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Abstract— A novel scheme has been studied and demonstrated 

for Monte Carlo simulations of diffusion-reaction processes. 

The new algorithm skips the traditional small diffusion hops and 

propagates the diffusing particles over long distances through a 

sequence of super-hops, one particle at a time. By partitioning 

the simulation space into non- overlapping protecting domains 

each containing only one or two particles, the algorithm 

factorizes the N-body problem of collisions among multiple 

Brownian particles into a set of much simpler single-body and 

two-body problems. Efficient propagation of particles inside 

their protective do- mains is enabled through the use of 

time-dependent Green's functions (propagators) obtained as 

solutions for the first-passage statistics of random walks. The 

resulting Monte Carlo algorithm is event-driven and 

asynchronous; each Brownian particle propagates inside its own 

protective domain and on its own time clock. The algorithm 

reproduces the statistics of the underlying Monte-Carlo model 

exactly. The new algorithm is efficient at low particle densities, 

where other existing algorithms slow down severely. Thus we 

have analyzed the application of this algorithm in the charge 

distribution and the capacitance detection.  

 

Index Terms—Monte Carlo Simulation, Charge distribution, 

capacitance, Markov chain 

I. INTRODUCTION 

First passage algorithm is a simple and robust computational 

approach for simulations of systems evolving through 

random walks.  Mathematically, first passage process derives 

from the theory of Markov processes in which the model 

evolves from state to state through a sequence of stochastic 

transitions whose rates depend on the current state alone 

[1-3].  Random walks are typically simulated as sequences of 

hops, either from one lattice site to a neighboring one for 

discrete walks, or through finite displacements for 

continuum walks.  When the system dynamics is defined by 

collisions among the walkers, the hops themselves are trivial 

changes of the system’s state while significant events take 

place only when the walkers collide.  A serious 

computational bottleneck is presented for the first passage 

method by situations when the density of walkers is low. 

Consider a system of randomly distributed walkers. Many 

research works have been done on the Monte Carlo 

simulation (MCS). James A. Given, Chi-Ok Hwang, and 

Michael Mascagni have shown that Monte Carlo diffusion 

methods are often the most efficient algorithms for solving 

certain elliptic boundary value problems [1].   

 

 

 
Manuscript Received on May 2015.  

Aditya Kumar Singh, Department of ECE, ICFAI University, Jharkhand, 

Ranchi.  India.  

Apurva Anand, Department of ECE, BIT Mesra, Ranchi, Jharkhand, India. 

Anindya Sundar Das, Department of Physics, Sidho-Kanho-Birsha 

University, Purulia, West Bengal, India. 

Melvin H. Kalos, George H. Gilmer and B. Sadigh have 

introduced a new Monte Carlo simulation method of 

diffusion-reaction processes where they have eliminate of 

traditional small diffusion hop and made to propagate the 

diffusing particles over long distances through a sequence of 

super-hops, one particle at a time [13-14].  In [4-10] several 

methods have been discussed for computing the charge 

distribution and the capacitance by calculating the diffusion 

of particle. But these methods have several drawbacks which 

have been discussed n the [11-12]. Some possible solutions 

were given in [15-19] but as system particles are following 

the Brownian dynamic model the MCS solutions are getting 

complex.  There are few schemes, discussed in [20- 22], 

which have given the idea of solving the problems by 

employing MCS scheme with first passage solution. 

In this paper we have presented a novel approach  for Monte 

Carlo simulations that is both  efficient and exact for a wide 

class of models involving collisions among multiple 

Brownian  particles,  as first proposed  in  Based on exact  

solutions for the first passage statistics of random walks, the 

new method  is referred to as First Passage  Kinetic  Monte  

Carlo (First passage Monte Carlo) in the following.  In the 

new algorithm, the particles are propagated over long 

distances while each walker (particle) is protected (separated 

from interference by other walkers) within its own spatial 

region.   The N regions are non-overlapping and partition the 

space into disjoint spatial domains in which the enclosed 

walkers are propagated individually.  The use of first-passage 

statistics for walker propagation permits an elegant 

factorization of the N -body problem into a product of N 

single-body problems.   Efficient implementation of the new 

method leads to an asynchronous event-driven algorithm in 

which every walker propagates within its personal space and 

from its own time origin. The resulting speedup is most 

impressive when the density of diffusing particles is low and 

particle collisions are rare. 

II. THEORY OF FIRST PASSAGE MONTE-CARLO 

ALGORITHM  

In a Monte Carlo Simulation a random value is selected for 

each of the tasks, based on the range of estimates. This 

algorithm is based on the first passage (FP) and no passage 

(NP) propagators to skip numerous small steps and to 

propagate the walkers to collisions. For the new algorithm to 

be efficient, Monte Carlo sampling from these propagators 

should not entail significant computational overhead. In this 

algorithm FP and NP propagations replace numerous short 

diffusive hops. The NP propagators are needed when a 

walker propagates right on 

or close to the boundary of a 

neighboring protecting 
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segment. Consequently the new time for FP propagation of 

the squeezed walker is likely to be so short that the same 

walker will be selected for the very next propagation again. 

Therefore MCS cycle entails one FP and possibly one or few 

NP propagation, while all other N-1 or N-2 walkers stay 

inactive. This algorithm allows exact and efficient treatment 

of particle collisions by protecting and propagating group of 

walkers. The ultimate purpose of the MCS method is to 

enable efficient propagation of walkers to the collisions 

whereas handling of collision events is outside of the 

method's main scope. 

III. CALCULATION OF CHARGE DISTRIBUTION  

If Gauss law gives us charge distribution by the equation  
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By the probabilistic potential theory  

V(x+ɛ) is probability density associated with a diffusing 

particle initiating at point (x+ɛ). The point (x+ɛ) is close to 

the surface. Diffusing particle performs the random walks 

from a point on the rod. The particle diffuses to infinity or 

makes a first passage to the rod. Every point on the rod has 

probability of first passage simulating number of random 

walks gives the probability distribution of first passage walks 

V(x+ɛ).  

Rod is of negligible thickness Length is 1 m maintained at 

1V potential. Diffusion particle start at a point on the rod  

 
Figure.1 (a) 

The walk either goes to infinity or it makes a first passage to 

the rod.  

                                                                      
Figure.1 (b) 

 
Figure.1 (c) 

Figure.1 (a) shows the random walk on the conducting rod; 

figure.1 (b) shows the graph for first passage random walk to 

the conducting rod and the figure.1 (c) has shown the  plot of 

varying normalized charge density along the conducting rod 

due to the first passage MCS.  

This charge distribution scheme is also applicable to the 

square plate surface. We have taken an example of a square 

conducting plate, which has negligible thickness, area of 1m 

x 1m and maintained at 1 V potential  

 
Figure.2 (a) 

Figure.2 (a) has shown the random walk of the diffusing 

particles start from a point on the plate. The random walk 

either goes to infinity or it 

makes a first passage on the 

plate  
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Figure.2 (b) 

Figure.2 (b) has shown the plot for first passage random walk 

to the conducting rod. In figure.2 (c) the plot is shown for 

random walks simulation in three dimensions. There are 105 

random walks are simulated for every point. The charge 

distribution is obtained from the probability distribution. 

 
Figure.2 (c) 

The charge distribution is obtained in figure.2 (c) by 

applying the first passage algorithm in the conventional 

charge distribution scheme (Gauss’s law). 

IV. CALCULATION OF CAPACITANCE  

The computing the capacitance of the unit cube analytically 

is considered to be one of the major unsolved problems of 

electrostatic theory [6]. However, due to improvements in 

computer performance and error analysis for walk on spheres 

(WOS) Monte Carlo algorithms, we can now calculate the 

capacitance of the unit cube to many more significant digits 

than previously possible by using a modified Brownian 

dynamics algorithm. In our algorithm, there are only two 

error sources: the error associated with the number of 

random walks N (sampling error) and the error associated 

with a ɛ-absorption layer. The sampling error convergence is 

well-known as O (N1/2), and error analysis for WOS, Monte 

Carlo algorithms enables us to control the error from the 

ɛ-absorption layer and to get a more accurate capacitance 

value for the unit cube. Our result supports the calculations 

given by the conjectured exact value. 

Consider the Robin potential, u, inside G. The boundary 

conditions state that the Robin potential is constant and equal 

to one in G. The interpretation of this hearkens back to 

elementary physics where one learns that inside   a conductor 

the electrical potential is constant. Thus we have: 
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This equation is valid for point xϵG and [v(y) =1/│x-y│]. 

We get the formula for the capacitance by applying the MCS 

in every open set in the G region. Thus the capacitance can 

be calculated using the following formula: 
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To estimate the computational error, we use a Markov 

chain version of the central limit theorem. It states that   
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Tends to a normally distributed random variable 

with mean I[v] and variance DN-1.Here 

 
To evaluate D .we use the method of batch means with the 

number of batches, k+ 1, equal to  (N+1)1/2 and the batch size 

m equal to N1/2 .Thus we have 

 
Where 

 
Thus equation 3 provide a method to obtain the value of 

capacitance without explicitly calculating the density,  

V. CONCLUSION 

In this paper we have studied and analyzed application of 

first passage MCS theoretically. The calculation of charge 

distribution and the capacitance is done successfully using 

the first passage MCS. The scheme is using position of 

particle absorbed in the surface to calculate the charge 

distribution and the moment of particles to calculate the 

capacitance.  This first passage MCS can be applicable to 

solve each and every boundary value problems, Laplace 

equations, etc. 
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