t) be approximated by Eq.(40) and also suppose that 

ʋ  > 0 and  𝑥𝑘   are the Sinc collocation points then, the 

following relations hold:  

     𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

   𝑐𝑘𝑗
𝑗
𝑘=1

𝑛
𝑗 = ʋ 

𝑛
𝑑=0 𝑏3𝑘𝑑 𝞷𝟑,𝟏𝑉𝑑

∗ 𝑡 ,                          (54) 

    𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =0

𝑚
𝑖=−𝑚 𝞷𝟑,𝟐𝑉𝑗

∗ 𝑡 ,      (55)                                                       

    𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =0

𝑚
𝑖=−𝑚 𝞷𝟑,𝟑𝑉𝑗

∗ 𝑡 .      (56) 

Where 

𝞷𝟑,𝟏 =
 2𝐽 !!  −1 𝑗−𝑘𝛤  𝐽 +

1
2
 𝛤 𝑗 + 𝑘 + 1 𝛤 𝑘 + 1 

 2𝐽 − 1 !! 𝛤  𝑘 +
1
2
 𝐿𝑘𝑘!  𝑗 − 𝑘 ! 𝛤 𝑗 + 1 𝛤 𝑘 

 

𝞷𝟑,𝟐 = Ǿ 𝑥𝑘 𝛿𝑖 ,𝑘
 1 

 

𝞷𝟑,𝟑 =   ∅″   𝑥𝑘 𝛿𝑖,𝑘
 1 

+  ∅′ 𝑥𝑘  
2
𝛿𝑖 ,𝑘

 2 
  

Proof. 

    𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  =

  𝑐𝑖𝑗 𝑆𝑖 𝑥𝑘 𝐷𝑡
 1 𝑛

𝑗 =0
𝑚
𝑖=−𝑚  𝑉𝑗

∗ 𝑡  ,                            (57) 

𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  

≅    𝑐𝑖𝑗

𝑗

𝑘=1

𝑛

𝑗 =1

𝑚

𝑖=−𝑚

 2𝐽 !!  −1 𝑗−𝑘𝛤  𝐽 +
1
2
 𝛤 𝑗 + 𝑘 + 1 𝛤 𝑘 + 1 

 2𝐽 − 1 !! 𝛤  𝑘 +
1
2
 𝐿𝑘𝑘!  𝑗 − 𝑘 ! 𝛤 𝐽 + 1 𝛤 𝑘 

𝑡𝑘−1 

                                                                                (58) 

𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝐾𝑗

 2𝐽 !! −1 𝑗−𝑘𝛤 𝐽+
1

2
 𝛤 𝑗 +𝑘+1 𝛤 𝑘+1 

 2𝐽−1 !!𝛤 𝑘+
1

2
 𝐿𝑘𝑘 ! 𝑗−𝑘 !𝛤 𝐽+1 𝛤 𝑘 

𝑡𝑘−1𝑗
𝑘=1

𝑛
𝑗 =1    (59) 

Now, 𝑡𝑘−1  can be expressed approximately in terms of 

shifted chebyshev series of the 3
,rd

 kind so we have: 

                𝑡𝑘−1 ≅  𝑏3𝑘𝑑 𝑉𝑑
∗ 𝑡 ,𝑁

𝑑=0                           (60) 

where, 𝑏3𝑘𝑑   is obtained from (12) with u(t) = t
k-1

, then 𝑏3𝑘𝑑  

can be expressed by Hypergeometric functions as follows 

 𝑏3𝑘𝑑 =
 −1 𝑑𝐿𝑘𝛤 

3

2
 𝛤 𝑑+

1

2
 𝛤 𝑘−

1

2
 

𝛤 𝑑+1 𝛤 𝑘+1 𝛤 
1

2
 3𝑑

   3 𝐹2  

−𝑑 ,𝑑 ,𝑘−
1

2
;1

1

2
,𝑘+1

 , (61) 

A combination of Eqs.( 60), (47) and (61) leads to the 

desired result (54). 

    𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  𝐷𝑥
 1 

𝑆𝑖 𝑥𝑘  𝑛
𝑗 =0

𝑚
𝑖=−𝑚  𝑉𝑗

∗ 𝑡  ,                       (62) 

𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  ∅′ 𝑥𝑘 
𝑑

𝑑∅
𝑆𝑖 𝑥𝑘  𝑛

𝑗 =0
𝑚
𝑖=−𝑚 𝑉𝑗

∗ 𝑡 .                 (63) 

A combination of Eqs. (62) and (63) leads to the desired 

result (55).  

 

  𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  𝐷𝑥
 2 

𝑆𝑖
𝑥𝑘 𝑛

𝑗 =1
𝑚
𝑖=−𝑚  𝑉𝑗

∗ 𝑡   ,(64) 

𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗  ∅′′  𝑥𝑘 
𝑑

𝑑∅
𝑆𝑖 𝑥𝑘 +𝑛

𝑗 =0
𝑚
𝑖=−𝑚

∅′𝑥𝑘2𝑑2𝑑∅2𝑆𝑖𝑥𝑘𝑉𝑗∗𝑡                                (65) 

A combination of Eqs. (64) and (65) leads to the desired 

result (56). 

The fourth approach 

It is suggested that the solution u(x, t) can be approximated 

in terms of the first (n + 1) shifted Chebyshev polynomials 

of the fourth kind and 2m + 1 Sinc functions as follows 

 

              𝑢 𝑥, 𝑡 =   𝑐𝑖𝑗 𝑊𝑗
∗ 𝑡 𝑆𝑖 𝑥 ,𝑛

𝑗 =1
𝑚
𝑖=−𝑚       (66) 

where,  cij  are the unknown Sinc-Chebyshev coefficients. 

The approximate solution in (66) satisfies the boundary 

conditions (3) since  Si x   is equivalent to zero when x 

tends to a and b. To express the different sorts of derivatives 

with fractional and integer orders for the unknown function 

u(x, t) in terms of shifted Chebyshev polynomials of the 

fourth kind and Sinc functions, we introduce the following 

theorem. 

Theorem 5. 

Let u(x , t) be approximated by Eq.( 66) and also suppose 

that xk   are the Sinc collocation points then, the following 

relations hold:  

𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅    𝑐𝑘𝑗
𝑗
𝑘=1

𝑛
𝑗 =1

𝑛
𝑑=0 𝑏4𝑘𝑑 𝞷𝟒,𝟏𝑊𝑑

∗ 𝑡 ,                                      

                                                                                (67) 

     𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =0

𝑚
𝑖=−𝑚 𝞷𝟒,𝟐𝑊𝑗

∗ 𝑡 ,              (68) 

     𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗
𝑛
𝑗 =0

𝑚
𝑖=−𝑚 𝞷𝟒,𝟑𝑊𝑗

∗ 𝑡 .    (69) 

Where 
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𝞷𝟒,𝟏 =
 2𝑗 !!  −1 𝑗−𝑘𝛤  𝑗 +

3
2
 𝛤 𝑗 + 𝑘 + 1 𝛤 𝑘 + 1 

 2𝑗 − 1 !! 𝛤  𝑘 +
3
2
 𝐿𝑘𝑘!  𝑗 − 𝑘 ! 𝛤 𝑗 + 1 𝛤 𝑘 

 

                                   𝞷𝟒,𝟐 =  Ǿ 𝑥𝑘 𝛿𝑖 ,𝑘
 1 

 

    𝞷𝟒,𝟑 =   ∅″   𝑥𝑘 𝛿𝑖 ,𝑘
 1 

+  ∅′ 𝑥𝑘  
2
𝛿𝑖 ,𝑘

 2 
  

Proof. 

 𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  =   𝑐𝑖𝑗 𝑆𝑖 𝑥𝑘 𝐷𝑡
 1 𝑛

𝑗 =0
𝑚
𝑖=−𝑚  𝑊𝑗

∗ 𝑡     (70) 

𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  

≅    𝑐𝑖𝑗

𝑗

𝑘=1

𝑛

𝑗 =1

𝑚

𝑖=−𝑚

 2𝑗 !!  −1 𝑗−𝑘𝛤  𝑗 +
3
2
 𝛤 𝑗 + 𝑘 + 1 𝛤 𝑘 + 1 

 2𝑗 − 1 !! 𝛤  𝑘 +
3
2
 𝐿𝑘𝑘!  𝑗 − 𝑘 ! 𝛤 𝑗 + 1 𝛤 𝑘 

𝑡𝑘−1 

 (71) 

𝐷𝑡
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝐾𝑗

 2𝐽 !! −1 𝑗−𝑘𝛤 𝐽+
3

2
 𝛤 𝑗 +𝑘+1 𝛤 𝑘+1 

 2𝐽−1 !!𝛤 𝑘+
3

2
 𝐿𝑘𝑘 ! 𝑗−𝑘 !𝛤 𝐽+1 𝛤 𝑘 

𝑡𝑘−1𝑗
𝑘=1

𝑛
𝑗 =1    (72) 

Now,   𝑡𝑘−1   can be expressed approximately in terms of 

shifted chebyshev series of the 4
,th

 kind so we have: 

            𝑡𝑘−1 ≅  𝑏4𝑘𝑑 𝑊𝑑
∗ 𝑡 ,𝑁

𝑑=0                             (73) 

where, 𝑏4𝑘𝑑   is obtained from (15) with u(t) = t
k-1

, then 𝑏4𝑘𝑑  

can be expressed by Hypergeometric functions as follows 

𝑏4𝑘𝑑 =
 −1 𝑑𝐿𝑘𝛤 

1

2
 𝛤 𝑑+

3

2
 𝛤 𝑘+

1

2
 

𝛤 𝑑+1 𝛤 𝑘+1 𝛤 
3

2
 4𝑑

   3 𝐹2  

−𝑑 ,𝑑 ,𝑘+
1

2
;1

3

2
,𝑘+1

 ,  (74) 

A combination of Eqs.(72), (73) and (74) leads to the 

desired result (67). 

 𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  𝐷𝑥
 1 

𝑆𝑖 𝑥𝑘  𝑛
𝑗 =0

𝑚
𝑖=−𝑚  𝑊𝑗

∗ 𝑡  ,                    (75) 

             

𝐷𝑥
 1 

 𝑢 𝑥𝑘 , 𝑡  ≅

  𝑐𝑖𝑗  ∅′ 𝑥𝑘 
𝑑

𝑑∅
𝑆𝑖 𝑥𝑘  𝑛

𝑗 =0
𝑚
𝑖=−𝑚 𝑊𝑗

∗ 𝑡 .              (76) 

A combination of Eqs. (75) and (76) leads to the desired 

result (68).  

  𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  ≅   𝑐𝑖𝑗  𝐷𝑥
 2 

𝑆𝑖
𝑥𝑘 𝑛

𝑗 =1
𝑚
𝑖=−𝑚  𝑊𝑗

∗ 𝑡  ,     

(77) 

𝐷𝑥
 2 

 𝑢 𝑥𝑘 , 𝑡  

≅   𝑐𝑖𝑗  ∅′′  𝑥𝑘 
𝑑

𝑑∅
𝑆𝑖 𝑥𝑘 

𝑛

𝑗 =0

𝑚

𝑖=−𝑚

+   ∅′ 𝑥𝑘  
2 𝑑2

𝑑∅2
𝑆𝑖 𝑥𝑘   𝑊𝑗

∗ 𝑡 (3.78) 

A combination of Eqs. (77) and (78) leads to the desired 

result (69). 

 

 

 

 

 

VI.  THE COLLOCATION SCHEME FOR EQS. (1-3) 

USING THE  𝟏.𝐬𝐭 OR 𝟐.𝐧𝐝 OR 𝟑.𝐫𝐝 OR 𝟒.𝐭𝐡 

APPROACHES 

The collocation scheme defined here is obtained using the 

Sinc collocation points   𝑥𝑘  and the 

roots of shifted Chebyshev polynomials 𝐶𝑛+1
∗  𝑡   which 

may be 𝑇𝑛+1
∗  𝑡  , 𝑈𝑛+1

∗  𝑡  , 𝑉𝑛+1
∗  𝑡  𝑎𝑛𝑑 𝑊𝑛+1

∗  𝑡  𝑤𝑖𝑐 . 
which are denoted by  

Substitute by Eq.(27) or Eq.( 40) or Eq.(53) or Eq.(66) into 

Eq.( 1) and using Eqs.( 28-30) from Theorem 1 or Eqs.( 41-

43) from Theorem 2 or Eqs.(54-56) from Theorem 3 or 

Eqs.( 67- 69) from Theorem 4 gives: 

   𝑐𝑘𝑗

𝑗

𝑘=1

𝑛

𝑗 =1

𝑛

𝑑=0

𝑏𝑟𝑘𝑑 𝞷𝟏,𝟏𝐶𝑑
∗  𝑡𝑠 

+ 𝑎1 𝑥𝑘   𝑐𝑖𝑗 𝞷𝟏,𝟐𝐶𝑗
∗ 𝑡𝑠 

𝑛

𝑗 =1

𝑚

𝑖=−𝑚

+              𝑎2 𝑥𝑘   𝑐𝑖𝑗 𝞷𝟏,𝟑𝐶𝑗
∗ 𝑡𝑠  

𝑛

𝑗 =1

𝑚

𝑖=−𝑚

= 𝑔 𝑥𝑘 , 𝑡𝑠 ,     

                                                𝑘 = −𝑚, … , 𝑚, 𝑠 =

1, … , 𝑛,   𝑟 = 1, … ,4                                                   (79) 

Also, substitute by Eq.(27) or Eq.(40 ) or Eq.(66) into      

Eq.( 2) gives 

    𝑐𝑖𝑗 𝐶𝑗
∗ 0 𝑆𝑖 𝑥 = 𝑓 𝑥  𝑛

𝑗 =0
𝑚
𝑖=−𝑚                    (80) 

Collocate Eq.(80) at 2𝑚 + 1  sinec collocation points 𝑥𝑘  

gives 

 𝑐𝑘𝑗 𝐶𝑗
∗ 0 = 𝑓 𝑥𝑘  ,𝑛

𝑗 =0       𝑘 = −𝑚, … , 𝑚,        (81) 

Solving the system of (𝑛 + 1)(2𝑚 + 1)  linear algebraic 

equations Eqs.(97-81) gives the unknown coefficients 𝑐𝑖𝑗  

directly, the approximate numerical solution 𝑢𝑚 ,𝑛(𝑥, 𝑡) 

gives in Eq.( 27) can be calculated. 

VII. NUMERICAL TEST EXAMPLES 

In order to illustrate the effectiveness of the proposed 

method , we implement it to solve the following test 

examples. In all examples, we choose 𝛽 = 1 𝑎𝑛𝑑 𝑑 =
𝜋

2
 𝑡𝑒𝑛  =

𝜋

 2𝑁
 . 

Example 1 : 

Consider the following time-partial diffusion equation  

  𝐷𝑡
 1 

𝑢 𝑥, 𝑡 − 𝐷𝑥
 2 

𝑢 𝑥, 𝑡 = 𝑔 𝑥, 𝑡 , 0 < 𝑥 < 1,      

   0 ≤ 𝑡 ≤ 1,                                                                (82)          

Where , 

𝑔 𝑥, 𝑡 =
2

𝛤 3 − ʋ 
𝑡2−ʋ sin 2𝜋𝑥 + 4𝜋2𝑡2 sin 2𝜋𝑥 . 

with initial condition 

                                    𝑢 𝑥, 0 =0,                               (83) 

and boundary conditions 

                                 𝑢 0, 𝑡 = 𝑢 1, 𝑡 =0.              (84) 

The exact solution for this problem is 

𝑢 𝑥, 𝑡 = 𝑡2 sin 2𝜋𝑥 . 
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Figure 1. Plot of the 3D solution u(x, t) at m = 6, n = 3 

using the first approach 

 

Figure 2. Plot of the 3D solution u(x, t) at m = 6, n = 3 

using the second approach 

 

Figure 3. Plot of the 3D solution u(x, t) at m = 6, n = 3 

using the third approach 

 

Figure 4. Plot of the absolute error at m = 6, n = 3 using 

the fourth approach 

 

Figure 5. Plot of the truncated solution u(x) with m = 6; 

n = 3 at t = 0:2; 0:4; 0:6; 0:8 using the 1.st, 2.nd, 3.rd and 

4.th approaches from left to right, respectively 

Example 2: 

Consider the following initial boundary value problem of 

partial differential equation 

𝑫𝒕
 𝟏 

𝒖 𝒙, 𝒕 + 𝑫𝒙
 𝟏 

𝒖 𝒙, 𝒕 + 𝑫𝒙
 𝟐 

𝒖 𝒙, 𝒕 = 𝟐𝒕 +

   𝟐𝒙𝟐 + 𝟐, 𝟎 < 𝑥 < 1, 0 ≤ 𝑡 ≤ 1, 𝟎 < 𝜐 ≤ 1       (85) 

With initial condition 

   𝒖 𝒙, 𝟎 = 𝒙𝟐                                                    (86)  

and boundary conditions 

   𝒖 𝟎, 𝒕 = 𝟐
𝚪(𝟐)

𝚪(𝟑)
𝒕𝟐 ,     𝒖 𝟏, 𝒕 = 𝟏 + 𝟐

𝚪(𝟐)

𝚪(𝟑)
𝒕𝟐 (87) 

The exact solution for this problem is 

 𝒖 𝒙, 𝒕 = 𝒙𝟐 + 𝟐
𝚪(𝟐)

𝚪(𝟑)
 𝒕𝟐 

Reformulate this problem by using the following 

transformation: 

 𝒗 𝒙, 𝒕 = 𝒖 𝒙, 𝒕 − 𝒙𝟐 + 𝟐
𝚪(𝟐)

𝚪(𝟑)
 𝒕𝟐 

Gives 

𝑫𝒕
 𝟏 

𝒗 𝒙, 𝒕 + 𝒙𝑫𝒙
 𝟏 

𝒖 𝒙, 𝒕 + 𝑫𝒙
 𝟐 

𝒗 𝒙, 𝒕 = 

                     𝟐𝒙𝟐 − 𝒙 + 𝟐                                                  (88)         

With initial condition 

 𝒗 𝒙, 𝟎 = 𝒙𝟐 − 𝒙                                               (89) 

and boundary conditions 

 𝒗 𝟎, 𝒕 = 𝒗 𝟏, 𝒕 = 𝟎                                         (90) 

 

Figure 6.  Plot of the exact solution and the truncated 

solution u(x, t) with m = 30, n = 3 using the 1.st, 2.nd, 

3.rd and 4.th approaches from left to right, respectively 

VIII. CONCLUTION 

In this paper, we develop accurate and efficiency approaches 

based on Sinc functions and all four kinds of shifted 

Chebyshev polynomials. These approaches are used to 

transform every CDEs equation with variable coefficients to 

a system of linear algebraic equations. From the numerical 

test examples, it is clear that the numerical solutions 

obtained from these approaches are in excellent agreement 

with the exact solutions. For the future work, the application 

of these approaches will be given to solve numerically 

initial-boundary nonlinear partial differential equations. 
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