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Abstract: A computational method is presented to solve  a 

nonlinear quadratic optimal control problems subject to terminal 

state constraints, path inequality constraints on both the state and 

the control variables. The method is based on using  a recursive 

approximation technique  to replace the original constrained 

nonlinear dynamic system by a sequence of constrained linear 

time-varying systems. Then each of constrained linear 

time-varying quadratic optimal control problems is approximated 

by a quadratic programming problem by parameterizing each of 

the state variable by a finite length  Legendre polynomials with 

unknown parameters. To show the effectiveness of the proposed 

method, simulation results of two  constrained nonlinear optimal 

control problems are presented. 

 

Index Terms:  Nonlinear constrained quadratic optimal control 

problem;  Iterative Technique; Legendre polynomials; State 

parameterization. 

I. INTRODUCTION 

One of the well known  methods to solve the constrained 

nonlinear optimal control problems is to convert it into a 

mathematical programming one. This approach of handling 

the optimal control problem is known as direct method. The 

direct method can be employed by either discretizating or 
parameterizing of the control and the state variables.  Direct 

methods have been proposed to handle the constrained 

nonlinear optimal control problems in many research papers, 

for example: Vlassenbroeck [1] used the control-state 

parameterization using Chebyshev polynomials to handle the 

constrained nonlinear optimal control problem by converting 

it into nonlinear mathematical programming problem. Frick 

and Stech [2] used the Walsh functions to solve the nonlinear 

optimal control problems subject to saturation constraints on 

the control. Goh and Teo [3], Troch et al. [4] proposed a 

method to handle the constrained nonlinear optimal control 
problems using control parameterization. Jaddu [5-7] 

proposed a method that is based on the second method of 

quasilinearization and the state parameterization via 

Chebyshev polynomials to handle the nonlinear optimal 

control problems subject to state and control saturation 

constraints. Recently, several researchers proposed methods 

to solve the nonlinear optimal control problem based on the 

Approximate sequence Riccati  equation  ASRE [8-11]. In 

these methods the nonlinear dynamic state equation is 

replaced by a sequence of linear time-varying state equations. 
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In [12]  a method was presented to solve the unconstrained 
nonlinear optimal control problem by solving sequence of 

quadratic programming problems instead of solving sequence 

of Riccati equations.  In this work, we will extend the method 

proposed in [12] and the work in [8-11] to handle constrained 

nonlinear quadratic optimal control problem. The constraints 

considered in this work are the  terminal state constraints and 

inequality constraints on the state and control variables. The 

method is based on converting the constrained nonlinear 

optimal control problem into sequence of quadratic 

programming problems using Legendre polynomials. 

II. PROBLEM STATEMENT 

The optimal control problem treated in this paper can be 

stated as follows: Find an optimal controller 𝑢∗(𝑡)  that 

minimizes the following cost function 

 

  J = x tf 
TSx tf +   xTQx + uTRu dt

tf

0
                       (1) 

 

subject to the following constraints: 

 

 Dynamic system state equations and initial conditions 

 

        x = f x t , u t , t           x 0 = x0                            (2) 

 

 Linear terminal state constraints 

 

       F x(tf) = Xf                                                               (3) 

 

 Path inequality constraints on the  state and control     
x t ≤ Xmax  , x t ≥ Xmin   , u t ≤ Umax   , u(t) ≥ Umin  
                      (4) 

where 𝑄, 𝑆 are positive semidefinite matrices, 𝑅 is a positive 

definite matrix, 𝑥 ∈ 𝑅𝑛  is the state vector, 𝑢 ∈ 𝑅𝑚  is the 

control vector, 𝑥0 ∈ R𝑛  is the initial condition vector, F is an 

𝑠 × 𝑛 constant matrix, 𝑋 𝑓 ∈ 𝑅𝑠  is the terminal state, 𝑓 is a 

nonlinear continuous differentiable function with respect to 

all its arguments (𝑥 𝑡 , 𝑢 𝑡 , 𝑡) . We will assume that: 

𝑚 ≤ 𝑛 , 𝑋𝑚𝑎𝑥 , 𝑋𝑚𝑖𝑛 , 𝑈𝑚𝑖𝑛  and 𝑈𝑚𝑎𝑥  are constant quantities 

and 𝑡𝑓 is fixed.  

This problem (1)-(4) ,will be solved by converting it  into a 

sequence of constrained linear time-varying quadratic 

optimal  problems. The solution is based on using the 

iteration technique; which will replace the nonlinear dynamic 

state equations into equivalent linear time-varying state 

equations.  

The proposed algorithm to 

solve the problem consists 

of the following steps: 
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1. The first step, is to convert the constrained nonlinear 

quadratic optimal control problem into a sequence of  

constrained linear time-varying quadratic optimal control 

problems by using  the  method of [8-12]. 

2. The second step is to convert each of these problems into 

quadratic programming problem by using the Legendre 
polynomials to parameterize the  state variables. 

3. The third step is to solve the quadratic programming 

problem . Then the solution of the state and the control 

variables  are used in the first step for  new iteration. 

III.    RECURSIVE APPROXIMATION 

The optimal control problem described in section II can be 

replaced by the following sequence of problems by applying  

the approximation described in [8-11]:  

For k ≥ 1, minimize 

 

J[k] = x tf 
[k]T

Sx tf 
[k] +   x[k]T

Qx[k] + u[k]T
Ru[k] dt

tf

0
 

(5) 

subject to the following linear time-varying state equations,  

 

x [k] = A x[k−1] x k + B x[k−1] u k , x k (0) = x0    (6) 

and to the  terminal constraints 

 

F  x(tf)
[k] = Xf               (7) 

and to the state and control variables inequality constraints 

 

𝑥 𝑡  𝑘 ≤ 𝑋𝑚𝑎𝑥 , 𝑥 𝑡  𝑘 ≥ 𝑋𝑚𝑖𝑛  , 𝑢 𝑡  𝑘 ≤ 𝑈𝑚𝑎𝑥  , 

         𝑢 𝑡  𝑘 ≥ 𝑈𝑚𝑖𝑛                                                        (8) 

The constrained linear time-varying quadratic optimal 

control problems (5)-(8) are solved recursively by converting 

each problem into a quadratic programming problem by 
applying the state parameterization using Legendre 

polynomials.  And since Legendre polynomials are 

orthogonal  on the interval 𝜏 ∈ [−1,1],  it is necessary to 

transform the time interval of the original problem 𝑡 ∈ [0, 𝑡𝑓] 

into 𝜏 ∈ [−1,1]. This will transform (5)-(8) into the problem: 

for 𝑘 ≥ 1, 

Minimize 

𝐽[𝑘] = x 1 [k]T
Sx 1 [k] +

𝑡𝑓

2
 (𝑥 𝑘 𝑇𝑄𝑥 𝑘 + 𝑢 𝑘 𝑇𝑅𝑢 𝑘 )𝑑𝜏

1

−1
                                    

 (9) 

subject to the following constraints 

 

         
𝑑𝑥

𝑑𝜏

 𝑘 
=

𝑡𝑓

2
 𝐴  𝑥 𝑘−1  𝜏  𝑥 𝑘 + 𝐵  𝑥 𝑘−1  𝜏  𝑢 𝑘    

        𝑥 𝑘 (−1) = 𝑥0                  (10) 

 

        𝐹  x(1)[k] = 𝑋𝑓        (11) 

 

𝑥(𝜏)[𝑘] ≤ 𝑋𝑚𝑎𝑥      𝑥(𝜏)[𝑘] ≥ 𝑋𝑚𝑖𝑛      ,𝑢(𝜏)[𝑘] ≤ 𝑈𝑚𝑎𝑥       

𝑢(𝜏)[𝑘] ≥ 𝑈𝑚𝑖𝑛             (12) 

 

IV.  PROBLEM REFORMULATION 

Each of the constrained linear time-varying quadratic 

optimal control problems (9)-(12) can be solved by 

converting it into a quadratic programming problems  by 

applying the state parameterization. For a detailed 

description of the state parameterization method see [5,12]. 

 

A) System state equation approximation: 

According to the method of [5,12], some state variables are 

approximated by Legendre series of unknown parameters. 

Then the remaining state variables and the control variables 

are expressed in term of the unknown parameters from the 
state equation (10). The state and control variables 

approximated by Legendre series  of finite length 𝑁  with 

unknown parameters can be expressed as: 

 

𝑥𝑗

[𝑘]
=  𝑎𝑖

 𝑗  
𝑃𝑖(𝜏)𝑁

𝑖=0     𝑗 = 1,2, . . , 𝑛 (13) 

𝑢𝑙
[𝑘]

=  𝑏𝑖
 𝑙 

𝑃𝑖(𝜏)𝑁
𝑖=0     𝑙 = 1,2, . . , 𝑚 (14) 

 

where 𝑘 = 0,1,2,… is the iteration sequence number, 𝑎’s and 

𝑏’s are the unknown parameters, 𝑏’s are function of 𝑎’s and 

𝑃(𝜏) is a vector of Legendre polynomials of the first kind. 

(13)-(14) can be rewritten in matrix form as follows: 

 

𝑥[𝑘] = 𝛼𝑃(𝜏)        (15) 

𝑢[𝑘] = 𝛽𝑃(𝜏)        (16) 
 

where: 

𝛼 =

 
 
 
 
 𝑎0

(1)
𝑎1

(1)
… 𝑎𝑁

(1)

𝑎0
(2)

𝑎1
(2)

… 𝑎𝑁
(2)

⋮

𝑎0
(𝑛)

⋮

𝑎1
(𝑛)

⋮
…

⋮

𝑎𝑁
(𝑛)

 
 
 
 
 

     (17) 

 

𝛽 =

 
 
 
 
 𝑏0

(1)
𝑏1

(1)
… 𝑏𝑁

(1)

𝑏0
(2)

𝑏1
(2)

… 𝑏𝑁
(2)

⋮

𝑏0
(𝑚 )

⋮

𝑏1
(𝑚)

⋮
…

⋮

𝑏𝑁
(𝑚)

 
 
 
 
 

      (18) 

  

B) Performance index approximation: 

The next step in converting the optimal control problem 

under consideration into a quadratic programming problem is 

to approximate the performance index (9). Substituting (15) 
and (16) in (9) yields 

 𝐽 [𝑘] = [𝑃𝑇 1 𝛼𝑇𝑆𝛼𝑃 1 ] +
𝑡𝑓
2

 (𝑃𝑇 𝜏 𝛼𝑇𝑄𝛼𝑃(𝜏) +

1

−1

 

𝑃𝑇(𝜏)𝛽𝑇𝑅𝛽𝑃(𝜏))dτ                         (19) 

         

where 𝐽 [𝑘] is the approximated performance index of 𝐽[𝑘].  
The integration part of (19) can be obtained using theorem 

1 in [12], and therefore (19) can be reformulated and written 

as 

 

 

𝐽 [𝑘] = 𝑃𝑇 1 𝛼𝑇𝑆𝛼𝑃 1 +
𝑡𝑓

2
 

2

2𝑖−1
(𝑚𝑖𝑖 + 𝑧𝑖𝑖)

𝑁+1
𝑖=1  (20) 

where 𝑚𝑖𝑖  and 𝑧𝑖𝑖  are the diagonal elements of the 

symmetrical matrices 𝑀 = 𝛼𝑇𝑄𝛼  and 𝑍 = 𝛽𝑇𝑅𝛽 

respectively. 

The performance index in (19) or (20) can be rewritten as 

follows 

 

𝐽  𝑘 =
1

2
𝑎𝑇𝐻𝑎      

    (21) 
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where 𝑎𝑇 = [𝑎0
(1)

𝑎1
(1)

…𝑎𝑁
(1)

 𝑎0
(2)

𝑎1
(2)

…𝑎𝑁
(2)

…𝑎0
(𝑧)

…𝑎𝑁
(𝑧)

]  is 

the unknown parameter vector,  𝐻  is a positive definite 

Hessian matrix and z is the number the directly approximated 

states. 

C) Time-varying matrices 𝐴(𝑥[𝑘−1] 𝜏 ) and 𝐵(𝑥[𝑘−1] 𝜏 )    

approximation: 

Equation (10) shows that the two matrices 𝐴(𝑥[𝑖−1] 𝜏 ) 

and 𝐵(𝑥[𝑖−1] 𝜏 )   are a function of   𝜏 , therefore it is 

necessary to express every 𝜏  dependant element in both 

matrices in terms of a Legendre series of known parameters. 

To this end, let 𝐴𝑗𝑙  𝜏 = 𝑔(𝑥[𝑖−1] 𝜏 , 𝜏) be the (𝑗, 𝑙) element 

of the matrix 𝐴(𝑥[𝑖−1] 𝜏 )  where 𝑥[𝑖−1] 𝜏  is the nominal 

trajectory of the previous iteration. Then the term 𝐴𝑗𝑙  𝜏  can 

be expressed in terms of a Legendre  series of known 

parameters of the form 

 

𝐴𝑗𝑙  𝜏 =  𝑊𝑖𝑃𝑖(𝜏)𝑀
𝑖=0     (22) 

where the coefficients 𝑊𝑖  are given by [13] as 

 

                    𝑊𝑖 =
2𝑖+1

2
 𝑔 𝜏 𝑃𝑖 𝜏 𝑑𝜏

1

−1
                       (23)                                   

                                         

The same approximation can be done for the matrix 

 𝐵(𝑥[𝑘−1] 𝜏 )     .  
 

D) Initial and terminal state constraints approximation:  

Using the initial value property of Legendre polynomials at 

𝜏 = −1, the initial condition vector can be approximated as 

follows 

𝑎0
 𝑗  

− 𝑎1
 𝑗  

+ 𝑎2
 𝑗  

− 𝑎3
 𝑗  

+ ⋯ +  −1 𝑁𝑎𝑁
 𝑗  

− 𝑥𝑗  −1 = 0        

 𝑗 = 1,2, … , 𝑛                                       (24)  

where 𝑥𝑗  −1 = 𝑥0.  The same procedure can be applied to 

approximate the terminal state vector. By using the final 

value property of Legendre polynomials at 𝜏 = 1 , the 

following approximation of the terminal state vector can be 

obtained 

    𝐹  𝛼 𝑃 1 =  𝑋𝑓                                                          (25) 

where 

   𝑃𝑇 1 = [1 1 … 1]                                                       (26) 
 

E) Path inequality constraints  approximation: 

Many methods have been proposed to handle inequality 

constraints on state or control variables. One method is to add 
a slack variable to the inequality constraint to convert them 

into equality constraints. This method was used by [6]. 

However this method has two drawbacks: The first, adding a 

slack variable would convert the linear problem into a 

nonlinear one. The second drawback is the increase in the 

system dimension as a result of  the increase in unknown 

parameters.  

Another method used in [1,14-16] is to discretize the time 

interval 𝜏 ∈ [−1,1]  with  𝑟 + 1 discrete points, and satisfy 

the constraints at each point. By this, every continuous 

constraint is replaced by  𝑟 + 1 constraints. To avoid the 
drawbacks of the slack variables method, we will adopt this 

method in this work. Mathematically, the time interval 

𝜏 ∈ [−1,1]   is discretized as follows 

 

−1 = 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑟 = 1     (27) 

 

Therefore, each of the continuous control saturation 

constraints is replaced by 𝑟 + 1  finite dimension inequality 

constraints. Using Legendre polynomials, the 𝑟 + 1  

constraints are given by 

 

 𝑏𝑖
 𝑙 𝑃𝑖(𝜏𝑠)𝑁

𝑖=0 ≤ 𝑈𝑚𝑎𝑥          (28) 

− 𝑏𝑖
 𝑙 

𝑃𝑖(𝜏𝑠)𝑁
𝑖=0 ≤ −𝑈𝑚𝑖𝑛            (29) 

 

whereas the state saturation constraints are given by  

 

     𝑎𝑖

 𝑗  
𝑃𝑖

𝑁
𝑖=0 (𝜏𝑠) ≤ 𝑋𝑚𝑎𝑥         (30) 

− 𝑎𝑖

 𝑗  
𝑃𝑖

𝑁
𝑖=0  𝜏𝑠 ≤ −𝑋𝑚𝑖𝑛        (31) 

 

The difficult constrained nonlinear quadratic optimal 

control problem is converted into a sequence of standard 

constrained quadratic programming problems that can be 
restated as follows: 

 

𝑚𝑖𝑛𝑎      
1

2
𝑎𝑇𝐻𝑎        (32) 

subject to 

𝐹1𝑎 = 𝑏1           (33) 

𝐹2𝑎 ≤ 𝑏2           (34) 

where the equality constraints are due to initial conditions, 

terminal state constraints, and in some cases unsatisfied state 

equations. While the inequality constraints are due to 
inequality constraints on the control and the state variables. 

The standard quadratic programming problem (32)-(34) 

can be solve using any available software package. In this 

work, we use the active set method in MATLAB software to 

solve this problem 

To solve the original nonlinear problem (1) -(4), we need to 

solve constrained linear  time-varying quadratic optimal 

control problems (9)-(12) iteratively 

V. COMPUTATIONAL RESULTS 

 Example1: Van der Pol oscillator problem : 

Find an optimal controller 𝑢∗(𝑡)  that minimizes the 

following performance index 

 

𝐽 =
1

2
  𝑥1

2 + 𝑥2
2 + 𝑢2 𝑑𝑡

5

0
    (35) 

 

subject to: The dynamic state equations and initial conditions 

 

𝑥 1 = 𝑥2       𝑥1 0 = 1          (36) 

𝑥 2 = −𝑥1 +  1 − 𝑥1
2 𝑥2 + 𝑢     𝑥2 0 = 0  (37) 

 

 terminal state constraints  

𝑥1 5 = −1           (38) 

𝑥2 5 = 0           (39) 

 

and inequality control constraints  
 𝑢(𝑡) ≤ 0.75          (40) 

 

This problem can be reformulated and restated using the 

proposed method as follows: Find an optimal control 𝑢∗(𝑡) 

that minimizes the following performance index: 

 

𝐽[𝑘] =
5

4
 ( 𝑥1

[𝑘]
 

21

−1
+

 𝑥2
[𝑘]

 
2

+  𝑢[𝑘] 
2

)𝑑𝜏     

(41) 
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subject to: 

 
𝑑𝑥1

𝑑𝜏

[𝑘]
=

5

2
𝑥2

[𝑘]        , 𝑥1
[𝑘] −1 = 1      (42) 

 

𝑑𝑥2

𝑑𝜏

 𝑘 

=
5

2
 −𝑥1

 𝑘 +  1 −  𝑥1
 𝑘−1 

 
2

 𝑥2
 𝑘 + 𝑢 𝑘      , 

 

           𝑥2
[𝑘] −1 = 0          (43) 

 

          𝑥1
[𝑘] 1 = −1                            (44) 

           𝑥2
[𝑘] 1 = 0                           (45) 

           𝑢(𝜏)[𝑘] ≤ 0.75                               (46) 

 

After changing the time interval 𝑡 ∈ [0,5] to the interval 

𝜏 ∈ [−1,1], 𝑥1(𝜏) is approximated by a 9th order Legendre 

series, 𝑥2(𝜏)  is determined from (42) while 𝑢(𝜏)   is 

determined from (43). The inequality  control constrains are 

satisfied at 21 equally spaced points in the interval [−1,1], 

namely at 

  𝜏 = −1, −0.9, −0.8, −0.7, … ,0.7,0.8,0.9,1  
 

Table 1 illustrates the results of the optimal values of the cost 

function  𝐽  for several iterations. 

 

Table 1 approximated optimal value  𝑱  

Iteration  k 

 
J 

0 1.854040831 

1 2.381162382 

2 2.236824541 

3 2.292189099 

4 2.263384111 

5 2.277806397 

 

This problem was solved  by Bashein and Enns [17], and 

they  obtained 𝐽 = 2.1439199, after seven iteration. This 

problem also solved by Jaddu [5] using quasilinearization 

and state parameterization using Chebyshev polynomials  

and 𝐽  was found to be 2.1443893 after seven iteration.  

Figures 1 shows the approximated optimal control and state 

trajectories of the Van der Pol oscillator  

 

 
Fig. 1. Optimal control and state trajectories using Legendre 

Polynomials 

 Example 2:  Container crane problem: 

In this example, we consider  a practical and complex 

problem; the container crane problem [18]. Find an optimal 

controller 𝑢∗(𝑡) that minimizes the performance index: 

 

𝐽 =
1

2
 (𝑥3

2 + 𝑥6
29

0
)𝑑𝑡      (47)  

 

subject to the following  dynamic state equations  

𝑥 1 = 𝑥4            (48) 

𝑥 2 = 𝑥5            (49) 

𝑥 3 = 𝑥6            (50) 

𝑥 4 = 𝑢1 + 17.2656𝑥3       (51) 

𝑥 5 = 𝑢2            (52) 

𝑥 6 = −
1

𝑥2
 𝑢1 + 27.0756𝑥3 + 2𝑥5𝑥6   (53) 

 

 The  initial and the terminal state constraints are 

 𝑥 0 = [0,22,0,0, −1,0]𝑇     (54) 

𝑥 9 = [10,14,0,2.5,0,0]𝑇     (55) 
 

and the path inequality constraints on the states and the 

control are 
 𝑢1(𝑡) ≤ 2.83374  ∀𝑡 ∈ [0,9]    (56) 

−0.80865 ≤ 𝑢2 𝑡 ≤ 0.71265  ∀𝑡 ∈ [0,9]  (57) 
 𝑥4(𝑡) ≤ 2.5   ∀𝑡 ∈ [0,9]      (58) 
 𝑥5(𝑡) ≤ 1   ∀𝑡 ∈ [0,9]       (59) 

 

Applying the iterative technique of section III and changing 

the time into  𝜏  , we get 

For k≥ 1 

Minimize 

𝐽[𝑘] =
9

4
 (𝑥3

 𝑘 
)2 + (𝑥6

 𝑘 
)21

−1
)𝑑𝜏    (60)  

subject to the following state equations  

 

𝑥 1
[𝑘]

=
9

2
𝑥4

[𝑘−1]
          (61) 

𝑥 2
[𝑘]

=
9

2
𝑥5

[𝑘−1]
          (62 

𝑥 3
[𝑘]

=
9

2
𝑥6

[𝑘−1]
          (63) 

 

𝑥 4
[𝑘]

=
9

2
(𝑢1

 𝑘 
+ 17.2656𝑥3

 𝑘−1 
)  (64) 

𝑥 5
[𝑘]

=
9

2
𝑢2

[𝑘 ]
           (65) 

𝑥 6
[𝑘]

= −
9

2
 (

1

𝑥2
 𝑘−1  𝑢1

 𝑘 
+ 27.0756 

𝑥3
 𝑘 

𝑥2
 𝑘−1  + 2

𝑥5
 𝑘−1 

𝑥2
 𝑘−1  𝑥6

 𝑘 
)  

(66) 

where 

 𝑥[𝑘] −1 = [0,22,0,0, −1,0]𝑇    (67) 

𝑥[𝑘] 1 = [10,14,0,2.5,0,0]𝑇     (68) 
and the control inequality constraints 

−2.83374 ≤ 𝑢1
[𝑘]

(𝜏) ≤ 2.83374  ∀𝜏 ∈ [−1,1] (69) 

−0.80865 ≤ 𝑢2
[𝑘]

 𝜏 ≤ 0.71265  ∀𝜏 ∈ [−1,1] (70) 

and  state inequality constraints 

−2.5 ≤ 𝑥4
 𝑘 

(𝜏) ≤ 2.5   ∀𝜏 ∈ [−1,1]   (71) 

−1 ≤ 𝑥5
 𝑘 

(𝜏) ≤ 1   ∀𝜏 ∈ [−1,1]    (72) 

 

Each of the problems (60)-(72) is solved by converting it 

into quadratic programming 

problem. To this end, the state 

variables 𝑥1 , 𝑥2, 𝑥3  were 

approximated by 9th order 
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Legendre series with unknown parameters. The remaining 

state variables 𝑥4, 𝑥5, 𝑥6  and control variables 𝑢1 , 𝑢2  are 

obtained using the first five state equations. All state 

equations are directly satisfied except the last equation which 

will be replaced by 𝑁 + 1 equality constraints by equating 

the coefficient of the Legendre polynomials on both sides of 

the equation. 

Table 2 illustrates the results of simulation carried out on 

the crane problem using  Legendre polynomials. 

 

Table 2 Optimal values for the crane problem 

Iteration 𝒊 J 

0 0.005213296926173 

1 0.005647797358452 

2 0.005647752274546 

3 0.005647708914071 

4 0.005647667212744 

 

Figures 2 to 9 show the optimal  state trajectories and  

controls of the container crane problem using  Legendre 

polynomials. 

 

This problem was solved by Teo et.al. [19] using a piecewise 

constant functions to parameterize the control variables and 𝐽 

was found to be 0.005361 . They also used a piecewise 

linear functions to parameterize the control variables and 

found 𝐽 = 0.005412 . Jaddu [5, 20] solved this problem 

using the second method of quasilinearization and state 

parameterization using Chebyshev polynomials, and 𝐽 was 

found to be 0.00562 after three iterations. Recently, Jaddu 

[21] solved the same problem using iterative method with 

Chebyshev polynomials and obtained  𝐽 = 0.005644799 

 
 

 
Figure 2  𝒙𝟏(𝒕) optimal trajectory using Legendre Polynomials  

 

 
Figure 3  𝒙𝟐(𝒕) optimal trajectory using Legendre Polynomials  

 

 
Figure 4  𝒙𝟑(𝒕) optimal trajectory using Legendre Polynomials  

 

 
Figure 5 𝒙𝟒(𝒕) optimal trajectory using Legendre Polynomials  
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Figure 6 𝒙𝟓(𝒕) optimal trajectory using Legendre Polynomials  

 

 
Figure 7 𝒙𝟔(𝒕) optimal trajectory using Legendre Polynomials  

 

 
Figure 8  𝒖𝟏(𝒕) optimal control using Legendre Polynomials  

 

 
Figure 9  𝒖𝟐(𝒕) optimal control using Legendre 

VI. CONCLUSION 
 

A recursive numerical method has been presented for solving 

a class of  nonlinear optimal control problems with terminal 

state constraints and path inequality constraints on the states 
and the control variables.. The method is based on combining 

iterative technique with state parameterization using 

Legendre polynomials to convert the original constrained 

nonlinear optimal control problem into a sequence of 

quadratic programming problems. To show the effectiveness 

of the method, the simulation results of  the Van der Pol  

oscillator problem and the container crane problem are 

presented and the  simulation results obtained indicate that 

the method gives a good and comparable results with other 

methods. 
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