On the Use of Artificial Intelligence Techniques in Transportation Systems

Ashwani Kumar Aggarwal

Abstract: Transportation systems are becoming more and more advanced due to progress made in computational techniques used in transportation. Autonomous navigation of vehicles is not only useful in robotics but also in town planning and management. In this paper, use of artificial navigation techniques in navigation of autonomous vehicles is discussed. The methods are based on machine vision techniques which extract feature points in images captured by cameras mounted on vehicles. These images are fed to artificial intelligence algorithms to estimate self-position of vehicles. Knowing the self-position of vehicles, autonomous navigation of vehicles is made feasible. The methods work effectively and vehicles are navigated in cluttered environments.

Index Terms—feature detectors, artificial intelligence, navigation, localization, 3D transformation.

I. INTRODUCTION

Transportation systems are being developed with the help of advanced computational techniques. Such systems are used in daily life these days because of their driver assistance services. Localization of intelligent vehicles is of utmost priority because for effective and efficient transportation of such vehicles, their self-position needs to be known. Apart from localization of intelligent vehicles, service robots need to know their self-position before such robots perform their next task. In case of intelligent vehicles, to stay in a specific lane, the vehicle must know its current position. The position must be known in centimetre accuracy to follow road lane. GPS alone is not sufficient to meet the requirements of such a precise localization. Many other techniques are used along with GPS for the purpose viz. odometry, IMU. In this paper, artificial intelligence based methods are discussed for estimating self-position of transportation systems.

II. SELF-POSITION ESTIMATION

Self-position estimation is needed prior to autonomous navigation of transportation systems. GPS is used for localization of intelligent vehicles. GPS consists of 24 satellites which send signals to estimate position. One satellite needs to be received for each dimension of the user’s position that needs to be calculated. This suggests three satellites are necessary for position estimate for general user (for the x, y, and z dimensions of the receiver’s position) however, the user rarely knows the exact time which they are receiving at, hence four satellite pseudo-ranges are required to calculate these four unknowns. The satellite data is monitored and is controlled by the GPS ground segment - stations positioned globally to ensure the correct operation of the system. The user segment is the GPS user and the GPS reception equipment.

These have advanced considerably in recent years to allow faster and more accurate processing of received data. They typically contain pre-amplification, an analogue to digital converter and DSP processors etc. [3].

Outdoor localization is a task which experiences many problems. Many sensors like laser range finders which play an important role in indoor localization are not suitable for outdoor localization because of the cluttered and unstructured environment. Global positioning system (GPS) discussed in Section can give valuable position information, but often the GPS satellites are occluded by buildings or trees. Because of these problems, vision has become the most widely used technique for outdoor localization. A serious problem with vision based systems is the illumination change because the illumination in outdoor environments is highly dependent on the weather conditions and on the time. In [2], the authors address the problem of long term mobile robot localization in large urban environments where the environment changes dynamically. In their work, the authors use vision system to supplement GPS and odometry [17] and provide accurate localization. The computations involved in vision based localization can be divided into the following four steps [14]:

- Environment sensing: For vision based navigation, this means acquiring and digitizing camera images.
- Detect landmarks: Usually this means extracting edges, smoothing, filtering, and segmenting regions on the basis of differences in grey levels, color, depth or motion.
- Landmark Identification: In this step, the system tries to identify the observed landmarks by searching in the database for possible matches according to some measurement criterion.
- Calculate position: Once a match (or a set of matches) is obtained, the system needs to calculate its position as a function of the observed landmarks and their positions in the database.

In order for a vehicle to localize itself and to navigate autonomously in an environment, a model of that environment is needed which associates camera positions and observations. Provided that such a model (called map) has been built, a localization task can be carried out by means of ordinary statistical operations viz. regression or interpolation. Among the several sensor devices used for localization, vision provides the richest source of information, traditionally being restricted to the use of standard CCD cameras. Lately, omnidirectional vision systems are becoming increasingly popular in the mobile robots field for tasks like environment modelling, while research is active in understanding the properties of such sensors on a theoretical level. The main advantage of an omnidirectional camera compared to a traditional one is its large field of view which for localization application, allows many landmarks to be simultaneously present in the scene leading to more accurate localization.

Revised Version Manuscript Received on October 14, 2015.
Ashwani Kumar Aggarwal, Assistant Professor, Department of Electronics and Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
[13] The approach used in [10] consists of using integral invariant features computed on omnidirectional images and showing their interest in context of mobile robot localization. In their work the complex transformations induced by the geometry of the sensor are taken into account and integrate the virtual moments of the robot to evaluate invariant distributive features. After introducing the theoretical foundations of the integral invariant features construction, the authors presented their approach dealing simultaneously with models of omnidirectional sensor and of the effects of the robot movements on the transformed images. The experimental results presented show an improvement of the invariance of these features compared to the classical histograms, and so of the robot qualitative localization.

The integral method used to build invariant has the advantage of being more direct than differential or geometrical methods. The integral method requires neither image segmentation as in geometrical methods nor derivative computation as in differential methods. The starting point of the invariant building is the Harr integral. It consists of a course through the space of the transformation group parameters. It is typically expressed as

\[I_{Harr} = \frac{1}{|G|} \int_G f \cdot g(x) dg \]

(1)

Where G is the transformation group, and g(x) the action of g, an element of G, on vector x. This invariant has been used in image query in case of Euclidean motion and for mobile robot localization although the Harr integral was not explicitly used. The authors interest concerns transformations of the image obtained with an unidirectional camera. The type of transformations is due to the robot movements and to the projection process. In their work, the study of the robot movements is limited to translations on the floor. Nevertheless, other transformations such as rotations or illumination changes could have been considered but have not been presented in their paper. Translations transform 3D point x (expressed in robot reference frame) into point x + t with t = (t1, t2, 0) a translation in the (Ox, Oy) plane. The camera is endowed with an omnidirectional sensor, generating transformations that can be divided into a projection on its parabolic mirror and an orthopaedic projection on to the image plane. In [8], authors propose an omnidirectional camera based localization system that does not involve the use of historical position estimates. A modified hue profile is generated for each of the incoming omnidirectional images. The extracted hue regions are matched with that of the reference image to find corresponding region boundaries. As the reference image, exact position of the reference point and the map of the workspace are available, the current position of the robot can be determined by triangulation. The method was tested by placing the camera setup at a number of different random positions in a 11.0m x 8.5m room. The average localization error was 0.45m. No mismatch of features between the reference and incoming image was found. In [9], authors make use of omnidirectional camera for map building and localization of a robot. The image sequences of the omnidirectional camera are transformed into virtual top-view ones and melted into the global dynamic map. After learning the environment from training images, a current image is compared to the trainingset by appearance based matching. Appropriate classification strategies yield an estimate of the robot’s current position. Such methods are useful for navigation of transportation systems.

III. 3D MODELING OF ENVIRONMENT

Urban cities are occupied with tall canyons of buildings. In many urban navigation applications, high accuracy localization of moving vehicles is achieved using maps of urban environments. One such technique has been proposed by Jesse Levinson et al [18]. This approach integrates GPS, IMU, wheel odometry and LIDAR data acquired by an instrumented vehicle to generate high resolution environment maps. The idea of their work is to augment inertial navigation by learning a detailed map of the environment, and then to use a vehicle’s LIDAR sensor to localize itself relative to this map. The maps are 2-D overhead views of the road surface, taken in the infrared spectrum. Such maps capture a multitude of textures in the environment that may be useful for localization such as lane markings, tire marks, pavement and vegetating near the road (e.g. grass). The maps are acquired by a vehicle equipped with a state-of-the-art inertial navigation system (with GPS) and multiple SICK laser range finders. Such fusion of sensors is useful in many cases but suffers from many drawbacks in some applications.

IV. SELF-POSITION USING PATHWAY MAP

An autonomous navigation of a vehicle on a pathway is achieved by estimating its self-position on a pathway. The vehicle transitions through a sequence of poses. In urban mapping, poses are five dimensional vectors, comprising the x - y coordinates of the vehicle, along with its heading direction (yaw), roll and pitch angle of the vehicle (the elevation z is irrelevant for this problem). Let x (t) denote the pose at time t. Poses are linked together through relative odometry data, acquired from the vehicle’s inertial guidance system.

\[x_t = g(u_t, x_{t-1} + \epsilon_t) \]

(2)

Here g is the non-linear kinematic function which accepts as input a pose x_{t-1} and a motion vector u (t), and outputs a projected new pose x (t). The variable \epsilon is a Gaussian noise variable with zero mean and covariance R. In log-likelihood form, each motion step induces a non-linear quadratic constraint. These constraints can be thought of as edges in a sparse Markov graph. For any pose x (t) laser angle relative to the vehicle coordinate frame \alpha, the expected infrared reflectivity can easily be calculated. Let \(h_i(m, x_t) \) be this function, which calculates the expected laser reflectivity for a given map m, a robot pose x (t) and a laser angle \alpha. The observation process is modelled as follows

\[z_i^t = h_i(m, x_t) + \delta_i^t \]

(3)

Here \(\delta_i^t \) is a Gaussian noise variable with mean zero and noise covariance Q. In log-likelihood form, this provides a new set of constraints, which are of the form

\[(z_i^t - h_i(m, x_t))^T Q_i^{-1} (z_i^t - h_i(m, x_t)) \]

(4)
The unknowns in this function are the poses x (t) and the map m. The next state of the system is estimated from its current state.

V. KNOWLEDGE ABOUT SURROUNDINGS

Surroundings around the vehicles are stored in a digital map to estimate the self-position of vehicle. The location estimation of a vehicle with respect to a 3D world model finds applications which include automatic navigation, automatic integration of new information into a modeling system, the automatic generation of modelto image overlays. All of these will become increasingly important as modeling systems, such as Google Earth, progress towards more accurate 3D representations [23]. The 3D models are constructed from automatically aligned 3D scans acquired using a Leica HDS 3000 LIDAR scanner, which also produces the model image set {γM}, acquired using a calibrated camera [2]. Model images are pre-processed to extract SIFT keypoints[5], filtering the results spatially to reduce the keypoint set. Keypoint locations are back-projected onto the model surfaces. Each of these ‘model keypoint’ has an associated 3D location, scale and 3D surface normal. In addition a plane π is fit to the LIDAR points in a reasonably large surface area(80s x 80s, where s is the LIDAR sample spacing on the surface) surrounding the keypoint using a M-estimator. Many other classifiers are also used to learn from past navigation. SURF [25] feature points are also used for image matching.

VI. MEMORY BASED SELF-POSITION ESTIMATION

In order to move a vehicle autonomously, its previous positions need to be stored in memory. In [12] and [19], the authors propose a self-localization method that extracts information which is identical for the position of a sensor and invariant against the rotation of the sensor by generating an autocorrelation image from an observed image. The location of the sensor is estimated by evaluating the similarity among the autocorrelation image of the observed image and stored auto correlated images. The similarity of auto correlated images is evaluated in low dimensional eigenspaces generated with stored auto correlated images. They conducted experiments with real images and examined the performance of their method. Accurate self-position of vehicle can be achieved if there is not much clutter.

VII. USING FEATURE VECTOR

Features are used to calculate distance between two images. Natural landmarks are features extracted from the image sequences without any changes made to the environmental model. The use of natural landmarks in localization is limited because of appreciable errors encountered due to change in illumination, camera occlusion and shadows etc.

Artificial landmark localization approach makes use of landmarks which are inserted purposely in the environmental model and these landmarks could be some visual patterns of different shapes and sizes. Artificial landmarks overcome the problem of illumination changes which occurs in natural landmark methods. The disadvantage of using artificial landmarks is that the environment has to be engineered, what in turn limits the flexibility and adaptability to different operational sites. However, this problem can be avoided by using simple, cheap and unobtrusive landmarks, which can be easily attached to walls of buildings in most of the environments. In [24], a mobile robot localization system which uses passive visual landmarks to enhance the recognition capabilities of the onboard camera has been discussed and the focus is on the evaluation of the spatial localization uncertainty with theoretical analysis and presentation of experimental results. In case of illumination changes, robust features need to be calculated for matching images.

VIII. VISION BASED METHOD

Navigation of vehicle is made autonomous by estimating self-position of vehicle using machine vision based techniques. In this approach, the appearance of an object is used for comparing images. Here, an appearance is a view of an object from a certain position and direction. This approach consists of two steps:

1) Storing images and corresponding positions in a database.
2) Finding an image having a similar appearance to the input image from the database and obtaining its corresponding position.

Compared to landmark based approach, the appearance based approach does not require geometrical object position. However, these methods cannot estimate a vehicle’s lateral position since they assume that the trajectory of the self-positions is the same as the trajectory when the database was constructed. In [4], authors use local feature descriptors and its experimental evaluation in a large, dynamic, populated environment where the time interval between the collected set is upto two months. The overview of the proposed method has been shown in the following diagram. The input is the current omni-image and the current odometry reading. The database consists of poses (x, y, θ) of the database images together with the extracted features. Output is the current estimate of the robot position based on the weight and distribution of particles. In [6], the authors addressed the issues of outdoor appearance based topological localization for a mobile robot over different lighting conditions using omnidirectional vision. Their databases, each consisting of large number of omnidirectional images, have been acquired over different day times in dynamic outdoor environments. Two different types of feature extractor algorithms, SIFT and the more recent SURF [20, 21], have been used to compare the images, and the two different approaches, WTA and MCL [22] have been used to evaluate performances. Given the challenges of highly dynamic and large environments, general performances of localization system are satisfactory. In case of false matching, RANSAC is used to remove outliers.

IX. POSITIONING AND MAPPING

Many times, map of the environment is not ready for estimating the self-position or there is need to build map along with estimating self-position.
The simultaneous localization and mapping (SLAM) problem asks if it is possible for a robotic vehicle to be placed at an unknown environment and for the vehicle to incrementally build a consistent map of this environment while simultaneously determining its location within this map. A solution to the SLAM problem has been one of the most notable successes to the robotics community. A two-part tutorial of SLAM aims to provide a broad introduction to SLAM [15, 16]. The main steps in SLAM are:

- Define robot initial position as the root of the world coordinate space or start with some pre-existing features such as landmarks in the map with high uncertainty of the robot position.

- Prediction: When the robot moves, motion model provides new estimates of its new position and also the uncertainty of its location positional uncertainty always increases.

- Measurement: (a) Add new features to map. (b) Re-measure previously added features.

- Repeat steps 2 and 3 as appropriate.

In [1], a system for Monocular Simultaneous Localization and Mapping (Mono-SLAM) relying solely on video input. The method makes it possible to precisely estimate the camera trajectory without relying on any motion model. The estimation is completely incremental - at a given time frame, only the current location is estimated while the previous camera positions are never modified. In particular, simultaneous iterative optimization of the camera positions is performed and they have estimated 3D structure (local bundle adjustment). The key aspect of the system is a fast and simple pose estimation algorithm that uses information not only from the estimated 3D map, but also from the epipolar constraint [7]. Many hybrid methods are also developed to estimate self-position of vehicle and build map of the environment.

X. SUMMARY

Transportation systems use artificial intelligence techniques to autonomously navigate vehicles in an environment. These techniques use many unsupervised machine learning methods to estimate self-position of vehicles. In this paper, techniques which use 3D environment map, feature points and pathway map has been discussed. Each of these methods has its benefits and also suffers from drawbacks. Many hybrid methods are used to estimate self-position of vehicle accurately.

ACKNOWLEDGEMENTS

Author is thankful to Director, Send Longeval Institute of Engineering and Technology, Longeval for providing computational facilities for carrying out this research. Author is also grateful to all those persons who helped in preparing this paper and for proof reading of this manuscript.

REFERENCES

AUTHORS PROFILE

Ashwani Kumar Aggarwal did his B.E. in Electronics and Instrumentation Engineering in 1996, masters degree in 2002 and PhD in 2014. He is working as an assistant professor at Sant Longowal Institute of Engineering and Technology, Longowal, India. His research interest is instrumentation and control engineering.