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Abstract:  This paper presents an intense hybrid search 

method that uses Genetic Algorithms (GAs) and local search 

procedure for global optimization.  The Genetic Algorithms 

(GAs) comprise a selection process, a crossover process and a 

mutation processes and local search procedure that uses 

Powell’s method for updating the parameters of the objective 

functions. The performance of the designed algorithm is tested 

on specific benchmarking functions namely; Rastrigin function, 

Rosenbrock function, Schwefel’s function 2.22, Schwefel’s 

function 2.21 and Sphere's function. The computational results 

have demonstrated that the performance of Genetic Algorithms 

with Powell’s Method is much improved specific benchmarking 

functions. The use of a hybrid search method approach allows it 

to speed up the learning of the system with faster convergence 

rates. The Genetic Algorithm with Local Search Procedure 

(GALSP) is applied for soling exam timetabling problem. The 

GALSP seems to be a promising approach and is comparable to 

specialized algorithm for solving a set of global optimization 

problems. The algorithms of these processes have been designed 

and presented in the paper. 

 

Index Terms: Genetic algorithms, local search procedure, 

evolutionary theory, search methods. 

I. INTRODUCTION 

Optimization is the problem of making decisions to 

maximize or minimize an objective in the presence of 

complicating constraints. Nowadays, optimization 

techniques are widely used in areas of industrial operations, 

computer science, business and financial management, 

engineering design and control, and artificial intelligence to 

mention just a few. Optimization can bring efficiency 

throughout society wherever resources are constrained. 

There are many methods can be used in the process of taking 

a real world problem and transforming it into a formulation 

that can then be solved by the methods we have developed. 

Therefore, there are many alternative methods to find the 

best solution for a real world problem. Many Multi-objective 

Evolutionary Algorithms [5,17] such as ant colony 

algorithms [23], particle swarm optimization (PSO) 

algorithms [9,12], hypercube optimization algorithm [2], 

artificial bee algorithm, hypercube optimization algorithm, 

[11,24] and genetic algorithms (GAs) [6,21] have developed  

many real evolution strategies for real world problems [8,19]. 

GAs are widely used to solve different real world problems, 

such as for evolutionary natural selection and genetic ideas, 

different engineering problems and for the solution of  
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portfolio optimization problems using GA [1,13].  

In [7,15,23] GAs and PSO are applied for optimization of 

power flow.  

Evolutionary algorithms have been successfully applied in 

various fields of optimization to solve many global 

optimization problems. 

There have been many studies on finding new methods for 

optimization problems. These methods are used to solve 

many difficult global problems [14]. Many research methods 

try to find the best to global problems. In this paper, the main 

steps of Genetic Algorithms (GAs) comprising selection, 

crossover and mutation form a new source of inspiration for 

the creation of an algorithm. This algorithm integrated into 

the principles of Genetic Algorithms with Local Search 

Procedure (LSP) is proposed for global optimization.  The 

simplest form of Genetic Algorithm with Local Search 

involves four types of operators: selection with the roulette 

wheel, crossover, mutation and Powell’s Method for a more 

optimal solution. 

Local Search Procedure [16, 22] is optimization methods 

that maintain as the current best solution, and explore the 

search by steps within its ranges. Local Search Procedure 

usually checks the current solution against a more optimal 

solution which can be used in the next iteration as the new 

current best solution. The usage of GA favours finding a 

global optimal solution and to avoids the local optimum 

problem. However, sometimes the learning process with GA 

becomes time consuming. In order to speed up system 

learning the combination of GA with the local search 

procedure is considered in this paper.   

The paper is structured as follows. Sec. 2 includes the 

description of proposed the GALSP. The processes and 

flowcharts of the algorithm are given.  Sec. 3 and Sec. 4 

include application of the algorithm on test functions. 

Comparative results with the GAs existing methods have 

been given in Sec. 5. Sec.6 presents the application of the 

GALSP to exam timetabling problems, finally in Sec.7 the 

conclusions are presented. 

II. GENETIC ALGORITHM WITH LOCAL SEARCH 

PROCEDURE 

The GAs involves three types of operators: the selection 

process, the crossover process, and the mutation process. 

This designed algorithm integrates the principles of the GAs 

with Powell's Method for global optimization. In the 

following subsections, the descriptions of each process are 

presented in detail. The GALSP begins with an initial 

population (Ps) which is 

randomly generated to create 

initial points. The initial value of 



Hybrid Local Search Based Genetic Algorithm and its Practical Application 

22 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication Pvt. Ltd. 

Retrieval Number: B2580055215/2015©BEIESP 

X0 within GALSP is determined according to the change 

interval of the test (objective) functions. The population size, 

cross-over rate, mutation rate, elite size, initial points, the 

lower and upper boundaries of the points  are input 

parameters of the algorithm. In this paper, we are presented 

real-valued single-objective unconstrained functions and 

also solution of the exam timetabling problem. At the first 

stage, we try to find the minimum (or equivalently the 

maximum) of a scalar objective function f(x). The parameters 

of X = (x1, x2 ,… xm) is represented as a vector (or set of 

points), where m represents the number of dimensions of the 

problem. A problem is finding the values of parameters of X 

that will minimize the objective function f, where X ⊆ Rm is a 

bounded set in Rm, therefore f is a mapping of an 

m-dimensional fitness function. The use of the proposed GA 

with Powell’s method speeds up the learning of the system 

and finds a point Xmin ∈ X such that f(x)min will have a global 

minimum on X; that is ∀x ∈ X: f(x)min ≤  f(x). The process of 

finding the smallest value of (Xmin) will be done through 

learning of the X parameters by means of GALSP. The 

details regarding the visualization of the flow- chart of the 

GALSP (with Powell's Method) are illustrated in Figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1. Flow chart of the GALSP. Here A is selection, B 

is cross-over, C is mutation processes and D is local 

search procedure. 

 

As shown from the figure the GALSP includes four basic 

processes.  

Step A (selection process) 

Selection process is deployed to equate to survival of the 

fittest.  

Step B (cross-over process) 

Cross-over process is deployed to represents mating 

between populations.  

Step C (mutation process) 

Mutation process is deployed to introduce random 

modifications. 

Step D (local search procedure) 

Local search procedure is deployed explore the search 

by steps within the current range for a more optimal 

solution. 

The GALSP starts by generating an initial population 

randomly. This population members are evaluated using a 

fitness function and applying Powell’s Method for the best 

current solution and then determined best population 

member is saved. The selection is performed according to the 

fitness value. Then a roulette selection is applied to all 

population members. The better population member has 

more chances to be selected with a roulette wheel. The 

member that has more fitness is selected to the next 

generation. The values of fitness are then used to determine if 

the population is eliminated or preserved by applying the 

Genetic algorithm for a more optimal solution and compared 

with the current best population, far following crossover, 

mutation and local search procedure.  With the principle of 

the strongest, the best adaptive population is maintained, and 

the less adaptive are replaced the generation of a new ones. 

This replaces the old ones. The whole process is repeated 

until the specific termination conditions are met. The 

convergence of the GALSP is shown below in Figure 2. The 

pseudo code regarding the GALSP (with Powell’s Method) 

can be formed as: 

`Algorithm` 

Begin 

    population:=0  

        Initialize population Ps  

         done:=  false 

While not done Do 

Calc. the fitness of each individual population  

 Powell's Method and save the best so far 

     Population: = population+1 

         Selection (population) from (population -1) 

            Crossover Cp 

             Mutation  Mp 

         Apply Powell's Method (x0) 

     done: = Optimization criteria met? 

End While 

Output `best solution` 

End   

Figure 2. Designed the GALSP 

 

2.1   Selection Process 

The Selection process determines which solutions are 

preserved and allowed to 

reproduce and those which are 

discarded. The primary selection 

operator aims to highlight the 
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good solutions and eliminate bad solutions in a population 

while keeping the size of the population constant. 

Through the wheels, the population is selected according 

to fitness values. The best population is more likely to be 

selected. Thus, the populations have been selected based on 

their physical condition and so we excepted that selected 

population is among the strongest in the population and so 

we excepted that selected population will gradually increase 

in the average fitness, used in the next iteration, as the 

current solution.  In this study, the average fitness of the 

population for 
thi  in roulette wheel selection is calculated as 

follows:         





N

j

i

i
i

f

f
p x

1

)(                                                                              (1)    

where N is the number of individuals in the population 

and jf  is the fitness of individual j  in the population. 

 

2.2   Cross-Over Process 

The crossover process is a genetic operator that combines 

two parents from the population and produces a new 

population. In the paper, we select uniform crossover 

process, in which the individual bits of the string are 

compared between the two populations. The most popular 

crossover process selects two chains of solutions at random 

from the population, and some of the strings are exchanged 

between these chains. The selection point is chosen at 

random. The bits are exchanged with a fixed probability, 

crossover probability is usually 0.60.  

     A probability of crossover is also set up to give freedom to 

an individual chain solution to determine if the solution will 

cross or not. The details regarding the visualization of 

multipoint crossover process are given in Figure 3. 

 

 
Figure 3. Visualization of two point crossover process 

 

2.3   Mutation Process 

This operator returns a random part of the bits in a 

population. The mutation may occur at each position in a bit 

string with a specific probability.   While the crossing process 

has primary responsibility for finding the optimal solution, 

the mutation process is also used for this purpose. The 

mutation operator changes a 1 to 0 or 0 to 1, with a specific 

probability of mutation. The probability of mutation is 

generally kept low for fixed convergence. A high value of the 

mutation probability leads to a random search technique. The 

details regarding the visualization of mutation process are 

given in Figure 4. 

 

 
Figure 4. Visualization of mutation process 

 

2.4   Local Search Procedure (Powell Method) 

As mentioned, the GA is an effective research technique that 

can find the global optimum point of multimodal functions. 

But many times the GA-based search becomes time 

consuming. An effective approach to solve this problem is 

the use of the technique of local search with the combination 

of evolutionary optimization methods especially with GA. 

This speeds up the search process. In this paper, Powell's 

Method is combined with the GA search technique for 

finding the local optimum in the space of multimodal 

solutions. 

     The method minimizes the search function by using a 

bidirectional along each search vector p
i
. The x

i
 point is 

determined as the point where the minimum of the function f 

occurs along the vector pi  

     In Powell’s method for the given input vectors p and n, 

and the function f, it is necessary to find the scalar  that 

minimizes the function f(p+n).  Then the replacement of p 

by p+n and n by n takes place. The Powell’s conjugate 

algorithm is given below:  

     Define the pi set of independent vectors in x. x0 is starting 

point; 

While True 

1     For i = 1,…,n  do 

2                 Replace xi = xi – 1 + i pi, where i minimizes 

3                  f (xi – 1 + i pi) 

        4            For i = 1,…,n - 1 do 

5                  pi = pi + 1 

6            end 

7               pn = xn - x0 

8              Find n that minimizes f (pn  + n (xn - x0)) 

9            x0 = x0 + n (xn - x0) 

       10    end 

  end  

The search results in the two vectors (
1x ,

2x ) being 

generated by one-dimensional search in the same direction 

from different points, and so this is then used as the 

directions of the next search. Here is a sample session to find 

the optimum for the following function: 

         f (y) = 10 + (x1 - 2) 2  + (x2 + 5) 2                                             (2)    

     The above function searches for the optimum two 

variables has the initial guess of [0 0] and step tolerance 

vector of [1e-5, 1e-5]. The search employs a maximum of 

1000 iterations and a function tolerance of 1e-7. 

III. TEST FUNCTIONS 

This section presents the 

performance of GALSP tested on 

specific benchmark functions 
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which are widely used in the literature [7,20]. The details 

regarding the benchmark functions are as follows: 

 

3.1 Rastrigin Function 

The Rastrigin function is described as follows: 
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where D is a number of dimension and xi  = (x1, x2  …, xD) is  

D dimensional row vector. The test area is usually evaluated 

in interval of -5.12 ≤ xi ≤ 5.12, i = (1, 2 …., D). The global 

minimum 0)( xf  is obtainable for xi  = (0, 0 .…, 0).  

 

3.2 Rosenbrock Function 

The Rosenbrock function is described as follows: 

     ])1())(([100)( 22
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where D≥2 is a number of dimension and xi  = (x1, x2  …, xD) 

is  D dimensional row vector. The test area is usually 

evaluated in interval of -2.048 ≤ xi  ≤ 2.048, i = (1, 2 …., D). 

The global minimum 0)( xf  is obtainable for xi  = (1, 1 

.…, 1). 

 

3.3 Schwefel’s Function 2.21  

The Schwefel function 2.21 is described as follows:  

     )1|,(|max)(3 nixxf ii                                          (5) 

where D is a number of dimension and xi  = (x1, x2  …, xD) is 

a dimensional row vector. This test area is usually evaluated 

to hypercube for -10 ≤ xi ≤ 10 i = (1, 2 …., D) and global 

minimum 0)( xf  is obtainable for xi  = (0, 0 .…, 0). 

 

3.4 Schwefel Function 2.22 

The Schwefel function 2.22 is described as follows: 
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      where D is a number of dimension and xi  = (x1, x2  …, xD) 

is  D dimensional row vector. The test area is usually 

evaluated in interval of -10 ≤ xi  ≤ 10 i = (1, 2 …., D). The 

global minimum 0)( xf  is obtainable for xi  = (0, 0 .…, 

0). 

 

3.5  Sphere Function 

The Sphere function is described as follows: 
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where D is a number of dimension and xi  = (x1, x2  …, xD) is  

D dimensional row vector. The test area is usually evaluated 

in interval of -5.12 ≤ xi  ≤ 5.12 i = (1, 2 …., D). The global 

minimum 0)( xf  is obtainable for xi  = (0, 0 .…, 0).  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of GALSP is tested on the five benchmark 

functions that are described in subsection 3 and is 

implemented in Matlab/Simulink. The following the GALSP 

schemes were used: crossover with the rate of 0.60, mutation 

with the rate of 0.1, and local search procedure are employed. 

The GALSP searches the optimum of the function (2) having 

two variables that has the initial guess of [0 0] and step 

tolerance vector of [1e-5, 1e-5]. The search employs a 

maximum of 1000 iterations and a function tolerance of 1e-7 

(tolF). The benchmark functions are evaluated by 

considering cases in which the problem population size is 

also set to 100. We have presented the success rate and the 

average number of the specific benchmark function 

evaluations equal to 30 runs. The details regarding the 

benchmark functions are given in Tables 1 - 4, respectively. 

 

4.1 Rastrigin Function 

The Rastrigin function is non-convex, multimodal and 

additively separable function. This test function produces 

several local minima. It is highly non-linear multimodal, but 

locations of the minima are regularly distributed. The finding 

of the minimum value of this test function is a fairly difficult 

problem for genetic algorithms due to the large search space 

and large number of local minima. However, the global 

minimum of this test function was obtained at (0, 0,…,0) 

points with 0.00e+00 accuracy error. The best and average 

fitness values of 30 runs of the GALSP for this test function 

are shown in Table 1.  

 

Table 1: The performance of the GALSP for Rastrigin 

 

4.2 Rosenbrock Function 

The Rosenbrock function is non-convex, unimodal and 

non-separable. The global minimum is inside narrow, 

parabolic valley, and through this valley it is difficult to find 

the minimum of the function.  The global minimum of the 

test function was obtained using GALSP with a much better 

convergence. The minimum value of Rosenbrock function 

was obtained as 1.49e-10 at the point (1,1…,1). In general 

the GALSP yielded a better result. The best and average 

fitness values of 30 runs of the GALSP for this test function 

are shown in Table 2.  

 

Table 2: The performance of GALSP for Rosenbrock 

 

4.3 Schwefel 2.21 Function 

The Schwefel function 2.21 is continuous, non-differentiable, 

scalable, separable and unimodal function. The  global 

minimum of the test function was 

obtained as 9.75e-19 at the point 

(0,0,…,0). This algorithm is 

Rastrigin Function 

Iterations 

 1 25 50 100 

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Average 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Rosenbrock Function 

                                      Iterations 

 1 25 50 100 

Best 5.55e-11 4.50e-11 3.87e-11 4.52e-11 

Average 6.66e-10 3.96e-10 2.97e-10 1.49e-10 
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sensitive to the number of iterations and parameters.  The 

GALSP finds optimal or near-optimal solutions with much 

well convergence. The best and average fitness values of 30 

runs of the GALSP for this test function are shown in Table 

3.  

 

Table 3: The performances of GALPS for Schwefel 2.21 

 

4.4 Schwefel 2.22 Function 

The Schwefel function 2.22 is continuous, scalable, 

non-differentiable, symmetric, and unimodal function. This 

test function produces the effect of convexity because its 

landscape is non-convex. The GALSP is applied for finding 

the optimum of this function. The  minimum of this test 

function was obtained as 2.27e-18 at the point (0,0,…,0). 

The GALSP approach allows to speed up the learning of the 

system and respectively to decrease training time of this 

function with faster convergence. This algorithm is also 

insensitive to the number of iterations and parameters of the 

function.   The best and average fitness values of 30 runs of 

the GALSP for this test function are shown in Table 4.  

 

Table 4: The performances of GALPS for Schwefel 2.22 

 

4.5 Sphere Function 

The Sphere function is continuous, convex, a typical 

unimodal and additively separable test function that can be 

scaled up to any number of variables. Finding the minimum 

of this test function is a fairly easy problem. The global 

minimum of this test function was obtained with much better 

convergence with the last number of iterations using the 

GALSP. The Sphere function was obtained as 3.05e-37. The 

best and average fitness values of 30 runs of the GALSP 

algorithm for this test function are shown in Table 5. 

Table 5: The performances of GALPS for Sphere 

 

V. COMPARISIONS 

The performance of the proposed GALSP is compared with 

the Genetic algorithm on benchmarking functions given 

above. The performance results obtained using the both 

techniques are presented in Table 6. 

 

Table 6: Comparison of the performances of GALPS 

and GA 

 

For the comparison purpose, the GA algorithm is modelled 

using above test functions. Using the GA and the GALSP 

methods we have summarized the best and average number 

of the fitness function (specific benchmark function) 

evaluations over 30 runs.  

The comparison has been performed at the same initial 

condition. Both the algorithms were tested using a set of 

common parameters. The simulations have been performed 

for 1000 iterations and D = 1000 dimensions of the test 

functions. As evident from the Table 6, the results obtained 

using GALSP algorithm has obtained the global minimum 

0.00e+00 for the Rastrigin function, 1.25e-10  for the 

Rosenbrock function, 2.27e-18 for the Schwefel function 

2.22 and 2.75e-40 for the Sphere function. The experimental 

results were obtained with the GALSP have better results 

than the GA.  The convergences with the GALSP were very 

fast. The comparative results of the algorithms demonstrate 

that the performance of GALSP is much better than 

well-known the GA. 

VI. APPLICATION 

The exam timetabling problem [10,18] is one of important 

and constrained global optimization problem used for the 

scheduling of exams in institutions of higher education. The 

scheduling of exams timetabling problem consists of 

allocating a number of exams to a finite number of periods 

with specific constraints related to the avoiding the 

overlapping of exams having students in common, satisfying 

room and time constraints, etc. The following general 

conditions used to formulate the constraints:  

- No students should have to take two exams in adjoining 

periods. 

- No students should have to take two exams in one day. 

The constraints form the basis for a feasible scheduling of 

exams timetabling problem for each period. For a more 

detailed description of timetabling, the reader is referred 

[3,4].  

      The problem is to find the near optimal solution of the 

exam timetabling. The GALSP algorithm is applied to solve 

the examination timetabling problem. In the exam 

timetabling problem the E exams 

should be scheduled in the P 

periods. Three periods in a day 

Schwefel Function 2.21 

       Iterations 

 1 25 50 100 

Best 9.75e-19 9.75e-19 9.75e-19 9.75e-19 

Average 9.75e-19 9.75e-19 9.75e-19 9.75e-19 

Schwefel Function 2.22 

       Iterations 

 1 25 50 100 

Best 1.40e-06 2.27e-18 2.27e-18 2.27e-18 

Average 1.55e-05 2.27e-18 2.27e-18 2.27e-18 

Benchmark Functions 

 Rastrigin Rosenbrock 
Schwefel 

2.22 
Sphere 

GALSP     

  Best 0.00e+00 2.55e-11 2.27e–18 1.44e–41 

  Avg 0.00e+00 1.25e-10 2.27e–18 2.75e–40 

GA     

  Best 1.073e+04 1.12e+03 1.490e+ 03 3.44e+03 

  Avg 1.075e+04 1.12e+03 1.492e+03 3.45e+03 
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are used for timetabling. Any of the two exams may have a 

conflict with each other. This means that there may be a 

number of students enrolled for both exams. The technique 

can be formally specified by defining the following: 

1.  All exam should be scheduled once, and only once in the 

timetable.  

   1

1

1






P

p

ipT                                                                        (8) 

 where, ipT  is an exam  i scheduled in period p.   

2.   Exams should be scheduled within the same period (No 

conflicting). 
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where ijC  is a number of students taking both exams i and j. 

 

3. Total number of seats required for any period is not 

greater than the number of seats available (Maximum sitting 

students per periods). 
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where iS  is student taking exam i.  

The actual process used by the GALSP technique is as 

follows; 

 REPEAT 

FOR (each period)  

    FOR (each event scheduled in period (Exam)) 

        Schedule event in the valid period causing 

(same period) 

            Clashes (this includes the original period) 

        Try and schedule any unscheduled events 

 UNTIL check whether or not improvement is 

possible 

 

       

The following experimental data is taken from 

ftp://ftp.cs.nott.ac.uk/ttp/Data/ for modeling of timetabling 

problem. The GALSP technique has been tested on a range of 

real data with the exception of varying to represent the real 

life information that are shown in Table 7. The data used is 

represented by the following codes: 

carf92  Carleton University (1992), Ottawa 

kfu       King Fahd University, Dharam 

nott      Nottingham University, UK 

 

Table 7. Dataset from the Universities 

Data Periods Exams Students Enrollments 

carf92 36 543 18,419 55,522 

kfu 21 461 5,349 25,118 

nott 23 800 7,896 34,265 

       

The performance of the GALSP technique is tested on all 

above data sets with sizes subset of 100. These test functions 

are more applicable for the experimental evaluations of 

methods used in global optimization problems. Each of these 

successes has been tested with all the heuristics given 30 runs 

each and the average given results. In Table 8 has been 

shown  the results obtained when using the heuristic relevant. 

 

Table 8. Results of Applying Dataset 

Data 
2

nd
 Order 

Same Day 

2
nd

 Order 

Overnight 

Max Students per 

periods 

carf92 365 718 2,000 

Kfu 255 871 1,955 

Nott 112 325 1,550 

       

The proposed technique was tested on a decomposing large 

real-world timetabling problems encompassing a wide range 

of dimensionality. Experiments are carried out on an actual 

dataset taken from the University of Nottingham, University 

of Carleton and University of King Fahd. The focus of the 

experiments demonstrates that the GALSP algorithm effect 

on the quality when has been started on already better 

solutions for solving a set of optimal results. The process, 

however, is a little more complicated when room allocation 

(maximum sitting students per periods) is a part of the 

problem. 

VII. CONCLUSION 

This paper proposes a new intense hybrid search method that 

was inspired by evolutionary theory and based on GA with 

Local Search Procedure (Powell’s method) for global 

optimization. The use of GALSP search approach speeds up 

the learning of the system and decreases training time of the 

system for a wide range of dimensionality. The simulations 

have been carried out using benchmarking functions; such as 

Rastrigin function, Rosenbrock function, Schwefel function 

2.22, Schwefel’s function 2.21 and Sphere's function. The 

simulation results show that the GALSP based optimization 

has obtained good performance (reflected in the best and 

average fitness) for solving a set of global optimization 

problems. The comparative results of the GALSP and the GA 

demonstrate that the performance of GALSP is an 

improvement upon other one global optimization techniques. 

The algorithm is also applied to the solution of a timetabling 

problem.  
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