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Abstract: This paper presents a brief review on how artificial 

neural networks can be used in modelling and control of 

dynamical systems. The paper is broadly categorized into two; the 

first part is a short overview on artificial neural networks, 

particularly its generalization property, as applied to systems 

identification. The subsequent part contains a review onsome of 

the typical approaches used in the control of dynamical systems 

using neural networks which includes model predictive control, 

NARMA-L2 Control and model reference control. Finally, a 

comparative conclusion was made to distinguish the 

performances of the different control methods presented in this 

paper.  

Index Terms: Neural Network Controllers; Generalization; 

Systems Modelling; Control Systems 

I. INTRODUCTION 

In a system, when the output quantity is controlled by 

varying the input quantity, the system is called a control 

system. Therefore control system is a device or set of 

devices, that manages, commands, directs or regulates the 

behaviour of other devices or systems. Generally, control 

systems are categorized into two; open loop control system 

and closed loop control system. 

In open loop control, output is generated based on inputs 

only. This type of control is usually inaccurate and the 

changes in the output due to external disturbance are not 

corrected automatically. On the other hand, closed loop 

control system takes into consideration the current output 

and corrections are made automatically based on feedback. 

A closed loop system is also called feedback control system 

or automatic control system. The human body is a classic 

example of feedback systems.  

The use of neural networks in control systems can be 

seen as a natural step in the evolution of control 

methodology to meet new challenges. Looking back, the 

evolution in the control area  has been fueled by three major 

needs:  the  need to deal  with increasingly complex systems, 

the  need  to accomplish increasingly  demanding design 

requirements, and the  need  to  attain these requirements  

with  less precise advanced knowledge of  the  plant  and its 

environment-that  is, the need  to control under increased 

uncertainty. Today, the need to control, in a better way, 

increasingly complex dynamical systems under significant 

uncertainty has led to a re-evaluation of the conventional 

control methods, and it has made the need for new methods 

quite apparent [1]. With the emergence of intelligent 

computing techniques,  
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particularly artificial neural networks, control systems can 

be realized conveniently using the neural networks which 

provides many advantages, for instance robustness, stability 

and so on, over the conventional approach. In this paper 

some typical approaches are presented on the use of neural 

networks in control systems which include model predictive 

control [2], NARMA-L2 Control [3] and model reference 

control [4]. But first of all, a brief overview on 

generalization property of neural networks will immediately 

follow for better comprehension of the paper. 

II. OVERVIEW OF NEURAL NETWORKS AND 

GENERALIZATION 

In machine learning and cognitive science, artificial 

neural networks, ANN are a family of statistical learning 

models inspired by biological neural networks (the central 

nervous systems of animals, in particular the brain) and are 

used to estimate or approximate functions that can depend 

on a large number of inputs and are generally unknown. 

Artificial neural networks are generally presented as systems 

of interconnected "neurons" which send messages to each 

other. The connections have numeric weights that can be 

tuned based on experience, making neural nets adaptive to 

inputs and capable of learning. 

A multilayer perceptron network trained with the back-

propagation algorithm may be viewed as a practical vehicle 

for performing a non-linear input-output mapping of a 

general nature. A network trained to generalize will perform 

as well in new situations as it does on the data on which it 

was trained [5]. 

In terms of neural networks, the simplest model is the 

one that contains the smallest number of free parameters 

(weights and biases), or equivalently, the smallest number of 

neurons and layers necessary to achieve an accurate 

approximation in a given problem [6]. 

The trick is to use enough neurons to capture the 

complexity of the underlying function without having the 

network over-fit the training data, in which case it will not 

generalize to new situations. We also need to have sufficient 

training data to adequately represent the underlying 

function. 

To illustrate the problems we can have in network 

training, consider the following general example. Assume 

that the training data is generated by the following equation: 

𝒕𝒌 = 𝒇 𝒑𝒌 + 𝒆𝒌  (1) 

where; pk is the system input, f( . ) is the underlying function 

we wish to approximate, ekis measurement noise, and tk is 

the system output (network target). Fig. 1shows an example 

of the underlying function 

(thick line), training data 
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target values (circles), and total trained network response 

(thin line). The two graphs of Fig. 1 and that of Fig.2 

represent different training strategies. 

 
Fig.1. Good Fitting 

 
Fig.2. Over Fitting 

As we can see from Fig. 2, there are two major 

problems. First, the network has over-fit on the training data. 

The network response is too complex, because the network 

has more than enough independent parameters, and they 

have not been constrained in any way. The second problem 

is that there is no training data for values greater than 0. 

Neural networks (and other nonlinear black box techniques) 

cannot be expected to extrapolate accurately. If the network 

receives an input that is outside of the range covered in the 

training data, then the network response will always be 

suspect [5][6]. 

While there is little we can do to improve the network 

performance outside the range of the training data, we can 

improve its ability to interpolate between data points. 

Improved generalization can be obtained through a variety 

of techniques. In one method, called early stopping [4][10], 

we place a portion of the training data into a validation data 

set. The performance of the network on the validation set is 

monitored during training. During the early stages of 

training the validation error will come down. When over-

fitting begins, the validation error will begin to increase, and 

at this point the training is stopped. 

Another technique to improve network generalization is 

called regularization. With this method the performance 

index is modified to include a term which penalizes network 

complexity [6]. 

III. TRAINING MULTILAYER NETWORKS 

One of the key issues in designing such a multilayer 

network is determining the number of neurons to use, 

particularly in the hidden layer. If the number of neurons is 

too large, the network will over-fit the training data. This 

means that the error on the training data will be very small, 

but the network will fail to perform as well when presented 

with new data. A network that generalizes well will perform 

as well on new data as it does on the training data [13][11]. 

The complexity of a neural network is determined by the 

number of free parameters that it has (weights and biases), 

which in turn is determined by the number of neurons. If a 

network is too complex for a given data set, then it is likely 

to over-fit and to have poor generalization. 

There are at least five different approaches that people 

have used to produce simple networks: growing, pruning, 

global searches, regularization, and early stopping. Growing 

methods start with no neurons in the network and then add 

neurons until the performance is adequate. Pruning methods 

start with large networks, which likely over-fit, and then 

remove neurons (or weights) one at a time until the 

performance degrades significantly. Global searches, such as 

genetic algorithms, search the space of all possible network 

architectures to locate the simplest model that explains the 

data [5]-[8],[12]. 

The final two approaches, regularization and early 

stopping, keep the network small by constraining the 

magnitude of the network weights, rather than by 

constraining the number of network weights. 

IV. NEURAL NETWORK APPROACH IN SYSTEMS 

MODELLING AND CONTROL 

When using neural networks for control, there are 

typically two steps involved: system modelling and control 

design. In the system modelling or identification stage, we 

normally develop a neural network model of the plant that 

we want to control. In the control design stage, we use the 

neural network plant model to train the controller. In each of 

the three control architectures described in this paper, the 

system identification stage is identical. The control design 

stage, however, is different for each of the architectures. The 

next three subsections of this paper discuss model predictive 

control, NARMA-L2 control and model reference control 

[9]-[11]. The first stage of neural control, as mentioned 

earlier, is to train a neural network to represent the forward 

dynamics of the plant. The prediction error between the 

plant output and the neural network output is used as the 

neural network training signal. The process is represented by 

Fig. 3. 
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Fig.3. Plant Identification 

One standard model that has been used for nonlinear 

identification is the Nonlinear Autoregressive-Moving 

Average, NARMA model [3]: 

𝒚 𝒌 + 𝒅 = 𝒉[𝒚 𝒌 ,𝒚 𝒌 − 𝟏 ,… , 𝒚 𝒌 − 𝒏 + 𝟏 ,𝒖 𝒌 ,𝒖 𝒌 − 𝟏 ,
… , 𝒖 𝒌 − 𝒎 + 𝟏 ]   (2) 

where u(k) is the system input, y(k) is the system output and 

d is the system delay. For the identification phase, we train a 
neural network to approximate the nonlinear function. The 

structure of the neural network plant model is given in Fig. 

4, where the blocks labeled TDL are tapped delay lines that 

store previous values of the input signal. The equation for 

the plant model is given by: 

𝒚𝒎 𝒌 + 𝟏 =
𝒉 [𝒚𝒑 𝒌 ,𝒚𝒑 𝒌 − 𝟏 ,… , 𝒚𝒑 𝒌 − 𝒏 + 𝟏 ,𝒖 𝒌 ,𝒖 𝒌 − 𝟏 ,

… , 𝒖 𝒌 − 𝒎 + 𝟏 ;𝒙]   (3) 

where,𝒉  . , 𝒙 is the function implemented by the neural 

network, and x is the vector containing all network weights 

and biases. 

 

Fig.4. Plant Model 

A. Model Predictive Control 

The model predictive control method is based on the 

receding horizon technique [2]. The neural network model 

predicts the plant response over a specified future time 

horizon. The predictions are used by a numerical 

optimization program to determine the control signal that 
minimizes the following performance criterion over the 

specified horizon [16]. 

𝑱 =   𝒚𝒓 𝒌 + 𝒋 − 𝒚𝒎 𝒌 + 𝒋  
𝟐

 + 𝝆 (𝒖  𝒌 + 𝒋 − 𝟏 −
𝒏𝒖
𝒋=𝟏

𝒏𝟐
𝒋−𝒏𝟏

𝒖𝒌+𝒋−𝟐)𝟐    (4) 

where,𝒏𝟏, 𝒏𝟐and 𝒏𝒖define the horizons over which the 

tracking error and the control increments are evaluated. The 

𝒖  variable is the tentative control signal,𝒚𝒓is the desired 

response and 𝒚𝒎is the network model response. The ρ value 

determines the contribution that the sum of the squares of 

the control increments has on the performance index. 

The following block diagram illustrates the model 

predictive control process. The controller consists of the 

neural network plant model and the optimization block. The 

optimization block determines the values of u’ that minimize 
J, and then the optimal u is input to the plant.  

 

Fig.5. NN Predictive Control 

B. NARMA-L2 Control 

The advantage of the NARMA-L2 form is that you can 

solve for the control input that causes the system output to 

follow a reference signal:𝒚(𝒌 + 𝒅) = 𝒚𝒓(𝒌 + 𝒅). The 

resulting controller would have the form; 

 

(5) 

which is realizable for,𝒅 ≥ 𝟏. Fig. 6 is a block diagram 

of the NARMA-L2 controller [2][17]. 

 

Fig.6. NARMA-L2 Controller 
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C. Model Reference Control 

The third neural control architecture we will discuss in 

this paper is model reference control [4]. This architecture 

uses two neural networks: a controller network and a plant 

model network, as illustrated in Fig. 7. The plant model is 

identified first, and then the controller is trained so that the 

plant output follows the reference model output. 

 

Fig.7. Model Reference Control 

The online computation of the model reference 

controller, as with NARMA-L2, is minimal. However, 

unlike NARMA-L2, the model reference architecture 

requires that a separate neural network controller be trained, 

in addition to the neural network plant model. The controller 

training is computationally expensive, since it requires the 

use of dynamic backpropagation [12][4]. On the positive 

side, model reference control applies to a larger class of 

plant than does NARMA-L2 control, which requires that the 

plant be approximated by a companion form model. 

There are three sets of controller inputs: delayed 

reference inputs, delayed controller outputs (plant inputs), 

and delayed plant outputs. For each of these inputs, we 

select the number of delayed values to use. Typically, the 

number of delays increases with the order of the plant. There 

are two sets of inputs to the neural network plant model: 

delayed controller outputs and delayed plant outputs 

[14][15]. 

The plant identification process for model reference 

control is the same as that for the model predictive control, 

and uses the same NARMA model given by (2). The 

training of the neural network controller, however, is more 

complex. 

V. CONCLUSION 

Model Predictive Control uses a neural network plant 

model to predict future plant behaviour. An optimization 

algorithm determines the control input that optimizes plant 

performance over a finite time horizon. The plant training 

requires only a batch algorithm for feedforward networks 

and is reasonably fast. The controller requires an online 

optimization algorithm, which requires more computation 

than the other two controllers. NARMA-L2 Control is a 

variation of the feedback linearization controller. An 

approximate companion form plant model is used. The next 
control input is computed to force the plant output to follow 

a reference signal. The neural network plant model is trained 

with static back propagation. The controller is a 

rearrangement of the plant model, and requires minimal 

online computation. In Model Reference Control, neural 

network plant model is first developed. The plant model is 

then used to train a neural network controller to force the 

plant output to follow the output of a reference model. This 

control architecture requires the use of dynamic back 

propagation for training the controller. This generally takes 

more time than training static networks with the standard 

back propagation algorithm. However, this approach applies 

to more general class of plant than does the NARMA-L2 
control architecture. The controller requires minimal online 

computation [11]. 
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