
International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-5 Issue-3, July 2015 

55 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C2644075315/2015©BEIESP 

 

Abstract— designing a distributed wireless sensor network can 

be an arduous task if not done with simulation tools. Simulation 

with a tool should provide a robust and efficient solution of the 

problem with quick response time but available simulation tools 

for designing these wireless sensor networks are very limited. 

Pugelli, Mozumdar,  avagno and Sangiovanni-Vicentelli[1] 

proposed an interactive design tool that can assist rapid design of 

sensor network. This tool synthesizes networks using Dijkstra’s 

algorithm but its execution time is very high when the network size 

is relatively large (n>=50). Moreover, it produces sub-optimal 

solution with large number of router nodes. In this paper, we 

present efficient and robust synthesis algorithm that exclusively 

reduce running time. 

 

Index Terms— wireless sensor network; router placement; 

synthesis algorithm; Simulation Tools 

I. INTRODUCTION 

 Distributed Recent technology advances have caused a 

huge expansion in Wireless Sensor Networks (WSN). 

Applications of WSN are not only limited to factory 

automation, health care monitoring, environmental 

monitoring, security sensing and more importantly defence 

application [1]. Buildings require power for lighting, heating, 

ventilation, air conditioning etc. The power used represents 

around 40% of the cumulative power consumed in the United 

States [1]. Looking at this percentage we can conclude that 

power consumed by buildings need to be controlled and 

monitored in an efficient manner. One attractive domain of 

application of WSN is in Building Automation Systems 

(BAS). The ability to use wireless technology in BAS gives it 

the edge of being able to operate in any geological position 

and also reduces the cost to deploy. Designing a sophisticated 

WSN for BAS is not an easy task to accomplish especially if 

done without the assistance of any simulation/prototyping 

Computer Aided Design (CAD) tool. In order to tackle the 

initial problem of not having a CAD tool to assist a designer in 

designing a distributed network, an interactive tool was 

developed in MatLab. This tool takes in a 2-D floorplan, 

positions of end devices such as sensors or actuators and base 

stations as input and then synthesizes a network of routers and 

the already placed end devices and base stations based on a 

heuristic algorithm that uses a modified version of Dijkstra‘s 

algorithm. The main goal of this tool is to synthesize a 

sub-optimal if not an optimal network topology (locations of 

the routers) [1]. The synthesized network guarantees 

connectivity while optimizing certain criteria such as cost, 

resiliency, network lifetime, etc. [1].  

 

 
Revised Version Manuscript Received on May 26, 2015. 

  Abhishek M. Kinhekar, B.E. Department of Computer Science 

Technology from Nagpur University. Guru Nanank College of Engineering, 

Nagpur. India. 

  Prof. Parmalik Kumar, M. Tech. Department of Computer and 

Information Technology. RGPV. Bhopal, India.  

This tool takes into account propagation models and also 

obstacles in order to produce a most accurate distributed 

network. The techniques used in this tool pose a few key 

issues that could possibly be an obstacle to a designer using 

the tool. The key issues are: 1. Rim time. For any engineer 

time is a precious commodity. It is not efficient for a tool to be 

taking a huge amount of time to produce results. 2. Node 

placement. The produced output is a sub-optimal solution. 

Node placement can be further improved for a better network 

topology. These issues will be further elaborated on in the 

succeeding chapters. In this thesis, we propose methods and 

implement them to overcome these issues or rather we 

propose better solutions to designing distributed networks.  

II. BACKGROUND 

 Related Work 

The authors of [1] present a sophisticated design tool that is 

able to assist a designer in designing WSNs. They argue that it 

is possible to design a network that is more resilient to failure 

and has a longer life time. To achieve that they add 

redundancy to the network which will increase resiliency and 

place routers only where they are needed to improve life time. 

Both of these have a direct relation to router placement. To 

synthesize a network they propose two methods of synthesis, 

one that yields and exact solution to the problem and a 

heuristic that results in a sub-optimal solution. The exact 

method employs the Mixed Integer Linear Programming 

(MILP) optimization. In relation to our work, we are using a 

heuristic method to solve the issue of router placement. In 

Gibney et al. [2], their article present a tool to assist in the 

design of a Building Management System. This tool first 

gathers specific requirements such as the target environment 

constraint, measurements zones and building geometry. They 

then discuss the methods of generating candidate sensor 

position using the Neural-Gas algorithm. Using this 

algorithm, the network topology is incrementally generated. 

Site specific demand zones are identified and this information 

is passed on to the algorithm. Based on this information the 

Neural-Gas algorithm will be able to generate the candidate 

positions. After this an agent based optimization I used to 

optimize the network that was synthesized. In contrast to our 

work, this paper finds the candidate position of sensors and 

not routers. Our work assumes that sensor positions are fixed 

and only router positions are at play. Wang et al. [3] target 

sensor deployment in indoor environments. Their objective is 

to develop a more effective way to deploy sensor networks 

and minimize the number of nodes deployed while 

guaranteeing coverage and connectivity. They propose using 

several search algorithms such as Simulated Annealing. Their 

deployment method consists of partitioning the sensing field 

into smaller sub-regions based on its shape and then 

deploying the sensors.  

 

 

Router Nodes Placement Optimization for 

Designing a Distributed Sensor Network  

Abhishek M. Kinhekar, Parmalik Kumar 



 

Router Nodes Placement Optimization for Designing a Distributed Sensor Network  

56 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C2644075315/2015©BEIESP 

We do not partition the sensing field or the network floor 

plan. We consider the target space as a whole and we are only 

concerned with the positioning of routers not sensors. In their 

research, Pinto et al. [4] present a design tool to automatically 

design a network. The synthesis algorithm presented in their 

work employs the use of MILP which would yield an exact 

solution. We differ from this work as our work does not use 

any Integer Linear Programming (ILP) to result in an exact 

solution. We are using a heuristic method to synthesize the 

network. Chang et al. [5] discuss an effective way to develop 

the number of sensors required using certain search oriented 

strategies such as Simulated Annealing. Their work deploys 

nodes based on the target space and the radiation pattern of 

the antenna. Initially a set of fixed nodes are laced then the 

search algorithm goes through the search space for a solution 

that satisfies the coverage and connectivity constraint. In our 

work we initially place fixed nodes based on connectivity then 

cluster these nodes based on their connectivity. We do not 

concern ourselves with coverage as it is assumed that the 

sensors placed provide enough coverage. Akshay et al. [6] 

highlight the deployment of nodes based on a grid fashion in 

order to maximize sensing coverage. They propose that nodes 

be placed in either triangular lattices or square grids or 

hexagonal grids. This is also employed by Bai et al. [7] where 

sensors are placed in strip grids. This method of grid 

placement is similar to the works of Pugelli et al. [1] but is not 

what our work entails. Again we are not concerned with 

coverage but only connectivity. In their work, Wang et al. [8] 

use a partitioning method where there target region is 

partitioned into smaller regions and then nodes are deployed. 

Different ways of node placements are provided depending on 

region size. For a sensing field, sensors are deployed in the 

smallest number possible to maintain coverage and 

connectivity. For a small partitioned region, sensors are 

placed on the bisector of the region and for large regions, 

sensors are placed continuously row by row. This varies from 

our work as we do not partition the target space and instead of 

placing sensors we are placing routers. All the related work 

except for Pugelli et al. [1], place more emphasis on the 

placement of sensors. Our work assumes that sensors are 

placed and sensing coverage is adequate thus we are primarily 

concerned with the placement of routers to provide 

connectivity. 

III. METHODOLOGY  

Majority of mentioned works is based on the placement of 

sensors. In contrast, we assume that sensors are placed and 

sensing coverage is adequate; thus we are primarily 

concerned about the deployment of routers to automatically 

synthesize the network. Authors in [11][13] proposed that the 

tool (NS2) is composed of a Graphical User Interface (GUI) 

as the front-end and synthesis algorithms as the back-ends of 

the tool. The entire design starts by running the GUI. The GUI 

asks the user for total no of routers, area covered by each 

router, and calculates the preliminary solutions on the basis of 

algorithm. The tool then asks for the optimized algorithm and 

calculates synthesis process. The goal of the combination is to 

find candidate positions to place routers. Authors referred to 

nodes placed by the user on the GUI as physical nodes and the 

nodes placed by the synthesis algorithm as virtual routers 

(VR). In first steps of the synthesis algorithm, the number of 

end devices which don‘t have a path to BS is counted, stored 

in an iteration number. Afterward, candidate coordinates of 

virtual routers are generated based on the value of iteration 

number. In fact, the virtual routers are placed in a rectangular 

grid fashion according to the algorithm I. In the next step, the 

corresponding lines between these virtual routers and the 

physical nodes are retrieved. The signal strengths can be 

calculated according to these lines lengths and the obstacles 

perceived by the pixel values of these lines. Then, the proper 

candidates based on minimum signal strength are chosen to be 

passed to Dijkstras‘s algorithm. After adding the virtual 

nodes, the algorithm examines the paths considering the 

whole network to make sure all the nodes are connected to the 

BS. The previous procedures will continue until all of the end 

devices are connected to the BS. 

The  proposed algorithm in [1] is as under  

Algorithm I : Generating candidate coordinates 

Input: iteration 

if iteration = 1 then 

for k=0 to 2 do 

for j=0 to 2 do 

[x,y] = [5+k*middleLength, 5+j*middleWidth] 

newNode(x,y) 

else 

for k=1 in steps of 2 to 2 ˆ iter do 

for j=0 to 2ˆıter do 

[x,y] = [5+k*middleLength, 5+j*middleWidth] 

newNode(x,y) 

for k=0 in steps of 2 to 2 ˆ iter do 

for j=1 in steps of 2 to 2 ˆ iter do 

[x,y] = [5+k*middleLength, 5+j*middleWidth] 

newNode(x,y) 

A. Modification for  Node placement 

As per [3] the reference synthesis algorithm for router 

placement does not take into account the geometry of the floor 

plan and does not optimize important metrics like the number 

of placed nodes which affect final design cost. This algorithm 

assumes the nodes according to the reference method which 

are placed in rectangular grid fashion. To solve this lacuna, 

the network based on our algorithm is synthesized with 

routers which are placed in their maximum communication 

radius and in straight lines between the base station and the 

end-devices. The algorithm for placing nodes is presented in 

algorithm II[1]. 

Algorithm II : Main synthesis algorithm 

Input: User input of end-devices & base station (BS) locations 

for k=1 to of physical nodes excluding BS do 

retrieve x-y coordinate of BS and physical node (determined 

by loop index) in feet 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-5 Issue-3, July 2015 

57 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C2644075315/2015©BEIESP 

convert x-y coordinates to pixel x-y coordinates 

generate line equation from BS to physical node 

collect points on the line in small steps 

prune all unique points 

for j=1 to of unique points do 

if point value = 0 then 

calculate signal strength from BS to that point 

numberOfObstacles ++ 

[flag] = placeRouter(unique points, signal strength) 

if flag = 1 then 

exploreNew(unique points) 

else 

calculate signal strength 

placeRouter(unique points, signal strength) 

The program initially starts the same way as the reference 

algorithm. After taking necessary inputs from user,  the 

synthesis process starts. First, the algorithm retrieves the x-y 

pair coordinates of the base station and the physical nodes in 

feet. It then converts these to the corresponding x-y pixel 

coordinates. Afterward, it generates the line equation from the 

base station to the current physical nodes. Considering the 

binary image of the floor plan, the algorithm iterates in small 

steps and all points that lie on the line is collected; thus the 

unique points are checked for being an obstacle. Iterating in 

small steps ensures that there is no considerable gap in the line 

and we do not lose any probable obstacle. Having the number 

of obstacles by checking the pixels, the signal strength is 

calculated. This calculated value is then compared with the 

minimum signal strength according to algorithm III and the 

corresponding node as a router is added to the network.  

[1]Algorithm III : Comparing signal strength and placing 

router 

Input: unique points, signal strength 

if signal strength ≤ minimumsignalstrength then 

if point value = 0 //obstacle then 

reiterate backwards to first pixel that is not an obstacle 

move another 15 points back // that is a new point 

convert new point to feet 

if new point is x distance away from old point then 

flag = 1 

place point on GUI 

draw line connecting current node to previous node 

As per [1], There are a few lacunas in the mentioned 

algorithm 

 The first issue is the situation in which the candidate position 

is found on an obstacle. Then the algorithm will go backwards 

in the corresponding line to keep the distance from the 

obstacle to place the virtual router. 

 The second issue is the fact that there should be enough space 

between the recently added virtual router nodes in order to 

satisfy the optimization goals. If a node is placed too close to 

the previous node, the algorithm should look forward for an 

alternative position to place the node. Thus an ‗exploratory‘ 

technique is employed in order to find an alternative path, 

shown in algorithm IV in [1]. 

 

Algorithm IV : Finding an alternative path 

Input: unique points 

Ascertain end-device position with respect to BS 

Identify x and y coordinates of the end-device 

for Attempt to move in direction of the x-component of the 

end-device do 

keep track of distance and number of pixels that are obstacles 

calculate signal strength 

for Attempt to move in direction of the y-component of the 

end-device do 

keep track of distance and number of pixels that are obstacles 

calculate signal strength 

Compare signal strength 

if signal strength from moving in x-component is greater then 

place router at that position else 

place router in the other position 

Considering the straight line between the base station and the 

end device as a vector, we can decompose it into x and y 

components. Now, we can explore regions around the 

non-suitable node in x and y directions. Considering obstacles 

in each direction, we then choose a direction for the path in 

which the signal strength is stronger. A router node will be 

placed at the maximum communication radius. 

B. Modification for Node clustering 

Clustering method is implemented to optimize the matric of 

no. of nodes. The basic idea of clustering is to connect nodes 

that are within each others communication radius. 

Conventionally, clustering starts at the end devices and moves 

backwards towards the BS. When two or more nodes fall into 

each others communication radius, they are combined into 

one node and all nodes that are below that node (connected 

from that node to BS) are removed. When one end device can 

connect to the neighbor‘s router, the paths will be modified 

and the extra router will be removed from the network. In 

order to implement  the corresponding algorithm for 

clustering, the paths from the previous synthesis algorithms 

must be first saved into a data structure. Afterward, the 

clustering method is executed according to algorithm V. The 

clustering algorithm which is based on neighborhood check, 

determines if other nodes fall within the communication range 

of a specific node in a path. The algorithm starts with 

examining each of the nodes (test node) in all paths reaching 

the BS. During the clustering process, the nodes which are in 

the neighborhood of the test node and are on other paths are 

pruned out. 

[1]Algorithm V : Clustering algorithm - part one 

Input: paths from BS to end-devices 

for k=1 to # of paths do 

for j= # of nodes in path k to 2 do 

extract added nodes from data structure excluding BS 

[nodes in 75dB range] = check75dBConnectivity(node x-y 

coordinate, 

added node) 

 

 



 

Router Nodes Placement Optimization for Designing a Distributed Sensor Network  

58 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C2644075315/2015©BEIESP 

[reduced nodes in 75dB range] = remove nodes in range that 

in 

path k 

[nextNodeFlag,newPathFlag, signal strength] = lineEquation( 

reduced nodes in 75dB range, node x-y coordinate) 

if nextNodeFlag = 1 then 

continue to next node defined by index j 

if nextPathFlag = 1 then 

[modified path] = buildPath(paths from BS to end 

Then the test node is examined whether it can connect to those 

neighborhood nodes, considering obstacles. If the test node is 

unable to connect to other neighborhood nodes then the 

algorithm goes for the next node on the same path and 

continues the process. On the other hand, if the test node is 

able to connect to another node then we will use the node that 

is chosen by the algorithm VI. The algorithm VI chooses a 

neighborhood node based on how strong the signal strength is 

between that node and the test node. The data structure 

containing the paths will be updated in order to use this 

selected neighborhood node and remove the old path from test 

node to the BS.  

[1]Algorithm VI : Clustering algorithm - part two 

Input: reduced nodes in 75dB range, node x-y coordinates 

for k=1 to of reduced nodes in 75dB range do 

retrieve line equation from current node to node k 

collect unique points 

check connectivity accounting for obstacles 

keep node that results in strongest signal strength 

Remove nodes connected from the current node to BS 

connect current node to the node that resulted in strongest 

signal strength 

C. Decreasing run time of synthesis algorithm[1] 

In [2], all pixel on the line connecting candidate virtual node 

to every physical nodes are collected and their corresponding 

signal strengths are checked. This is repeated over all 

generated coordinates. Since the number of pixels collected 

and checked in each iteration runs into the thousands, it would 

be an extremely time consuming process. In [2], the candidate 

coordinates need to be generated during the algorithm 

execution based on the value of iteration number. In contrast, 

[1],[2] propose the idea of preprocessing. In [1][2] method 

the coordinates need to be pre-generated. Accordingly the  

iteration number is determined arbitrarily or based on prior 

simulation knowledge. The pre-processing technique 

separately counts the number of obstacles that lie in the line 

connecting a candidate coordinate to every pixel on the floor 

plan. For example, lets assume that one of the x-y pair 

generated for candidate virtual router is (20, 20) and the floor 

plan size is 300 by 300 pixels. Then the program will count 

how many obstacles are between point (20,20) and other 

points. This will be done 90,000 times which is the total 

number of pixels in the floor plan. For every x-y pair 

coordinates a binary file will be written. The file is named 

based on the pixel value of the x-y pair.  

For example, a floor plan image is 200 by 200 pixels and its 

dimension is 50 by 50 feet. The x-y pair of interest is (20, 20) 

in foot, then the corresponding pixel x-y pair will be (80, 80) 

in pixels. The transformation of feet to pixel is equation 1 and 

2: X − pixel = current X position in feet total length in feet / 

total length in pixels (1) 

Y − pixel =current Y position in feet total width in feet / total 

width in pixels (2) 

After pre-generating the necessary data, each synthesis 

process will employ a look-up table technique to extract the 

number of obstacles and calculate the signal strength. As a 

result the run time of the tool by our approach will be 

considerably reduced. In comparison to the reference method, 

another improvement in our algorithm is that we converted 

the original JPEG image provided by the user to a binary 

image; then the pixel value of ‘1‘ means free space and the 

pixel value of ‘0‘ means an obstacle. 

IV.  EVALUATION  

Proposed  synthesis algorithms are tested on 2D floor plans 

with multiple obstacles (walls). We did simulations using the 

old and new algorithms for the same set of nodes. Then the 

synthesis time of the network is logged. In addition, for every 

simulation the average Receive Signal Strength Indication 

(RSSI) and the average distance for connected nodes are 

computed. If a node makes three connections, then the signal 

strengths for each connection are added and the average RSSI 

is calculated. 

 

Fig 1: Final network setup based on proposed node 

placement 

In our simulation, we assume a high dense floor plan 

including 10 end-devices. The older algorithm is executed 

with the results as percentage network not covered as 4% and 

routing delay is 40ms. After the implementation of the 

improved algorithm,  2% and routing delay is 20ms. 

Afterwards we try and calculate the initial placement delay for 

the nodes and later on, delay after shifting the nodes. We 

create a table as shown in table 1 for simulation results. We 

assume that the average distance is 10 metres.   

 

 

 

 

 

 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-5 Issue-3, July 2015 

59 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C2644075315/2015©BEIESP 

Table 1:  reading of simulation before and after 

algorithm

 

In Fig 2, we provide a graphical representation of percentage 

of network covered with and without the algorithm for total 7 

simulations. X axis contains the total no of nodes and y axis 

contains overall percentage. 

  
Fig.2: comparison of network coverage. 

In Fig 3, we provide a graphical representation of delay in 

microseconds of network covered with and without the 

algorithm for total 7 simulations. X axis contains the total no 

of nodes and y axis contains overall delay. 

 

 

Fig. 3: comparison of delays in synthesis. 

 

 

 

 

 

The overall improvements are presented in table II and 

II. 

No. of 

nodes 

% network 

covered without 

improvement(A) 

% network 

covered with 

improvement 

algorithm(B) 

Improvement 

in % 

(A-B)/B*100) 

10 9 3 200 

20 6 2 200 

30 4 2 100 

40 6 3 100 

50 6 3 100 

60 4 1 300 

70 8 5 60 

 

No. of 

nodes 

Delay in node 

placement 

without 

improvement 

Delay in node 

placement 

with 

improvement 

Improvement in 

% 

((A-B)/B*100) 

10 86529 5773 1398.857 

20 1571545 20525 7556.736 

30 3227487 49301 6446.494 

40 7824353 225601 3368.226 

50 13877147 1127743 1130.524 

60 24308082 1117937 2074.37 

70 44590492 1604228 2679.561 

V. CONCLUSION 

In this Paper, we simulated the synthesis algorithm for the 

distributed wireless sensor networks. In Algorithm 

Simulations, we tried to optimize the connectivity and 

coverage problems. As future work, we plan to improvise the 

process by implementing various different algorithms as 

combination to validate and optimize the process by 

deploying the network whose design was used as an example 

in the paper. The  placement of the router nodes will be on 

randomized basis and collected measurements on network 

resiliency and lifetime will allow us to further tune the 

synthesis strategies. 

REFERENCES 

1.  A. Puggelli, M. M. R. Mozumdar, L. Lavagno, and A. L. 

Sangiovanni-Vincentelli. ―Routing-aware design of indoor wireless 

sensor networks using an interactive tool.‖ IEEE Systems Journal vol. 

PP, Issue: 99, 03 Dec 2013. 

2. A. M. Gibney, M. Klepal, and J. T. O‘Donnell. ―Design of underlying 

network infrastructure of smart building,‖ in Proc. 4th Int. Conf. on 

Intelligent Environments, 2008, PP. 1-4. 

3.  Y. Wang, C. Hu, and Y. Tseng, "Efficient deployment algorithms for 

ensuring coverage and connectivity of wireless sensor networks," in 

Proc. 1st Int. Conf. on Wireless Internet, 2005, PP. 114-121. 

4. A. Pinto, M. D‘Angelo, C. Fishione, E. Scholte, A. 

Sangiovanni-Vicentelli. ―Synthesis of embedded networks for building 

automation and control,‖ in Proc. American Control Conference, 

2008, PP. 920-925 . 

5.  J. Chang, P. Hsiu, and T. Kuo. ―Search-oriented deployment strategies 

for wireless sensor networks,‖ in 10th IEEE Int. Symp. on Object and 

Component-Oriented Real- Time Distributed Computing, 

2007,(ISORC ‗07), 2007, PP. 164-171. 

6.  N. Akshay, M. P. Kumar, and B. Harish. ―An efficient approach for 

sensor deployments in wireless sensor networks,‖ in Int. Conf. on 

Emerging Trends in Robotics and Communication Technologies, 

2010, PP. 350-355. 

 

 



 

Router Nodes Placement Optimization for Designing a Distributed Sensor Network  

60 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C2644075315/2015©BEIESP 

7.  X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai. ―Deploying 

wireless sensors to achieve both coverage and connectivity,‖ in Proc. 

7th ACM Int. Symp. On Mobile ad hoc Networking and Computing, 

2006, PP. 131-142. 

8.  Y. Wang, C. Hu, and Y. Tseng. ―Efficient deployment algorithms for 

ensuring coverage and connectivity of wireless Sensor networks,‖ in 

Int. Conf. on Emerging Trends in Robotics and Communication 

Technologies (INTERACT), 2010, PP. 114- 121. 

9.  T. Clouqueur, V. Phipatanasuphom, P. Ramanathan, and K. K. Saluja. 

―Sensor deployment strategy for target detection,‖ in Proc. 1st ACM 

Int. Workshop on Wireless Sensor Networks and Applications, 2002, 

PP. 42-48. 

10. Elysium Ltd. ―JPEG‖. Internet: http://www.ipeg.org/ 2007[0ct. 2, 

2013]. 

11. Mohammad Mozumdar, Arun Ganesan, Alireza Ameri Daragheh, 

"Optimizing router node placement for desining Distributed Sensor 

networks" 2014 IEEE International Conference on Distributed 

Computing in Sensor Systems 

12. A. Puggelli, M. Mozumdar, L. Lavagno, A. L. 

Sangiovanni-Vincentelli: Routing-Aware Design of Indoor Wireless 

Sensor Network Using an Interactive Tool, IEEE Systems Journal, 

2013 (Volume:PP, Issue:99), pp. 1-14. 

13. Chih-Yung Chang, Jang-Ping Sheu, Senior Member, IEEE, Yu-Chieh 

Chen, and Sheng-Wen Chang, "An Obstacle-Free and Power-Efficient 

Deployment algorithm for wireless sensor networks", ieee transactions 

on systems, man, and cybernetics—part a: systems and humans, vol. 

39, no. 4, july 2009 795 

14. A. M. Gibney, M. Klepal, J. T. ODonnell: Design of Underlying 

Network Infrastructure of Smart Building, Intelligent 

Environments,2008 IET 4th International Conference. 

15. Y. Wang, C. Hu, Y. Tseng: Efficient Deployment Algorithms for 

Ensuring Coverage and Connectivity of Wireless Sensor Networks,in 

Proceedings. First International Conference on Wireless Internet 

16. M. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, andS. Olivieri, 

A Framework for Modeling, Simulation and Automatic Code 

Generation of Sensor Network Application, Proc. of SECON ‘08, pp. 

515–522. 

17. M. Mozumdar, L. Lavagno, L. Vanzago, and Alberto 

L.Sangiovanni-Vincentelli. HILAC: A framework for Hardware In the 

Loop simulation and multi-platform Automatic Code Generation of 

WSN Applications. In Proc. of SIES, pages 88-97, Italy, 2010. 

18. Pavlos Papageorgiou, "Literature Survey on Wireless Sensor 

Networks", pavlos@eng.umd.edu, July 16, 2003 

19. Xuesong Liu, Burcu Akinci, and James H. Garrett, Ömer Akin, 

"Requirements for a computerized approach to plan sensor placement 

in the HVAC systems" © Nottingham University Press Proceedings of 

the International Conference on Computing in Civil and Building 

Engineering W Tizani (Editor) 

20. Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit, 

"Harmony Search-based K-Coverage Enhancement in Wireless Sensor 

Networks" World Academy of Science, Engineering and Technology 

International Journal of Computer, Control, Quantum and Information 

Engineering Vol:9, No:1, 2015 

21.  A. Puggelli, M. M. R. Mozumdar, L. Lavagno, and A. L. 

Sangiovanni-Vincentelli.―Routing-aware design of indoor wireless 

sensor networks using an interactive tool.‖ IEEE Systems Journal vol. 

PP, Issue: 99, 03 Dec 2013. 

22.  A. M. Gibney, M. Klepal, and J. T. O‘Donnell. ―Design of underlying 

networkinfrastructure of smart building,‖ in Proc. 4th Int. Conf. on 

Intelligent Environments, 2008, PP. 1-4. 

23. Y. Wang, C. Hu, and Y. Tseng, "Efficient deployment algorithms for 

ensuring coverage and connectivity of wireless sensor networks," in 

Proc. 1st Int. Conf. on Wireless Internet, 2005, PP. 114-121. 

24. A. Pinto, M. D‘Angelo, C. Fishione, E. Scholte, A. 

Sangiovanni-Vicentelli. ―Synthesis of embedded networks for building 

automation and control,‖ in Proc. American Control Conference, 2008, 

PP. 920-925 . 

AUTHORS PROFILE 

 

Abhishek M. Kinhekar received the B.E. degree in 
Computer Science  Technology from Nagpur University 
in 2008.   He is persuing M.E. in Computer from Patel , 
Bhopal. He is now with Guru Nanank College of 
Engineering, Nagpur .  

 

Prof. Parmalik Kumar has completed his M. tech 

from RGPV, Bhopal. He has vast experience in the field 

of Computer and Information technology. He has 

published several research papers.   


