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Abstract— In this article, we derive Bayesian stimations of three 

parameters and some survival time parameters e.g. reliability and 

hazard functions in the modified Weibull distribution based on 

combined hybrid censored data. Finally, a real life data set and 

simulation data are used to illustrate the discussed methodology.  

Index Terms— Bayesian estimation; modified Weibull 

distribution; order statistics; combined hybrid censored data. 

I. INTRODUCTION 

Type-I and Type-II censoring schemes are the two most 

popular censoring schemes which are used in practice. The 

mixture of Type-I and Type-II censoring schemes has been 

discussed in the literature for this purpose, is known as the 

hybrid censoring scheme which was first introduced by 

Epstein (1954). But recently it becomes quite popular in the 

reliability and life-testing experiments, see for example 

Fairbanks et al. (1982), Draper and Guttman (1987), Chen 

and Bhattacharya (1988), Jeong et al.(1996), Childs et al. 

(2003) and Gupta and Kundu (2006). Huang and Yang (2010) 

considered a combined hybrid censoring sampling (HCS) 

scheme which define as follows. Fix k , r  n,1,2,  and 

1T , 2T  )(0,  such rk <  and 21 < TT . Let 
*T  denote 

the terminating time of the experiment. If the k th failure 

occurs before time 1T , the experiment terminates at 

},{min 1: TX nr . And if the k th failure occurs between 1T  

and 2T , the experiment is terminated at nkX :  and finally if 

the k th failure occurs after time 2T , then the experiment 

terminates at 2T . For our later convenience, we abbreviate 

this scheme as combined HCS ),;,( 21 TTrk . In fact, this 

system contains the following six cases, and obviously, in 

each case some part of data are unobservable, 

(1) For nknrnk XTXTXT :

*

:2:1 =),<(<<<0 , 

(2) For nknrnk XTTXXT :

*

2::1 =),<(<<<0 , 

(3) For 2

*

::21 =),<(<<<0 TTXXTT nrnk , 
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(4) For 
nrnrnk XTTTXX :

*

21:: =),<(<<<0 , 

 

(5) For 
1

*

2:1: =),<(<<<0 TTTXTX nrnk
, 

(6) For 
1

*

:21: =),<(<<<0 TTXTTX nrnk
, 

where the data in parentheses are unobservable. 

Let jD  denote the number of failures until 

1,2,=, jTj obviously 21 DD  . Then, the likelihood 

function of this combined HCS is given as follows:  
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(1) 

where the parameter   may be a real vector. 

In this paper, we obtain estimation based on combined HCS 

for the three unknown parameter of the modified Weibull 

(MW) distribution, as well as the survival time parameters. 

Section 2 contains some preliminaries. In Section 3, the Bayes 

estimators of the parameters, the reliability and hazard 

functions are derived. A real life data set and simulation data 

results, and data analysis are provided in Sections 4 and 5, 

respectively. 

II. PRELIMINARIES 

Suppose the lifetime random variable X  has the MW 

distribution, suggested by Sarhan and Zaindin (2009), with 

the following probability density function (pdf)  

    0,>,exp=)( 1 xxxxxf      (2) 

 and cumulative distribution function (cdf) is  

  0,>,exp1=)( xxxxF    (3) 

 where 0  is a scale parameter, while 0  and 0>  

are shape parameters such that 0>  . 

It is easy to write at mission time t  for MW distribution, the 

reliability and hazard functions )(tR  and )(tH , 

respectively, as  

  0,>,exp=)( ttttR    (4) 

 and  

0.>,=)( 1 tttH  
 (5) 
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It is very well known that MW distribution generalized 

exponential distribution (when 0= ), Rayleigh 

distribution (when 0=  and 2= ), linear exponential 

distribution (when 2=  and /2=  , 0> ) and 

Weibull distribution (when 0= ). 

Note that Equation (1) can be combined and they can be 

written as the following two cases. The likelihood function in 

Case I is given by 

 where ),...,,(= 21
j

D
j

D xxxx ; 

,<<...<0 1
1

1
1

 DD xTx  

1,....,==,= 211

* rkDDTT  for 1=j , 

,<<...<0 1
2

2
2

 DD xTx  

21212

* 1;0,..,=1;0,..,=,= DDkDkDTT   for 

2=j . 

The following relation will be used throughout this paper: If 

Nn  and N  is the set of natural numbers, then  

  ),,(=)(
0=1=

 nZ j

jjn
n

j

i
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   (8) 

 where for 0=j , 1=),(0  n  and for nj 1 ,  
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III. BAYESIAN ESTIMATION 

We obtain Bayes estimators of  ,  ,  , )(tR  and )(tH  

based on the observation given in Section 2. By using 

Equations (2), (3) and expression (8) in Equations (6) and (7), 

we can obtain the likelihood function in Case I as follows  

 

)},((1){exp),(
)!(
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=)|,,( 11
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 where ),(  j  is given by (9), 
1=)(  ii xZ  and  

,)(=)(
1=

1
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  (11) 

 and for Case II, it is given by  
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 where 
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jj xTDn   (13) 

 

Estimation of the parameters when   is known 

Under the assumption that the parameters   and   are 

unknown and independent, we can use the joint prior density 

function, suggested by Al-Hussaini et al. (2000), that is given 

by  

  0,>0,>,)(exp=),( 2121    (14) 

 where 
1  and 

2  are positive constants. 

Then, from (10), (12) and (14), the joint posterior density 

function of   and   in Case I is given by 
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 and for Case II, it is given by  
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 where 
1J  and 

2J  are the normalizing constants satisfying 
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 Therefore, the estimations of the parameters   and   in 

Cases I are given, respectively, by  

.
,1,1),(
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From (4), (5), (15) and (16), the Bayes estimators for the 

reliability function )(tR  and the hazard function )(tH  are 

given, respectively, by 

  ,
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Putting 1=  and 

, nj 0,1,...,=  in this subsection, yields Bayesian 

estimators from exponential distribution with parameter 

  . Setting 0= , 1=,0)(0 n  and 0=,0)(nj , 

nj 1,...,=  Bayesian estimators from shifted exponential 

distribution can be obtained. Moreover, putting 2=  and 

/2=  , 0> , we obtain Bayesian estimators from linear 

exponential distribution with parameters   and  , where  
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 Similarly, the Bayes estimators for  ,  , )(tR  and )(tH  

in Cases II are obtained, if 1J  is replaced by 2J  in Equations 

(19), (20) and (21), respectively. 

Estimation of the parameters , 

  and   
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In this case, we note that a conjugate family of continuous 

joint prior does not exist, so we use the Soland’s method. 

Soland (1969) considered a family of joint prior distributions 

that places continuous distributions on the scale parameter 

and discrete distributions on the shape parameter. We assume 

that the parameter   has a discrete distribution 

ii  =)=(Pr , 1=ii



 for ki 1,...,=  and suppose 

that   and   given i =  have natural conjugate prior 

gamma distribution with density function given by  

 

  0,>0,>,)(exp=)=|,( **  iiiii 

 (22) 

 where i  and 
*

i  are chosen so as to reflect prior beliefs on 

  and   given i = . Then, from (10) and (22), the 

conditional posterior density function of   and   in Case I 

is given by 
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 and for Case II, from (12) and (22), it is given by  
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On applying the discrete version of Bayes’ theorem, the 

marginal posterior probability distribution of j  is given by  
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where
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The Bayes estimators for the parameters  ,   and  , 

using the posterior pdfs (23),(24) and (25), in Cases I, is given 

by  
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Similarly, the Bayes estimators )(
~

tR  and )(
~

tH  of the 

reliability and hazard functions )(tR  and )(tH  are given, 

respectively, by  
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An alternative method for obtaining the values i  and 
*

i  

can be based on the expected value of the reliability function 

R(t) conditional on i = , which is given by  
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 (30) 

Thus, the values of i  and 
*

i  can be obtained numerically 

for each value i  and for two prior probabilities values 

)=( 1ttR  and )=( 2ttR . Martz and Waller (1982, p. 105) 

have discussed, an alternative method when there are no prior 

beliefs. A nonparametric procedure can be used to estimate 

the corresponding two different values of )(tR . 

IV. NUMERICAL RESULTS 

Now, we consider a real life data set which given in Nelson 

(1982) to illustrate the methods proposed in the previous 

sections. These data which was also used in Lawless (1982, p. 

185), concerning the data on time to breakdown of an 

insulating fluid between electrodes at a voltage of 34 kV 

(minutes). The 19 times to breakdown are contained in the 

sample (*)   

 

When scale and shape parameters are unknown, using gamma 

prior for   and   and a discrete prior (Soland’s method) for 

the shape parameter  . The hyperparameters i  and 
*

i  of 

the gamma prior (1,.)  and the values of i  can be 

obtained by the following steps: 

1.  Based on the real data set (*)  of size 19=n , using a 

nonparametric procedure 

0.25)0.625)/((=)=( :  njnXtR njj

, nj 1,2,...,=  to estimate two 

0.190   0.780   0.960   1.310   2.780   

3.160    4.150   4.670   4.850   6.500  

7.350   8.010    8.270   12.060   31.750   

32.520    33.910   36.710   72.892    
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values of the reliability function for any two different times 
1t  

and 2t , see Martz and Waller (1982, p. 105). If we choose 

50)(0.780,4.8=),( 21 tt , then 

04)(0.916,0.6=))(),(( 21 tRtR . 

2.  Let i  takes the values 0.1(0.1)1  , 50.6(0.1)1.  and 

1.1(0.1)2 , using step 1 and Eq. (30), then the values of i  

and 
*

i  for each value i , 1,...,10=i , can be obtained 

numerically (Newton-Raphson method). The values of the 

hyperparameters and the posterior mass function derived for 

each i  are presented in Table 1. By using the results in 

Subsection 3.2, the Bayes estimates of  ,  ,  , )(tR , 

and )(tH  are computed and the results are displayed in 

Tables 2 and 3 in Cases I and II, respectively. 

Table 1: Values of hyperparameter ),( *

ii  , i   

and the posterior probabilities iP  for each i . 

i    i    i   
i  

*

i  iP  

1    0.1    0.1   6.258  46.202  0.015  

2    0.1    0.2   6.340  44.355  0.032  

3    0.1    0.3   6.447  42.445  0.051  

4    0.1    0.4   6.588  40.458  0.072  

5    0.1    0.5   6.776  38.384  0.096  

6    0.1    1.6   7.034  36.212  0.122  

7    0.1    0.7   7.391  33.933  0.149  

8    0.1    0.8   7.902  31.546  0.168  

9    0.1    0.9   8.659  29.056  0.165  

10   0.1    1.0   9.838  26.487  0.131  

        

1    0.1    0.6   13.11 24.667  0.430  

2    0.1    0.7   10.64  42.110  0.221  

3    0.1    0.8   9.846  60.189  0.127  

4    0.1    0.9   9.433  80.415  0.079  

5    0.1    1.0   9.179  103.474  0.051  

6    0.1    1.1  9.009  129.976  0.034  

7    0.1    1.2   8.888  160.563  0.023  

8    0.1    1.3   8.799  195.959  0.016  

9    0.1    1.4   8.732  236.992  0.011  

10   0.1    1.5   8.679  284.622  0.008  

        

1    0.1    1.1  9.101  129.976  0.211  

2    0.1    1.2   8.487  160.563  0.168  

3    0.1    1.3   8.479  195.959  0.136  

4    0.1    1.4   8.475  236.992  0.112  

5    0.1    1.5   8.473  284.622  0.092  

6    0.1    1.6   8.471  339.961  0.077  

7    0.1    1.7   8.469  404.309  0.065  

8    0.1    1.8   8.467  479.173  0.054  

9    0.1    1.9   8.466  566.317  0.045  

10   0.1    2.0   8.465  667.793  0.038  

 

 Table 2: Estimates of  ,  , )(tR  and )(tH  when the 

experiment terminate at 
19:

* = kXT  or 
19:

* = rXT . 

k  i  ~  
~

 
~

 )(
~

tR  )(
~

tH  

8  0.1(0.1)1  0.084  0.042  0.718  0.113  0.872  

10   0.085  0.041  0.719  0.114  0.872  

12   0.091  0.041  0.723  0.119  0.867  

8  50.6(0.1)1.  0.070  0.036  0.920  0.115  0.891  

10   0.078  0.027  0.927  0.110  0.885  

12   0.077  0.026  0.935  0.114  0.882  

8  1.1(0.1)2  0.074  0.029  1.320  0.113  0.893  

10   0.080  0.030  1.332  0.122  0.881  

12   0.074  0.027  1.327  0.111  0.895  

r  

14  0.1(0.1)1  0.086  0.040  0.719  0.114  0.872  

16   0.051  0.042  0.684  0.079  0.904  

18   0.057  0.040  0.691  0.084  0.900  

14  50.6(0.1)1.  0.082  0.033  0.876  0.088  0.890  

16   0.069  0.019  0.904  0.080  0.842  

18   0.071  0.022  0.927  0.092  0.927  

14  1.1(0.1)2  0.073  0.024  1.322  0.106  0.898  

16   0.050  0.015  1.234  0.069  0.931  

18   0.053  0.016  1.249  0.073  0.929  

 Example 2 (simulated data) 

In this example, a simulation study was conducted to illustrate 

our results in Section 3 and to compare the performance of the 

presented Bayes estimators in different situations. 

(The case of known  ) 

By choosing the values of the hyperparameters 

(0.5,0.25)=),( 21   we generate the values 

49)(0.499,0.2=),(   from )(1, i , 1,2=i . Using 

these generated values with 1.5,2=  and 3 , we generate 

random samples of size n  from the MW pdf in (2). The 

Bayes estimates of  ,  , )(tR , and )(tH  are computed 

through (19)  (21). This process are repeated 1000  times, 

and the mean square error (MSE) was calculated. The results 

are presented in Tables 4 and 5. 

 

 Table 3: Estimates of  ,  , )(tR  and )(tH  when the 

experiment terminate at 1

* = TT  or 2

* = TT . 

1T  i  ~  
~

 
~

 )(
~

tR  )(
~

tH  

8  0.1(0.1)1  0.102  0.057  0.834  0.149  0.841  

8.2   0.113  0.057  0.834  0.159  0.832  

10   0.106  0.056  0.835  0.153  0.838  

8  
50.6(0.1)1.

 
0.071  0.053  1.078  0.129  0.872  
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8.2   0.076  0.054  1.095  0.136  0.867  

10   0.074  0.053  1.082  0.132  0.870  

8  1.1(0.1)2  0.070  0.035  1.388  0.119  0.890  

8.2   0.074  0.037  1.355  0.125  0.885  

10   0.073  0.035  1.333  0.121  0.888  

   2T  

20  0.1(0.1)1  0.063  0.058  0.820  0.110  0.877  

32   0.041  0.063  0.790  0.090  0.894  

40   0.051  0.058  0.814  0.079  0.889  

20  
50.6(0.1)1.

 
0.053  0.050  0.975  0.102  0.894  

32   0.037  0.061  0.870  0.089  0.901  

40   0.045  0.050  0.939  0.092  0.902  

20  1.1(0.1)2  0.059  0.024  1.238  0.089  0.913  

32   0.049  0.017  1.207  0.069  0.930  

40   0.053  0.018  1.224  0.076  0.925  

Table 4: MSEs of the estimates of  ,  , )(tR  and 

)(tH  of case I. 

   

   k    ~  
~

 )(
~

tR  )(
~

tH  

1.5   8    0.030   0.133    0.080    0.231   

  10    0.024   0.100    0.078    0.158   

  12    0.019   0.079    0.077    0.113   

2   8    0.040   0.506    0.081    2.527   

  10    0.038   0.291    0.080    1.445   

  12    0.037   0.154    0.080    0.750   

3   8    0.049   0.751    0.089    3.897   

  10    0.040   0.423    0.089    2.165   

  12    0.038   0.161    0.088    1.934   

 r      

1.5   14  0.018   0.068    0.076    0.087   

  16  0.017   0.057    0.076    0.066   

  18  0.017   0.053    0.076    0.062   

2   14  0.037   0.089    0.080    0.425   

  16  0.036   0.060    0.080    0.356   

  18  0.036   0.055    0.079    0.255   

3   14  0.037   0.106    0.088    1.436   

  16  0.031   0.093    0.087    1.252   

  18  0.016   0.078    0.061    0.790   

(The case of unknown ,   and  ) 

Based on Soland’s method and the values of the parameter   

which used in the generation of previous samples, the values 

of 1.5,2=  and 3  are chosen as 0.5(1)1.4  , 1.5(2)2.4  

and 2.5(3)3.4 , respectively, each with probability 0.1. By 

using the same procedure in Example 1, we obtained the 

values of the hyperparameters i  and 
*

i  for a given values 

of ,101,2,=, ii . Based on the above combined HCS 

schemes, using the results presented earlier in Subsection 3.2, 

the Bayes estimates of  ,  ,  , )(tR  and )(tH  are 

computed. The MSEs of Bayes estimates are presented in 

Tables 6 and 7. 

Table 5: MSEs of the estimates of  ,  , )(tR  and 

)(tH  of case II. 

   

  
1T  ~  

~
 )(

~
tR  )(

~
tH  

1.5  0.5  0.030  0.179  0.081  0.315  

 0.6  0.024  0.146  0.079  0.244  

 0.7  0.020  0.120  0.078  0.187  

2  0.5  0.032  0.185  0.081  0.328  

 0.6  0.024  0.148  0.080  0.245  

 0.7  0.020  0.122  0.079  0.190  

3  0.5  0.091  5.151  0.109  7.926  

 0.6  0.070  2.532  0.096  4.566  

 0.7  0.052  1.249  0.086  2.652  

 
2T      

1.5  0.8  0.024  0.111  0.078  0.168  

 0.9  0.017  0.097  0.077  0.138  

 1.0  0.012  0.096  0.077  0.137  

2  0.8  0.028  0.115  0.078  0.175  

 0.9  0.018  0.096  0.077  0.137  

 1.0  0.017  0.091  0.077  0.129  

3  0.8  0.045  0.589  0.081  1.436  

 0.9  0.043  0.394  0.080  1.252  

 1.0  0.042  0.200  0.080  1.190  
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Table 6: MSEs of the estimates of  ,  ,  , )(tR  and 

)(tH  of case I. 

 

V. CONCLUSION 

In this paper, we have considered the Bayesian approaches to 

estimate the three unknown parameters as well as the 

reliability and hazard functions for MW distribution, based on 

combined HCS. From the results, we observe the following:   

1.  It may be noted from the results in all the tables that the 

MSEs for Bayes method decrease with decrease  .  

2.  Tables 4-7 show that the MSEs for Bayes method 

decreases with increasing k , r , 1T  and 2T .  

 3.  One of the useful results of our work is the use Equation 

(8) which gives a closed form expression for results in 

estimating.  

 4.  It is seen for the case of the unknown shape and scale 

parameters that a discrete distribution for the shape parameter 

  give a closed form expression for the posterior pdf. Also, 

the equal probabilities chosen in the discrete distributions 

caused an element of uncertainty, which can be desirable in 

some cases.  

 

 

 

 

 

 

 

 

 

Table 7: MSEs of the estimate of ,  ,  , )(tR  and of 

)(tH  case II. 
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1T   i   ~  
~

 
~

 )(
~

tR  )(
~

tH  

0.5  0.1(0.1)1    0.031    0.083    0.004    0.069    0.228  

0.6  
  

 0.028    0.078    0.004    0.061    0.199  

0.7  
  

 0.026    0.071    0.003    0.053    0.142  

0.5  41.5(0.1)2.
  

 0.044    0.098    0.004    0.072    0.237  

0.6  
  

 0.029    0.088    0.004    0.066    0.211  

0.7  
  

 0.027    0.070    0.003    0.061    0.184  

0.5  42.5(0.1)3.
  

 0.051    0.099    0.007    0.090    0.421  

0.6  
  

 0.043    0.099    0.005    0.083    0.361  

0.7  
  

 0.038    0.098    0.004    0.081    0.331  

  2T  

0.8  0.1(0.1)1    0.025    0.062    0.002    0.050    0.135  

0.9  
  

 0.022    0.056    0.001    0.048    0.099  

1.0  
  

 0.018    0.051    0.000    0.048    0.087  

0.9  41.5(0.1)2.
  

 0.033    0.078    0.003    0.057    0.177  

1.0  
  

 0.026    0.075    0.002    0.051    0.155  

1.0  
  

 0.025    0.075    0.002    0.051    0.155  

0.8  42.5(0.1)3.
  

 0.036    0.089    0.004    0.080    0.330  

0.9  
  

 0.033    0.089    0.004    0.066    0.311  

1.0  
  

 0.028    0.088    0.003    0.055    0.305  


