
International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-4, September 2016

18 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Constructive Initialization of a Genetic Algorithm

for the Solution of a Highly Constrained

Departmental Timetabling Problem
Peter. U. Eze, Dawn. C. Walker, Ifeyinwa E. Achumba

 Abstract: The University or Departmental Timetabling Problem

(UTP or DTP) is a scheduling problem ridden with numerous

constraints. Each of the constraints has a complex effect on the

ideal solution and their combined effect makes the problem

harder to solve. As a solution to this problem, a genetic algorithm

(GA) approach was augmented by a process of constructive

initialisation and applied to an exemplar scheduling problem in

the Department of Computer Science at the University of

Sheffield. The problem entailed scheduling of timetabled slots for

33 modules across a range of taught programmes at various

levels, delivered by 29 lecturers in 10 lecture theatres and 6

laboratories. A total of eight hard constraints and four soft

constraints were considered, for problems of five levels of

increasing complexity. It was found that the synergistic solution

satisfied all the hard constraints, achieved up to 75%

optimisation of the soft constraints, and converged within 500

iterations or an average of 2.74 minutes. These results indicate

that the GA, when combined with constructive initialization, will

give efficient solution to the DTP problem with constrained

variables.

 Keywords: Departmental Timetabling Problem, Constructive

Initialization, Genetic Algorithm, Scheduling, Constraints

I. INTRODUCTION

The University or Departmental Timetabling Problem

(DTP) problem is a scheduling problem, which involves

combinatorial allocation of resources under some predefined

constraints [1]. The allocation is done within time slots

(usually working hours) with the aim of optimizing the use

of available space and time as well as avoiding the violation

of the constraints.

 The constraints may include the number of available

lecture rooms, types of lecture rooms, sizes of lecture

rooms, the number of lecturers and their availability,

lecturer specialty, number of courses to be delivered, the

number of students in a course, and distance between lecture

rooms, among others. Some of the constraints are hard

constraints that must be satisfied to make the solution valid,

while others are soft constraints that are only desirable to be

satisfied. Optimization involves satisfying the hard

constraints and trying to satisfy as many of the soft

constraints as possible.

Revised Version Manuscript Received on July 25, 2016.

 Peter. U. Eze, Department of Computer Science, University of

Sheffield, Sheffield S10 2TN, United Kingdom, Europe.

 Dr. Dawn. C. Walker, Department of Computer Science, University of
Sheffield, Sheffield S10 2TN, United Kingdom, Europe.

 Dr. Ifeyinwa E. Achumba, Department of Electrical & Electronic

Engineering, Federal University of Technology Owerri, Imo State, Nigeria.

The variations in constraints among institutions and

departments and the complex interdependence of variables

and constraints have increasingly made the problem hard to

solve. Hence, it is hard to provide a generic model for all

situations and for different universities.

 Thus, the DTP scheduling problem is considered an NP-

hard problem [1,2] or NP-Complete Problem [3], because

there is no known deterministic polynomial time algorithm

for its solution. Different researchers have used various

methods in attempts to find a solution.

 The work done by [4] suggested that the methods of

neural networks, simulated annealing, Tabu Search

constraint programming and greedy search could be used.

They compared these methods to a Genetic Algorithms

(GA) approach to solve the same problem and concluded

that even though comparable results can be obtained from

any of the methods, the GA approach achieves better

performance in terms of efficiency and solution

optimization.
 A Genetic Algorithm (GA) is a particular class of

evolutionary algorithm. Like many other artificial evolution-

based algorithms, the GA takes its inspiration from the

concepts of natural evolution.

 These concepts include maintenance of a population of

individuals, creation of diversity through random mutation

or crossover, a selection mechanism and a process for

transfer of genetic characteristics [5].

 A general form of a GA is shown in figure 1. For highly

constrained problems such as those used in this research, it

is difficult to create a GA solution that can solve all

scheduling problems of this nature. A GA to solve a specific

problem must be manipulated in some way to direct it

towards the desired solution. The level of this manipulation

will determine if one is actually solving a problem or

evolving a trivial solution without a target in mind.

Constructive Initialization of a Genetic Algorithm for the Solution of a Highly Constrained Departmental Timetabling

Problem

19 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Figure 1 – A typical genetic algorithm

II. RELATED WORK ON APPLICATIONS OF

GENETIC ALGORITHM TO SCHEDULING

PROBLEMS

The work reported in [8, 9] shows that with a suitable

representation method, a GA can be applied to various

scheduling problems to obtain both minimally feasible

(hard constraints satisfied) and optimized (most soft

constraints also satisfied) solutions. The researchers in [8]

took an approach that is typical of University systems. The

problem size was moderately large in terms of number of

events to be scheduled and number of constraints

considered, precipitating the application of a grouping

representation technique. However, the concept of different

room types was not included.

 The approach described in [13] is more generically

applicable to a UTP. The problem space and size was large

enough to represent a University faculty or school. A large

number of hard and soft constraints, typical of a University

environment, were also considered as were different room

types The representation is similar to that described in [4],

but a Sector-based Partially-mapped crossover (SB-PMX)

operator was employed to ensure that the definition of the

different types of rooms was maintained during the process.

Rushil et al [4] applied a GA to solving school weekly

course timetabling problem, with some hard and soft

constraints. In this case,, the notion of different room or

class types was not taken into consideration, neither was the

requirement of special facilities in a lecture room.
 The work of Rupert et al [14] focused on an evolutionary

algorithm for the solution of an Exam timetabling problem

without violating the hardest constraints. They focused on

the best form of heuristics that could be used to ensure the

production of a highly optimized timetable. They concluded

that the hybrid heuristic algorithm can perform well for very

large problem sizes. However, ‘how large’ was not defined

and they agreed that the problem instance used was small

for experimentation purposes. They also did not take into

consideration that some rooms may need to be specifically

reserved for certain types of examination. Constraints are

highly specific to each particular problem and there is no

“one size fits all” approach. In this paper, we describe how a

constructive initialization heuristic is applied to the

population initialisation phase of a GA to solve a practical

timetabling problem. The general design approach chosen

for this work is to achieve feasibility of solution to this

scheduling problem by applying a constructive initialisation

heuristic and then optimize the obtained viable solutions

using the iterative application of a GA. The major

contribution of the work will be a design that avoids

backtracking and infinite loops and the complexity of

combination of multiple heuristics to achieve feasibility. We

show that the use of simple but effective constructive

initialisation heuristics increases speed as well as the

probability of obtaining feasible solutions. The method we

present is for a highly constrained problem. A pseudo-

random GA initialization method will be explored to

achieve both feasibility and optimization of the solution to

the problem.

III. AN EXEMPLAR DEPARTMENTAL

TIMETABLING PROBLEM

Generally, both the University and Departmental

Timetabling Problems (UTPs and DTPs) are scheduling

problems involving the allocation of resources at a particular

time and location to ensure the success of a particular event.

An event could be a lecture or laboratory class associated

with a particular module, lecturer(s) and a cohort of

students,. These resources (rooms, lecturers and time) are

subject to certain constraints. A Departmental Timetabling

Problem (DTP) is the subset of a UTP. A UTP has wider

interdependence (e.g. competition between departments for

resources such as teaching rooms) and greater complexity in

logistics and will be considered in future works.

 The problem presented here is a reduced version of the

timetabling problem applicable to the Department of

Computer Science at the University of Sheffield. The

department runs various three and four year undergraduate

degree programmes and a number of postgraduate taught

programmes. They also contribute to dual honours degree

and cross-faculty programmes. The undergraduate degree

has up to four separate areas of specialization (Computer

Science, Software engineering, Artificial Intelligence, and

others) while the postgraduate

taught masters degree has up to

five separate programmes.

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-4, September 2016

20 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Each of the programmes has core modules as well as

elective modules. Modules are commonly shared amongst

two or more programmes, or across two or more levels of

study. In some cases, multiple lecturers teach a module. This

indicates complex and interdependent nature of the problem,

even when restricted to the departmental level. In this

context, cross-faculty and dual degree modules are not

considered.

 In the context of the work being presented, the

timetabling problem considered is that of a weekly timetable

that satisfies the following hard and soft constraints:

Hard Constraint:

● H1: no two events can be fixed at the same venue at

the same time.
● H2: multiple modules taught by a given lecturer

cannot be fixed at the same time.
● H3: the core modules must not clash with one another

for a given class group in the Department of

Computer Science.
● H4: the time restrictions of all part-time lecturers

must be accommodated.
● H5: all courses taught for the semester to all the

cohorts must be accommodated.
● H6: lectures and labs that must be held at a specific

time and venue within the week must be

accommodated.
● H7: the room capacity must be sufficient for the

number of students allocated to it for a particular

lecture or lab.
● H8: each session must take place in an appropriate

(lecture or laboratory) room type.
Soft Constraint Requirements

● S1: lecturers should not have more than 4 hours of

teaching at a stretch per day.
● S2: students should not have more than 4 hours of

teaching at a stretch per day.
● S3: there should be no lectures or labs fixed on

Wednesday afternoons from 12noon.
● S4: lectures should not be fixed within lunchtime (1-

2pm).
The challenges include formulation of appropriate

chromosome representation for the problem, designing

suitable fitness function, designing appropriate genetic

operators and the use of constructive initialisation methods

to solve the problem.

IV. THE DESIGN METHODOLOGY

The work presented in this paper is an adaptation and

improvement of existing GA-based methods [4, 13] for

solving timetabling problems. The methods of design relate

to chromosome representation, GA population initialisation,

genetic operators, fitness function and most importantly, the

incorporation of a heuristic constructive initialisation

technique, which we show to be critical in improving the

efficiency/accuracy of our algorithm. The software system

was designed and implemented using servlets and Java

Server Pages (JSP) hosted on an Apache Tomcat web

server. Web-based solution was important to ensure remote

and simultaneous access to same data and application by

various departments.

A. Chromosome representation

In order to apply GA operators, a suitable chromosome

representation was adopted based on the work of other

researchers in [13] in order to fit the DSP problem

considered here.. The chromosome in [13] was represented

as a 2-dimensional array in which the rooms are the rows

while timeslots are the columns. The rooms are sub-divided

internally into laboratory rooms and lecture-only rooms. A

gene in the chromosome is defined as a locus of the

intersection of a room and a timeslot. Teaching events

(integer numbers) are then designated to a particular array

cell. This 2-D approach was implemented in this context due

to the tabular nature of the problem. The content of an

intersection will be an integer, which represents a teaching

event. This 2-D chromosome representation is shown in

Table 1 below.

Table 1 – Sector-based representation technique

[adapted from 13]

Table 1 above shows that some genes are empty,

representing a free period during which a room is not

occupied. Also, it can also be seen that some modules

(number in a cell) appear more than once. These represent

modules with multiple periods or modules that have both

tutorial and laboratory components.

 Figure 2 below highlights the genotypic to phenotypic

mapping used.

Figure 2 – Genotype – to Phenotype transformations for

the UTP

It should be noted that T, R, M, L and C as used in Figure 2

represent integers that uniquely identify a time slot, lecture

or lab room, module, lecturer and cohort respectively. E’ is

the event as directly represented in   the chromosome while

E is an intermediate transformation of the genetic content

before it is finally mapped onto its equivalent phenotype that

represents a part of a timetable.
 The integer, which represents a module, has associated

with it a lecturer and the student cohorts that take the

module. With this internal representation, it will be possible

to check clashes between scheduled modules, as well as

display the final timetable in human readable form.

B. GA Population initialisation

The aim here is to use a quasi-random initialisation method

that achieves a good balance between population diversity

and the feasibility of the final

solution.

Constructive Initialization of a Genetic Algorithm for the Solution of a Highly Constrained Departmental Timetabling

Problem

21 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 Constraints H4 (Time preference of part-time lecturers)

and H6 (lectures that must hold in specific room at a given

time) are so rigid in nature that random initialisation will

seldom lead to a feasible solution when the conventional

genetic algorithm is applied to such a randomly initialised

population. Hence, the process of building the initial

population ensures that these constraints are embedded in

the initial population of chromosomes.

The constructive GA population initialisation used in this

research is shown as part of the overall adapted GA

algorithm in figure 3. In constructive initialisation process,

the most constrained events (H4 and H6) are scheduled first.

After this, one should randomly schedule other events with

fewer constraints. However, every event in this problem

must lie within one of two domains: laboratory-based or

tutorial-based events. The scheduling process from the CI

and also the fitness function takes this concept of domain

into consideration.

C. Design of Genetic Operators

The genetic operators considered and designed in this

research represent selection, crossover and mutation.

Figure 3 – Adapted GA through constructive Initialisation

The tournament selection operator was used in this research.

The choice is based on the fact that selection probability can

be tailored towards ensuring that better parents are more

frequently chosen for reproduction. This method involves

picking two individuals from a population and staging a

contest to determine which one will be selected as a parent.

As described in [16] and [7], this contest involves having a

pre-determined selection probability and generating a

random number between 0 and 1 and comparing it with this

pre-determined value. The pseudo-code for the tournament

operator designed for this work is given in Algorithm 1

below.

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-4, September 2016

22 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Algorithm 1 – Design of Tournament Operator

A pre-set tournament selection probability of 0.7 will be

used in this design. This is to favour the selection of better

chromosome for reproduction. The crossover operator used

in this research is 2-D in nature for compatibility with the 2-

D chromosome on which it will operate. It is an adaptation

of the Partially-mapped Crossover (PMX) operator used in

[13]. The adaption of the normal 1-D PMX for a 2-D

chromosome is shown in Algorithm 2 below

Algorithm 2 – A 2-D PMX Algorithm

For the above algorithm, r = room index, while t= time

index. A gene in our representation is defined by both

indices. Based on results reported in [13] and [17] and also

on our own trial results, the crossover probability was fixed

at 0.75. A swap mutation operator was adopted for this

research. This is due to the nature of the chromosome

representation method. The algorithm designed for our

mutation operator is shown in Algorithm 3 below.

Algorithm 3 – A 2-D Swap Mutation Operator

In the above algorithm C1(r,t) must not be empty while

C2(r,t) may or may not be empty. This is because it would

be meaningless to swap two empty genes.. A small swap

mutation probability of 0.01 (or 1%) was used to limit

possible disruption of very good chromosomes.

D. Design of Fitness function

 The fitness function adopted for this problem was based on

the concept of reward. Points are allocated for the non-

violation of an instance of any of the 12 constraints in a

particular chromosome in the entire population of possible

solution to the problem. Hard and soft fitness functions are

then defined based on the sum of points earned for each

constraint. The Hard fitness function f(H), is simply the sum

of all the percentage rewards associated with each hard (H)

constraint. Thus, the algorithms evaluate all points of

potential violation of a particular constraint and not just

summarising if a constraint is violated or not. For instance,

the algorithm can determine if only 8 out of 10 lectures can

be scheduled in a room of adequate capacity. However, one

might reason that it would prolong the run time for the

algorithm, if there were many good genes in a chromosome.

This is defined in equation 2 below.  

F (H) = % of H2 + % of H3+% of H4+% of H5+ % of H6+

% of H7+ % of H8 (2)

It should be noticed in equation (2) that H1 was omitted.

This is intentional. The nature of the chromosome

representation ensures that the constraint of fixing two

events at the same venue and at the same time will never

occur (see Table 1). Hence, all individuals in the population

will always have same fitness value for this constraint. We

simply assumed the fitness value to be zero so that it cancels

out for all individuals in the population.

For a chromosome to be a feasible solution to the

timetabling problem, equation 3 must be satisfied.

F(H) = 100% of f(H)max

...(3)

Where :

F (H)max = H2max + H3max + H4max + H5max + H6max

+ H7max + H8max(4)

On the other hand, the Soft fitness function, f(S), is the sum

of the rewards from each constraint considered as a soft(S)

constraint. This is given by equation, 5:

(S) = S9 + S10 + S11 + S12 .. (5)

The maximum value that f(S) can have is given as f(S) max

and is given by equation 6.

F(S)max = S9max + S10max + S11max + S12max

....................................(6)

Thus, the overall fitness value, FVoverall, for a chromosome

is therefore a combination of

equations 2 and 5. Thus:

FVoverall = F (H) + F

Constructive Initialization of a Genetic Algorithm for the Solution of a Highly Constrained Departmental Timetabling

Problem

23 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

(S)... (7)

However, given that equation 3 must be true for an

acceptable chromosome (due to the fact that all hard

constraints must be satisfied), it becomes evident that

equation 7 is the objective function that the genetic

algorithm will tend to maximize.

 The program file for the implementation of the algorithm in

figure 3 and all these design computations is kept in the git

repository:

https://github.com/KingPeter2014/Uosutpsolver.git.

V. EXPERIMENTS

The major aim of this research is to solve the University

Timetabling problem as it occurs in the Department of

Computer Science at the University of Sheffield by

designing and implementing a suitable GA. Hence,

experiments based on five levels of difficulty were carried

out to determine the efficacy of the developed algorithms in

solving the problem and also on the effectiveness of the

representation method, initialisation method and the genetic

operators used. The five levels are determined by the

number of core and elective modules and on the number of

constraints factored into the experiments. Table 2 states the

data used for the five test cases.

Table 2: Test Cases and Test data for Experiments

TEST CASES

1 2A 2B 3A 3B

1 No of Laboratories 6 6 6 6 6

2 No of lecture rooms 19 19 19 19 19

3 No of Lecturers 29 29 29 29 29

4
No of lecture-based

modules
10 12 12 20 20

5
No of lab-based

modules
5 7 7 13 13

6
No of Part-time

lecturers
0 0 2 0 2

7
No of special rooms

with time constraints
0 0 3 0 10

 CASE 1 - Only Level 1 (five core and one optional

module) and 2 (six core) modules were considered. H4

(Part time lecturers) and H6 (Special room and time

constraints) were not considered in calculating the

number of hard constraints satisfied.

 CASE 2A – Core and optional Levels 1 to 3 modules

were considered but H4 and H6 constraints were not

considered.

 CASE 2B - It is the same as 2A but there are two part

time lecturers and three modules with special   room and

time requirements.

 CASE 3A - It includes all core and optional modules

from levels 1-3, level 4 (M.Eng) and level 6

(postgraduate M.Sc). However, no part-time or   special

room and time requirements were considered.

 CASE 3B - It is the same as 3A but it has up to ten

modules with special room and time requirements   plus

two part time lecturer requirements.  

All other constraints, whether soft or hard, were always

included for all calculations. For each of the test cases,

following the constructive initialization step, the GA was

run ten times with a population size of 100 for 500

generations. Each experiment was repeated 10 times and

average value of the results taken. The experiments were run

on MAC OSX 10.9.5 with Intel Core i5 with processor

speed of 2.6GHz and 8GB 1600MHz DDR3 RAM memory.

VI. RESULTS AND DISCUSSION

The success of the designed algorithm is measured in terms

of convergence rate, average number of feasible solutions

obtained, level of soft constraint satisfaction and the time

taken (speed) in terms of CPU time to run the GA in each

case. The results will be presented and discussed using

appropriate graphs. Case 3B above is the case that is most

typical of the degree of complexity of real timetabling

problem and will thus be the focus of the evaluation.

 Convergence rate

The goal of evolutionary algorithms is to improve a

candidate solution until it is maximally optimised and

cannot be improved further (convergence). Here, we

measure the rate of increase of fitness value of the best

chromosome over the generations for each run. The average

convergence rate for case 3B is shown in figure 4. The

fitness value increased progressively and consistently from

fitness value of about 93.8 per cent to 95.8 per cent from

zero to 500 generations. Note that the constructive

initialisation has fixed the fitness value at about 93.8 per

cent in most cases before evolution of the chromosomes.

Figure 4 – Convergence and Solution optimisation of the

GA

The error bars represent standard deviations for the 10 runs

of the GA

 Number of feasible solutions

The distribution of the number of runs that produced at least

one feasible solution per run per test case is shown in figure

5 below.

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-4, September 2016

24 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Figure 5 – Number of runs from a total of 10 per case

with at least one feasible solution out of 100 candidates

Hence, at least 7 out of every 10 runs for each of the test

cases produced at least one feasible solution. As shown in

figure 5 above, 8 out of 10 runs of the algorithm with Case

3B produced feasible solutions. It should be noted that this

case contains all the taught modules offered by the

Department of Computer Science in the autumn semester for

all levels of study. Thus, with constructive initialisation,

feasible solutions can be obtained to solve the timetabling

problem. Note that in the absence of constructive

initialization, no feasible solutions were found for any case

even after running the GA for 1000 iterations.

 The rather unexpected pattern of feasible solutions needs

some explanation. One would expect the number of feasible

solutions to decrease progressively as the difficulty level of

the problem increases. The reason that this is not observed

here is that a degree of randomisation was introduced into

the constructive initialisation process to ensure diversity of

the population. Hence, some random genes were introduced

before constructively created genes were inserted.

Feasibility was not guaranteed for any of the test cases

during initialisation but was possible. Hence, the above

result was stochastic in nature. Most of the solutions that

were not feasible were very close to feasibility (each up to

98% feasible).

 Level of Soft Constraint satisfaction

It can be seen from figure 6 that, as expected, Case 1 has the

best level of solution optimisation. A trend apparent in

figure 7 is that optimisation reduces as problem size and

constraint stringency increases. One can see the progressive

decrease in optimisation from 87% in case 1 to 75% in case

3B. However, the optimisation level of 75% for case 3B,

which is of greatest interest in this research, represents a

promising level of soft constraint satisfaction.

Figure 6 – Percentage optimisation of soft constraints

obtained per test case

 Solution time

Figure 7 shows the average total time taken to run the GA

for each test case. According to the profiling that was

performed, the GA took longer to evaluate a chromosome

with better genes than a chromosome that has bad genes.

The reason for this is that the GA was designed to minimize

the amount of time spent on iterations that will not produce

a better offspring. A reward-based fitness function was used,

where a condition is initially evaluated to determine whether

a gene is fit to satisfy an instance of a constraint. Only in the

event that the gene is found to be fit, will the body of the

conditional statement be evaluated in order to give a reward

to the chromosome containing the gene. Hence, if the gene

is “bad”, the body of the conditional is not executed. This

implies that the more “bad “ genes that exist in a population,

the less time it will take to evaluate the entire population for

that particular model iteration.

Figure 7 – Average time to run the GA

Without constructive initialisation (CI), the solution never

converged to a feasible solution within the 500 generations

or the upper limit of runtime allotted for the GA to run. For

case 3B, constraints H4 (time

preference of part-time

lecturers) and H6 (lectures that

Constructive Initialization of a Genetic Algorithm for the Solution of a Highly Constrained Departmental Timetabling

Problem

25 Retrieval Number: C2855076316/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

must be held in a specific room at a given time) may never

be satisfied by a totally random initialisation process.

Though eventually a feasible solution may be possible, a

higher capacity computer may be needed to ascertain the

possibility. However, the time (computational and clock)

will definitely be longer than necessary.

VII. CONCLUSION AND RECOMMENDATIONS

Here we have demonstrated the effectiveness of a genetic

algorithm incorporating a constructive initialization pre-

processing stage, for solving a subset of the UTP problem,

based on a real problem from the Department of Computer

Science at the University of Sheffield. The complexity of

the problem was large – incorporating 40 time slots, 25

type-specific teaching rooms and up to 33 modules, giving

rise to chromosome containing1000 genes. With 100

candidate solutions and iterating up to 500 generations, one

should appreciate the problem size as compared to the test

system described in [13]. Thus, the average runtime of 2.74

minutes per run of the GA is acceptable based on the fact

that it takes the timetabling officer hours of work to resolve

equivalent problems. Comparing this with the time currently

spent by the timetabling officer (hours of work for each

manual change and resolution of clashes), it is obvious that

there is a significant improvement in the time taken to

generate a feasible and flexible timetable based on changes

in input parameters and constraints. Future extensions to this

work include adapting the algorithm to take into account the

fact that other departments also compete for teaching space,

allowing for the fact some modules may have irregular

teaching periods for some weeks of a semester,. More

generic investigations leading to potential improvements

could include a comparative investigation into the speed of

reward-based and penalty-based fitness functions and the

design of appropriate genetic operators that could allow the

GA to obtain a solution to a highly constrained problems

without constructive initialization, or the possibility of

developing a distributed form of the algorithm that could be

run on a multicore cluster or a GPU-based environment.

REFERENCES

1. Sadaf N.S and Shengxiang Y., (2009). “A guided search Genetic

Algorithm for the University Course timetabling problem” In

Multidisciplinary International Conference on Scheduling: Theory
and applications 10 -12 August 2009, Dublin Ireland.

2. Even S., Itai A., and Shamir A., (1976) .“On the complexity of

timetable and multi commodity flow problems” In SIAM Journal on
Computing, 5(4) pp 691 - 703.

3. Jeffrey H. Kingston (2006). “Hierarchical Timetable

Construction” In Edmund K. Burke & Hana Rudova (Eds.).
Practiceand Theory of Automated Timetabling. Proceedings of the

6th International Conference on the practice and Theory of

Automated Timetabling, 30th August - 1st September 2006. pp 196 -
208.

4. Rushil Raghavjee and NetishaPilley (2008) “An Application of

Genetic Algorithms to the School Timetabling Problem” In SAICSIT
Conference Proceeding, 6-8 October, 2008. pp.193 - 199. url:

www.titan.cs.unp.ac.za/~nelishiap/uploads/45.pdf.

5. Dario Floreano and Claudio Mattiussi (2008).Bio-Inspired Artificial
Intelligence: theories, methods and technologies. MIT Press

Cambridge, USA.

6. Bashir S.A (2014). Developing a Java-based Genetic Algorithm to
solve the Travelling Salesmans Problem. MSc Dissertation,

Department of Computer Science, University of Sheffield.

7. Mehdi et al (2012). “Solving University Course Timetabling Problem
using Genetic A l g o r i t h m ” I n 2 n d W o r l d C o n f e r e n c e o

n I n f o r m a t i o n T e c h n o l o g y . A W E R P r o c e d ia

Information Technology and Computer Science. Vol 1 (2012).pp
1033 - 1040.

8. Abubakar M.S et al (2006). “Maintaining diversity for Genetic

Algorithm: A case study of timetabling problem”In JurnalTeknologi
44 (D) June 2006, pp.123 - 130.

9. Tormos P. et al.(2008). “A Genetic Algorithm for Railway

Scheduling Problems” In Studies in Computational Intelligence (SCI)
128, pp. 255–276.

10. Fraser G. and Acuri A. “ALarge Scale Evaluation of Automated Unit

Test Generation Using Evo Suite”. [online]:
http://www.evosuite.org/wpcontent/papercite-

data/pdf/tosem_evaluation.pdf , retrieved on 19th March, 2015.

11. Els R. and Pillay N. (2010).“An Evolutionary Algorithm Hyper-
Heuristic for Producing Feasible Timetables for the Curriculum Based

University Course Timetabling Problem” In 2010 Second World on

Nature and Biologically Inspired Computing Dec. 15-17, 2010 in
Japan.Pp 460 – 466.

12. Yu and K. Sung (2002).“A genetic Algorithm for weekly courses

timetabling problem” In   International transactions in Operational

Research, 9 (2001), pp 703 - 717.

13. W. Rupert, B. Edmund and E. Dave (1995). A Hybrid Genetic

Algorithm for Highly Constrained  Timetabling Problems. Computer

Science Technical Report No. NOTTCS-TR-1995-8.
14. S.A. Oyebanjo (2013). Development of a University Timetabling

Automation System.B.Sc Project,  Department of Computer and

Information Science, Covenant University, Nigeria.
15. D.W. Dayer (2010). Evolutionary Computation in Java: A practical

guide to the watchmaker   Framework. [Online]:

http://watchmaker.uncommons.org/manual/index.html retrieved 3rd

March  2015.

16. W. Chinnasri, S. Krootjohn, and N. Sureerattanan (2012)

“Performance comparison of Genetic   Algorithm's crossover

operators on University Course Timetabling Problem” In Proceedings
of 8th International Conference on Computing and Information

Management (ICCM), 24th -26h April, 2012 in South Korea.

AUTHORS PROFILE

 Eze Peter Uchenna obtained Masters of Science in

Engineering (M.Sc (Eng.) in Advanced Software

Engineering from University of Sheffield in 2015. He
obtained Bachelors of Engineering (First Class Hons.)

in Electrical/Electronic Engineering at Federal

University of Technology Owerri, Nigeria in 2010. He
worked as a Softtware Engineer at Internet Experts Nigeria Ltd in 2011 -

2012 and currently works as an Assistant Lecturer in the Department of

Elecltrical/Electronic Engineering, Federal University of Technology,
Owerri, Nigeria. His areas of research interest include Agile Software

design, biometric and steganographic information security systems and

software-controlled electronic systems.

 Dr. Dawn C. Walker Profile obtained BSc Hons

Physics from the University of Durham UK in 1996
and a Ph.D. in Medical Physics from the University of

Sheffield, UK in 2001. She was appointed as a lecturer

in Sheffield in 2010 and as a Senior Lecturer in 2014.
Her research interests relate to the use of computational

simulation for the understanding of biological systems

and the use of bio-inspired algorithms for the solution of real world
problems.

 Dr. Ifeyinwa E. Achumba is a Senior Lecturer in the
department of Electrical and Electronic Engineering at

Federal University of Technology Owerri, Imo State

Nigeria. Her major area of research interest is in the
application of Artificial Intelligence in solving human

problems.

http://www.titan.cs.unp.ac.za/~nelishiap/uploads/45.pdf
http://www.evosuite.org/wpcontent/papercite-
http://www.evosuite.org/wpcontent/papercite-

