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Abstract- One of the statistical methods of class discriminant is 

linear discriminant analysis. This method, by using statistical 

parameters, obtain a space which by using available 

discriminating information among class means does classification 

act . By using distributing Distances, extended analysis linear 

discriminant to its heteroscedastic state. At this state ,to make 

classes more separating of available separating information 

among covariance matrix classes including classes mean is using. 

In this article ,because of using new scattering matrices which are 

defined based on boundary and non- boundary  patterns, classes 

overlapping in Spaces which obtains has been  reduced . On the 

other hand ,using new scattering matrices brings about 

increasing classification rate so, the done experiments confirm 

improvement of classification rate. 

 

Keywords: boundary linear discriminant analysis, Boundary and 

non-boundary patterns, CHernoff criteria, linear discriminant 

analysis. 

I. INTRODUCTION 

In distinguishing pattern ,a capital step is classification of 

them and a current technique as well as capital stage is 

extracting feature .One of the techniques of feature 

extracting is reduction of linear dimension which is often 

used to decreasing dimension size ,data and statistical 

models as well as overcoming the problems which comes out 

in this field. The reduction of data dimension should not 

cause discriminating information which exists in main 

feature space to be destroyed. LDA is from common 

methods which is known as classifying method [1]. This 

classic method by Fisher for two-class problem and by RAO 

to solve multi-class problem has been developed [16]-[17]. 

In LDA a transformation matrix converts n-dimension of 

data to d (d<n) dimension space also it tries in given lower-

dimensional  space as Fisher criteria which does maximize 

the proportion of scattering matrices   between-classes and 

within-classes and does classification act [12]-[13]-[15]. 

LDA is a fast and easy method to determine a good feature 

and need simple calculating matrixes so in different articles 

the most relating problems to LDA has been reported. One 

of LDA disadvantages is that its most care is about 

maximum separation between means in projection space and 

knows it as the best method. This is in a sense that the 

available separating information which in opposition among 

covariance matrix has ignored classes and to some extent 

LDA face problem and most methods to solve this problem 

has used distributing distances [3]-[4].  
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In one of these methods Chernoff's distributive distance was 

used which is known as Chernoff's criteria [2]. In Several 

methods by using  this criteria, classification rate was 

extended in different applications [6]-[5]. Also in [6], of this 

criteria to extend heteroscedasticity state of non-

interdependent and  extracted features  has been used . The 

shortcoming of this criteria is that in original space the 

classes which is close to each other ,in a projection done by 

the criteria as overlapping ,too much of the classes are 

projected to this space as a cluster so, this process causes 

severe reduction of classification rate . In [6]-[7] by using 

measurement criteria reduces the effects of classes which are 

far from each other but, measurement criteria was repeatedly 

done and extracted features had been limited to the class 

numbers. In this article, we want to use new matrixes which 

is defined in [8] and treat Chernoff's shortcoming criteria so 

that we increase classification rate criteria as well as the 

numbers of extracted features .In the second section of the 

article we will have article definition, in the third section we 

will have the definition method and using of scattering 

patterns based on boundary and non- boundary patterns will 

be expressed and finally in the forth section of this article 

,we will discuss the existing results on downloaded datasets 

of UCI. 

II. DEFINING THE PROBLEM 

If in a statistical classifying problem c classes is being 

considered as 1 2  which have m label and n 

dimension, and then c class is as in 

   
1 c1 1,1 1,m c c,1 c,mD x , ,x , , D x , ,x    .  

Based  on parametrical form which is considering for 

classifying, c class  has primary probability  1 2P , ,P  so  

1 1 1 c c cx N(m ,S ), ,x N(m ,S )   is n-dimension  of  

accidental distributive vector that out of them S and m is 

considered as class covariance and mean. 

A. Chernoff's two-class patterns 

Based on chernoff distance between two distributive class in 

original space so, the solution to this problem is optimizing 

and searching projection vector W in order to maximize 

criterion (1), as in 
t 1 t

c W E

1/2 1/2 1/2 1/2
1/2 1/2 t1 W 1 W 2 W 2 W
W W

1 2

J (W) tr{(WS W ) [WS W

p log(S S S ) p log(S S S )
WS S W ]}

p p



   

 


 (1) 

W is obtained based on the Eigenvalue decomposition of  the 

matrix: 
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1

c W E

1/2 1/2 1/2 1/2
1/2 1/21 W 1 W 2 W 2 W
W W

1 2

S (W) S [S

p log(S S S ) p log(S S S )
S S ]

p p



   

 


 (2) 

W is Eigenvector corresponding to the largest Eigenvalues of 

the matrix (2). 

B. Chernoff's multi- class patterns  

To extend chernoff's two-class criterion into multi-class 

ones, a certain decomposition of between-class scattering 

matrix is used. At this decomposition, between-classes 

scattering matrix is built by using double class blocks. Now 

chernoff's multi-class is expressed as (3) formula and the 

goal is finding W which maximize criterion: 

 

   

1
t

w

1/2 1/2
1/2 1/2 1/2 1/2 1/2 1/2

w ij w w Eij w w ij w

K

1/2 1/2
C i j

w ij w1/2 1/2
j i 1

w wi j

1/2 1/2

i w i w

1/2 1/2

j w j w

WS W

S S S S S S S S S

1J (A) PP tr (log(S S S )
WS WS

log(S S S )

log(S S S ))



 
     

 

 

 

 

 
 
     
     

   
     
    


K 1

i 1

Eij i j i jS (m m )(m m )












  



(3) 

  

To determine W, Eigenvalue decomposition of the matrix is 

formed, W is equivalent to Eigenvector and  largest 

Eigenvalue of matrix : 

 

   

1

w

1/2 1/2C 1 C 1/2 1/2 1/2 1/2 1/2 1/2

w ij w w Eij w w ij w
C i j 1/2 1/2

i 1 j i 1 w w1/2 1/2 1/2 1/2 1/2 1/2

w ij w i w i w j w j w

i j

S

S S S S S S S S S
S PP tr

S S1
(log(S S S ) log(S S S ) log(S S S ))



       

  
     

 
 
   

   
  

         



(4) 

2

ij The point is that 
2

Cij ijtr(S )   . 

2

ij  is expressed as Eigenvalue so, Eigenvector which is 

relating to the most Eigenvalue is considered as projection 

vector of W .  The Eigenvector equivalent vector by 

Eigenvalue 
2

ij   is considered as Eigenvector between two 

class i and j, so to this reason it is distinguished as the 

biggest Eigenvalue as well as projection vector of W thus, to 

perceive more , consider Fig .2 

 

 
Fig. 2 Map of classes using a vector V [7] 

 

Fig.2, is a kind of six-class model in which each circle is 

considered as one class so, these circles have similar radius 

that shows within-class scattering matrix has been equally 

assumed . If the right class on the corner down in Fig.2 being 

considered as 
0j  on the condition to be far from the rest on 

original space the contributions of Eigenvalue 
2

ij , jiCi  ,1  will dominate on between-class scatter. 

the result of direction distinguished with v symbol has been 

shown in Fig.2 which will be known as principal 

discriminant figure so, the result is that for V projection i and 

j classes which will bring the projection  i ≠ j to a cluster 

with high among classes overlapping that necessitate rising 

classification rate faults in projection space . By this 

example, we can conclude that in estimating chernoff's 

criterion between-class scattering matrix, class pairs without 

their separation in real space ,are considered which causes 

bad performance in separating classes . 

III. SEPARATION BASED ON BOUNDARY AND NON-

BOUNDARY PATTERNS 

In this article we are going to use new scattering matrix to 

solve this problem so, that is the case that these matrices 

have been built instead of considering all data based on 

pattern placement situation. some data has been well 

separated by different class label and some other near to 

decision making class has been mixed so ,to this reason 

,their discrepancy must be considered in making scattering 

matrix thus, based on this ,boundary and non- boundary 

patterns is being defined. 

C.  Boundary  patterns 

It is a data that its located is near to decision making 

boundary and causes neighboring k with dissimilar class 

labels. 

D. Non- Boundary patterns 

It is a data that its located is far  from decision making 

boundary and causes neighboring k with similar class labels. 

 

 

 
Fig. 3 Effect of boundary and non-boundary patterns 

on scattering matrices 

In Fig.3, in terms of between-class matrix scattering 

matrices (Fig.3 (A) ) and within-classes (Fig.3, (B)) the 

effect of boundary and non boundary patterns have been 

surveyed ( the area which has been shown by an oval shape 

and is as boundary area between two class.  

In Fig.3 (A) , Influence on between-class matrix: the 

dotted line indicates show the pair of non boundary patterns 

with different class labels however, at the moment these 

pattern pairs have well separated each other and maximizing 

among them have no effect on maximizing between-class 

scattering matrix. On the other hand, The solid line show 

pattern pair boundary and non-boundary patterns so, 

minimizing the difference among them has directly related 

on class separation because reduces pattern difference with 

different label hence maximizing their difference is 

significant.  

In Fig.3 (B) , Influence on within-class matrix: the dotted 

line indicates show the pair of  boundary  and  non-

boundary patterns with similar labels class however, 

minimizing their difference is significant. as it can reduce 

the difference between different 

class-labeled patterns. 

minimizing their difference 

among them for within-class 

A B 
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reduction scatterness. On the other hand, , the solid line 

shows both of non-boundary patterns with similar label. 

minimizing their difference for within-class scattering 

matrix considerable because they are clear and 

representative patterns. based on the above research , we 

divide the set of inputting patterns in two subsets of 

boundary patterns and non-boundary ones. 

IV. THE SELECTION OF BOUNDARY AS WELL 

AS NON- BOUNDARY PATTERNS 

To design new scattering matrix , it is needed that the 

patterns which exist in boundary decision making class 

being selected so, the boundary area is where distributing 

different classes overlap . The key idea of boundary pattern 

selection is Proximity pattern [9]. proximity criterion show 

pattern's close it indicates how data are placed close to the 

boundary which is : 
c

i l

i 1 i

i i

1
Pr oximity(x,k) p (x) log

p (x)

p (x) k (k 1)





 

  (5) 

c symbolize the class number and k symbolize the number of 

pattern neighboring also ki is the number of neighboring 

patterns belonging to i class so, According to the value of 

proximity, the non-boundary patterns determines which is:  

   iNB

i

i

Pr oximity x ,k (c)
X x

,x X,0 (c) 1

   
  

     

  (6) 

 NBX  is as the sets of non-boundary patterns and )(c  is a 

non-zero value depending on c. When the class numbers and 

pattern ones increase, the probability of patterns mixture 

with a different class is too much and these pattern numbers 

are known as boundary pattern. To reduce boundary patterns 

threshold level )(c  is cc 11)(  defined as boundary 

pattern in order to satisfy the requirement [10]. Based on this 

definition, if the class number increases the )(c value goes 

near one and causes more data places in non- boundary 

pattern set so, by such a threshold level a suitable non- 

boundary  pattern number is obtained. According to this 

process, the set of input samples sets is divided in two 

boundary as well as non- boundary set . In (7) formula, 

scattering matrices which has been built based on boundary 

and non-boundary patterns is shown. 

  

  TNB

j

c

i iyj

NB

j

w

c

i

n

j

TB

j

B

j

b

imximxS

imximxS

j

B

)()(

,)()(

)(

1 :

)()(

1 1

)()()(

)(





 



 

   (7) 

In making matrices which is between-class scatter , of 

boundary and class mean difference for making scattering 

matrix has been used، and those between non- boundary 

patterns and class means are used in within-class  scatter 

matrix. Fig 3. diagram shows a concept of scattering matrix. 

 

 

 

 
 

 

Fig. 4 The concept of geometric new scattering matrix 
 

Fig.4 (A) shows scattering matrix diagram of  between-class 

scatter matrix )(bS . This matrix tries to separate boundary 

patterns which is far from all-class center.  

Fig.4 (B) shows scattering matrix diagram of  within-classes 

matrix. This matrix tries to concentrate non-boundary 

patterns which is around their classes center. 

To express purpose, we can change among classes scattering 

matrix formula which its prove is mentioned in [21] so, we 

have change of between-class scatter matrix as:  
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 (8) 

the number of samples belonging to the class
uy is )( uyn . 

This kind of formulization change is based on measure 

distance among sampling pattern thus, the point is that the 

values of non-zero measures depend on scattering among 

boundary patterns with similar labels. in the other hand; we 

can say that the zero measure is the opposition between non-

boundary patterns of one class and non- boundary ones of 

other class. For this sake, the patterns existing in non-

boundary area does not have any effect on calculating class 

separation capacity because they have been well separated 

before . The other point is that based on boundary and non-

boundary pattern between two classes matrices which has 

been separated each other in real space don’t place in 

boundary area and don’t categorize as non-boundary pattern. 

The result is that based on between-class scattering matrix, 

this kind of patterns don’t have 

any influence on between-class 

scattering matrix estimation. 
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V. CHERNOFF'S IMPROVEMENT PATTERN 

BY USING NEW SCATTERING MATRIX     

As it was said in equation (8) , the zero measure pertaining 

to difference between non-boundary patterns from one class 

to non-boundary from another ones. Based on this, these 

patterns don’t have any effect on classes separation because 

they have well been separated. the result is that the 

difference between these patterns do not have any on class 

scattering matric estimation. The goal of matrices design (7) 

is finding a W direction so that by using emphasis on 

inattentive differences as well as attentive one we can find a 

direction in chernoff's pattern (3) in which by data projection 

it can maximize chernoff's optimizing criterion (
CJ ) and as 

a result we reduce classification data rate . It is clear that the 

amount of class overlapping considerably are reduced in the 

place of dimension drop.  based on this, by using new 

scattering matrices in Chernoff's matrices (3) we replace 

them with primary scattering matrices: 

 

   
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1/2 1/2
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 (9) 

To determine optimizing W, specific value matrix analysis 

(10) is happening, however; W vector projection and specific 

vector equal to the most specific value matrices is 

determined. 
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W is equal to 
dW  optimizing vector and also Eigenvector 

equal to the most Eigenvalue in Eigenvalues matrix . 

VI. EXPERIMENTS 

At this part we offer experiment results to the applicatory of 

suggestive method . The experiments are done on different 

data sets which have been downloaded UCI Machine 

Learning website. [18].These datasets have been listed in 

Table.1, The majority of these data sets have been used in 

[17,15,14,2] articles . the unclear available values in datasets 

have been replaced with relative medium feature value [8]. 

The output of proposed method has been compared with 

CDA,LDA  that imply better output of proposed method in 

compare with the other two methods. 

 

Table 1. The UCI dataset used for the experiments [19] 

Dataset name Number 

data 

Number 

class 
Number 

feature(number 

dimension) 

Haberman 31 2 3 

Australian credit 653 2 51 

German credit 1000 2 38 

Primary tumor 336 2 15 

Banknote 

authentication  

1370 2 3 

Vote 435 2 16 

Hepatitis 137 2 34 

Liver 345 2 6 

Zoo 101 2 16 

Wine 178 3 13 

new-thyroid 215 3 6 

balance-scale 150 3 5 

Iris 150 3 5 

1189 1092 4 12 

Breast cancer 

Wisconsin 

699 2 11 

Hayes Roth 132 3 5 

 

E. Experimental setup 

To assess the performance of proposed method ,fisher's two 

classifying strategy leave-one-out(LOO) cross-validation 

and 10-fold cross validation is used . In leave-one-out(LOO) 

cross-validation Strategy ,n-1 is input data for training and 

the rest of the data are used for identification and testing . 

Although leave-one-out(LOO) cross-validation is  a good 

method to evaluate performance [20]-[21] , it has been 

criticized by researchers [21] for this sake, in this article 

from 10-fold cross-validation Has been used  for 

classification . In order to avoid poverty of covariance 

matrix as well as noise exclusion ,in pre-processing phase , 

PCA has been used  therefore, the dimensions whose 

specific values have been lesser than one- hundred-

thousandth has been omitted from dataset . In order to avoid  

of the between classes specifying scattering matrix which is 

current problem in using linear classification analysis and its 

derivation ,a lawful method mentioned in [18] has been used 

. Firstly, the in-classes scattering matrix mentioned in (7) 

ranking was investigated and then if its ranking was 

incomplete a*I value was added to them in which a=0.001 

and I is like unit matrix. to avoid problems with log and 

square root  of matrix A inverse , of mentioned method in 

[13] has been used, therefore; to calculate F function, of 

specific A matrix has been used . A matrix is analyzed as 

specific analysis  1VDV  in which V are as specific 

vectors of D and A matrix and also as specific matrix of A 

respectively, and then we apply f function on the main 

elements of specific value  which contains these values and 

placed them in specific value matrix that resulted 
1f (A) Vf (D)V change. if Eigenvalues in applying log 

function to be  reverse ,negative  or zero then ,the number 

result will be equal to zero so, to stop this , a small fixed 

amount must be added [22]. In order to do this, a positive 

small fixed amount has been added to specific matrix D 

either negative or zero. 

F. Discussion on experimental method's outputs 

This part has focused on discussing observations derived 

from experiments done on datasets. The experiments showed 

that ,in Iris dataset between class 1,2 and 1,3  there is no 

boundary sample  but  between class 2 and 3,   20 boundary 

sample were  observed  therefore, we can conclude that class 

1 in proportion to class 2 and 3 is so far , to this reason 

scattering matrix between classes 1 and the other two classes 

doesn't have any effect on designing chernoff's classification 

because matrix has been defined 

based on boundary samples  and 

instead of them we can use 

space matrix estimation between 
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class pairs  which owned by fisher linear classification and 

based on mean intervals. This is because the best method for 

classifying the classes which are far apart is fisher's 

classification. also, in 1189 dataset it was observed that 2 

and 3 class don’t have any non- boundary  sample and two 

class near decision-making border between two class  have 

been classes patterns which  are severely mixed with 

different label  show that  these two classes don’t have 

overlapping  therefore , for this reason out of classes, new 

scattering  matrix which is based on boundary samples  for 

chernoff's approximate criteria and classes classification is 

used. The reported results, in table 2, symbolize 

improvement of using researcher's proposed method in 

proportion to other two methods. Also in  

Table. 2, comparison between 3 methods which have been 

done on Table.1, database , have  been shown . 

 

Table 2.The output results of experiments on the dataset 

used three methods 

Dataset name LDA Proposed  

Method 

HDA 

Haberman 61.8065 74.9247 55.6999 

Australian credit 67.6713 74.4988 66.9161 

German credit 63.2000 65.3000 58.4000 

Primary tumor 61.3387 65.9777 63.9947 

Banknote authentication 59.2669 97.3348 95.2618 

Vote 75.7558 954979 94.2653 

hepatitis 64.9451 65.3956 64.1758 

Liver 57.4118 67.7059 61.1513 

Zoo 81.2727 86.2727 79.4545 

Wine 85.8448 92.5050 87.5678 

new-thyroid 42.4026 76.2338 45.9870 

balance-scale 57.3725 68.2567 55.7557 

Iris 87.8711 92.7222 72.6418 

1189 65.1720 82.2272 70.7988 

Breast cancer Wisconsin 88.5300 96.5714 87.2298 

Hayes Roth 82.4176 86.8702 79.4505 

VII. CONCLUSION 

In this article, using new designed matrix, the possibility of 

overcoming current problem for chernoff's criterion was 

obtained and the effect of far apart class pair on chernoff's  

criterion was lost so, on the other side of the coin , the effect 

of both close classes  increased . The conducted experiments 

show that using these matrixes boost the rate of data 

classification. 

REFERENCES 

[1] Fukunaga, Keinosuke. Introduction to statistical pattern recognition. 

Academic press, 1990. 

[2] Duin, R. P. W., and M. Loog. "Linear dimensionality reduction via a 

heteroscedastic extension of LDA: the Chernoff criterion." Pattern 

Analysis and Machine Intelligence, IEEE Transactions on 26.6 (2004): 

732-739. 

[3] Loog, Marco, and Robert PW Duin. "Non-iterative Heteroscedastic 

Linear Dimension Reduction for Two-Class Data." Structural, 

Syntactic, and Statistical Pattern Recognition. Springer Berlin 

Heidelberg, 2002. 508-517. 

[4] Zhu, Xinzhong. "Super-class Discriminant Analysis: A novel solution 

for heteroscedasticity." Pattern Recognition Letters 34.5 (2013): 545-

551. 

[5] Safayani, Mehran, and Mohammad Taghi Manzuri Shalmani. "Two-

Dimensional Heteroscedastic Feature Extraction Technique for Face 

Recognition."Computing and Informatics 30.5 (2012): 965-986. 

[6] Sugiyama, Masashi. "Dimensionality reduction of multimodal labeled 

data by local fisher discriminant analysis." The Journal of Machine 

Learning Research 8 (2007): 1027-1061. 

[7] ReinholdHaeb-Umbach, MarcoLoog. "MULTI-CLASS LINEAR 

DIMENSION REDUCTION BY GENERALIZED FISHER 

CRITERIA." The Proceedings of the 6~(th) International Conference 

on Spoken Language Processing (Volume ). 2000. 

[8] Na, Jin Hee, Myoung Soo Park, and Jin Young Choi. "Linear 

boundary discriminant analysis." Pattern Recognition 43.3 (2010): 

929-936.  

[9] Shin, Hyunjung, and Sungzoon Cho. "Neighborhood property–based 

pattern selection for support vector machines." Neural 

Computation 19.3 (2007): 816-855. 

[10] Na, Jin Hee, et al. "Relevant pattern selection for subspace 

learning." Pattern Recognition, 2008. ICPR 2008. 19th International 

Conference on. IEEE, 2008. 

[11] Sugiyama, Masashi. "Dimensionality reduction of multimodal labeled 

data by local fisher discriminant analysis." The Journal of Machine 

Learning Research 8 (2007): 1027-1061. 

[12] McLachlan, Geoffrey. Discriminant analysis and statistical pattern 

recognition. Vol. 544. John Wiley & Sons, 2004. 

[13] Masip, David, Ludmila I. Kuncheva, and Jordi Vitrià. "An ensemble-

based method for linear feature extraction for two-class 

problems." Pattern Analysis and Applications 8.3 (2005): 227-237. 

[14] Fukunaga, Keinosuke. Introduction to statistical pattern recognition. 

Academic press, 1990. 

[15] Jain, Anil K., Robert P. W. Duin, and Jianchang Mao. "Statistical 

pattern recognition: A review." Pattern Analysis and Machine 

Intelligence, IEEE Transactions on 22.1 (2000): 4-37. 

[16] Yang, Jian-Yi, et al. "Prediction of protein structural classes by 

recurrence quantification analysis based on chaos game 

representation." Journal of theoretical biology 257.4 (2009): 618-626. 

[17] Fisher, Ronald A. "The use of multiple measurements in taxonomic 

problems."Annals of eugenics 7.2 (1936): 179-188. 

[18] Friedman, Jerome H. "Regularized discriminant analysis." Journal of 

the American statistical association 84.405 (1989): 165-175. 

[19] D.J. Newman,  S. Hettich, C.L. Blake, C.J. Merz, UCI repository of 

machine learning databases, 1998 http://archive.ics.uci.edu/ml . 

[20] Vapnik, Vladimir, and Olivier Chapelle. "Bounds on error expectation 

for support vector machines." Neural computation 12.9 (2000): 2013-

2036. 

[21] Chapelle, Olivier, et al. "Choosing multiple parameters for support 

vector machines." Machine learning 46.1-3 (2002): 131-159. 

[22] Loog, Marco, R. P. W. Duin, and Reinhold Haeb-Umbach. "Multiclass 

linear dimension reduction by weighted pairwise Fisher 

criteria." IEEE Transactions on Pattern Analysis and Machine 

Intelligence 23.7 (2001): 762-766. 


