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   Abstract: The University or Departmental Timetabling Problem 

(UTP or DTP) is a scheduling problem ridden with numerous 

constraints. Each of the constraints has a complex effect on the 

ideal solution and their combined effect makes the problem 

harder to solve. As a solution to this problem, a genetic algorithm 

(GA) approach was augmented by a process of constructive 

initialisation and applied to an exemplar scheduling problem in 

the Department of Computer Science at the University of 

Sheffield. The problem entailed scheduling of timetabled slots for 

33 modules across a range of taught programmes at various 

levels, delivered by 29 lecturers in 10 lecture theatres and 6 

laboratories.  A total of eight hard constraints and four soft 

constraints were considered, for problems of five levels of 

increasing complexity. It was found that the synergistic solution 

satisfied all the hard constraints, achieved up to 75% 

optimisation of the soft constraints, and converged within 500 

iterations or an average of 2.74 minutes. These results indicate 

that the GA, when combined with constructive initialization, will 

give efficient solution to the DTP problem with constrained 

variables.  

      Keywords: Departmental Timetabling Problem, Constructive 

Initialization, Genetic Algorithm, Scheduling, Constraints 

I. INTRODUCTION 

The University or Departmental Timetabling Problem 

(DTP) problem is a scheduling problem, which involves 

combinatorial allocation of resources under some predefined 

constraints [1]. The allocation is done within time slots 

(usually working hours) with the aim of optimizing the use 

of available space and time as well as avoiding the violation 

of the constraints.  

   The constraints may include the number of available 

lecture rooms, types of lecture rooms, sizes of lecture 

rooms, the number of lecturers and their availability, 

lecturer specialty, number of courses to be delivered, the 

number of students in a course, and distance between lecture 

rooms, among others. Some of the constraints are hard 

constraints that must be satisfied to make the solution valid, 

while others are soft constraints that are only desirable to be 

satisfied. Optimization involves satisfying the hard 

constraints and trying to satisfy as many of the soft 

constraints as possible. 
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The variations in constraints among institutions and 

departments and the complex interdependence of variables 

and constraints have increasingly made the problem hard to 

solve. Hence, it is hard to provide a generic model for all 

situations and for different universities.  

  Thus, the DTP scheduling problem is considered an NP-

hard problem [1,2] or NP-Complete Problem [3], because 

there is no known deterministic polynomial time algorithm 

for its solution. Different researchers have used various 

methods in attempts to find a solution.  

    The work done by [4] suggested that the methods of 

neural networks, simulated annealing, Tabu Search 

constraint programming and greedy search could be used. 

They compared these methods to a Genetic Algorithms 

(GA) approach to solve the same problem and concluded 

that even though comparable results can be obtained from 

any of the methods, the GA approach achieves better 

performance in terms of efficiency and solution 

optimization. 
     A Genetic Algorithm (GA) is a particular class of 

evolutionary algorithm. Like many other artificial evolution-

based algorithms, the GA takes its inspiration from the 

concepts of natural evolution.  

   These concepts include maintenance of a population of 

individuals, creation of diversity through random mutation 

or crossover, a selection mechanism and a process for 

transfer of genetic characteristics [5].  

   A general form of a GA is shown in figure 1. For highly 

constrained problems such as those used in this research, it 

is difficult to create a GA solution that can solve all 

scheduling problems of this nature. A GA to solve a specific 

problem must be manipulated in some way to direct it 

towards the desired solution. The level of this manipulation 

will determine if one is actually solving a problem or 

evolving a trivial solution without a target in mind. 
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Figure 1 – A typical genetic algorithm 

II. RELATED WORK ON APPLICATIONS OF 

GENETIC ALGORITHM TO SCHEDULING 

PROBLEMS 

The work reported in [8, 9] shows that with a suitable 

representation method, a GA can be applied to various 

scheduling problems to obtain both minimally feasible  

(hard constraints satisfied) and optimized (most soft 

constraints also satisfied) solutions. The researchers in [8] 

took an approach that is typical of University systems. The 

problem size was moderately large in terms of number of 

events to be scheduled and number of constraints 

considered, precipitating the application of a grouping 

representation technique. However, the concept of different 

room types was not included.  

   The approach described in [13] is more generically 

applicable to a UTP. The problem space and size was large 

enough to represent a University faculty or school. A large 

number of hard and soft constraints, typical of a University 

environment, were also considered as were different room 

types The representation is similar to that described in [4], 

but a Sector-based Partially-mapped crossover (SB-PMX) 

operator was employed to ensure that the definition of the 

different types of rooms was maintained during the process. 

Rushil et al [4] applied a GA to solving school weekly 

course timetabling problem, with some hard and soft 

constraints. In this case,, the notion of different room or 

class types was not taken into consideration, neither was the 

requirement of  special facilities in a lecture room.  
   The work of Rupert et al [14] focused on an evolutionary 

algorithm for the solution of an Exam timetabling problem 

without violating the hardest constraints. They focused on 

the best form of heuristics that could be used to ensure the 

production of a highly optimized timetable. They concluded 

that the hybrid heuristic algorithm can perform well for very 

large problem sizes. However, ‘how large’ was not defined 

and they agreed that the problem instance used was small 

for experimentation purposes. They also did not take into 

consideration that some rooms may need to be specifically 

reserved for certain types of examination. Constraints are 

highly specific to each particular problem and there is no 

“one size fits all” approach. In this paper, we describe how a 

constructive initialization heuristic is applied to the 

population initialisation phase of a GA to solve a practical 

timetabling problem. The general design approach chosen 

for this work is to achieve feasibility of solution to this 

scheduling problem by applying a constructive initialisation 

heuristic and then optimize the obtained viable solutions 

using the iterative application of a GA. The major 

contribution of the work will be a design that avoids 

backtracking and infinite loops and the complexity of 

combination of multiple heuristics to achieve feasibility. We 

show that the use of simple but effective constructive 

initialisation heuristics increases speed as well as the 

probability of obtaining feasible solutions. The method we 

present is for a highly constrained problem. A pseudo-

random GA initialization method will be explored to 

achieve both feasibility and optimization of the solution to 

the problem.  

III. AN EXEMPLAR DEPARTMENTAL 

TIMETABLING PROBLEM 

Generally, both the University and Departmental 

Timetabling Problems (UTPs and DTPs) are scheduling 

problems involving the allocation of resources at a particular 

time and location to ensure the success of a particular event. 

An event could be a lecture or laboratory class associated 

with a particular module, lecturer(s) and a cohort of 

students,. These resources (rooms, lecturers and time) are 

subject to certain constraints. A Departmental Timetabling 

Problem (DTP) is the subset of a UTP. A UTP has wider 

interdependence (e.g. competition between departments for 

resources such as teaching rooms) and greater complexity in 

logistics and will be considered in future works. 

   The problem presented here is a reduced version of the 

timetabling problem applicable to the Department of 

Computer Science at the University of Sheffield. The 

department runs various three and four year undergraduate 

degree programmes and a number of postgraduate taught 

programmes. They also contribute to dual honours degree 

and cross-faculty programmes. The undergraduate degree 

has up to four separate areas of specialization (Computer 

Science, Software engineering, Artificial Intelligence, and 

others) while the postgraduate 

taught masters degree has up to 

five separate programmes. 
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Each of the programmes has core modules as well as 

elective modules. Modules are commonly shared amongst 

two or more programmes, or across two or more levels of 

study. In some cases, multiple lecturers teach a module. This 

indicates complex and interdependent nature of the problem, 

even when restricted to the departmental level. In this 

context, cross-faculty and dual degree modules are not 

considered. 

    In the context of the work being presented, the 

timetabling problem considered is that of a weekly timetable 

that satisfies the following hard and soft constraints: 

Hard Constraint:  

● H1: no two events can be fixed at the same venue at 

the same time. 
● H2: multiple modules taught by a given lecturer 

cannot be fixed at the same time. 
● H3: the core modules must not clash with one another 

for a given class group in the Department of 

Computer Science. 
● H4: the time restrictions of all part-time lecturers 

must be accommodated. 
● H5: all courses taught for the semester to all the 

cohorts must be accommodated. 
● H6: lectures and labs that must be held at a specific 

time and venue within the week must be 

accommodated. 
● H7: the room capacity must be sufficient for the 

number of students allocated to it for a particular 

lecture or lab. 
● H8: each session must take place in an appropriate 

(lecture or laboratory) room type.  
Soft Constraint Requirements 

● S1: lecturers should not have more than 4 hours of 

teaching at a stretch per day. 
● S2: students should not have more than 4 hours of 

teaching at a stretch per day. 
● S3: there should be no lectures or labs fixed on 

Wednesday afternoons from 12noon. 
● S4: lectures should not be fixed within lunchtime (1-

2pm). 
The challenges include formulation of appropriate 

chromosome representation for the problem, designing 

suitable fitness function, designing appropriate genetic 

operators and the use of constructive initialisation methods 

to solve the problem.  

IV. THE DESIGN METHODOLOGY 

The work presented in this paper is an adaptation and 

improvement of existing GA-based methods [4, 13] for 

solving timetabling problems. The methods of design relate 

to chromosome representation, GA population initialisation, 

genetic operators, fitness function and most importantly, the 

incorporation of a heuristic constructive initialisation 

technique, which we show to be critical in improving the 

efficiency/accuracy of our algorithm. The software system 

was designed and implemented using servlets and Java 

Server Pages (JSP) hosted on an Apache Tomcat web 

server. Web-based solution was important to ensure remote 

and simultaneous access to same data and application by 

various departments. 

A. Chromosome representation  

In order to apply GA operators, a suitable chromosome 

representation was adopted based on the work of other 

researchers in [13] in order to fit the DSP problem 

considered here.. The chromosome in [13] was represented 

as a 2-dimensional array in which the rooms are the rows 

while timeslots are the columns. The rooms are sub-divided 

internally into laboratory rooms and lecture-only rooms. A 

gene in the chromosome is defined as a locus of the 

intersection of a room and a timeslot. Teaching events 

(integer numbers) are then designated to a particular array 

cell. This 2-D approach was implemented in this context due 

to the tabular nature of the problem. The content of an 

intersection will be an integer, which represents a teaching 

event. This 2-D chromosome representation is shown in 

Table 1 below. 

Table 1 – Sector-based representation technique 

[adapted from 13] 

 

Table 1 above shows that some genes are empty, 

representing a free period during which a room is not 

occupied. Also, it can also be seen that some modules 

(number in a cell) appear more than once. These represent 

modules with multiple periods or modules that have both 

tutorial and laboratory components. 

   Figure 2 below highlights the genotypic to phenotypic 

mapping used.  

 
Figure 2 – Genotype – to Phenotype transformations for 

the UTP 

It should be noted that T, R, M, L and C as used in Figure 2 

represent integers that uniquely identify a time slot, lecture 

or lab room, module, lecturer and cohort respectively. E’ is 

the event as directly represented in   the chromosome while 

E is an intermediate transformation of the genetic content 

before it is finally mapped onto its equivalent phenotype that 

represents a part of a timetable. 
    The integer, which represents a module, has associated 

with it a lecturer and the student cohorts that take the 

module. With this internal representation, it will be possible 

to check clashes between scheduled modules, as well as 

display the final timetable in human readable form.  

B. GA Population initialisation 

The aim here is to use a quasi-random initialisation method 

that achieves a good balance between population diversity 

and the feasibility of the final 

solution.  
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   Constraints H4 (Time preference of part-time lecturers) 

and H6 (lectures that must hold in specific room at a given 

time) are so rigid in nature that random initialisation will 

seldom lead to a feasible solution when the conventional 

genetic algorithm is applied to such a randomly initialised 

population. Hence, the process of building the initial 

population ensures that these constraints are embedded in 

the initial population of chromosomes.  

The constructive GA population initialisation used in this 

research is shown as part of the overall adapted GA 

algorithm in figure 3. In constructive initialisation process, 

the most constrained events (H4 and H6) are scheduled first. 

After this, one should randomly schedule other events with 

fewer constraints. However, every event in this problem 

must lie within one of two domains: laboratory-based or 

tutorial-based events. The scheduling process from the CI 

and also the fitness function takes this concept of domain 

into consideration. 

C. Design of Genetic Operators 

The genetic operators considered and designed in this 

research represent selection, crossover and mutation. 

  
Figure 3 – Adapted GA through constructive Initialisation 

The tournament selection operator was used in this research. 

The choice is based on the fact that selection probability can 

be tailored towards ensuring that better parents are more 

frequently chosen for reproduction. This method involves 

picking two individuals from a population and staging a 

contest to determine which one will be selected as a parent. 

As described in [16] and [7], this contest involves having a 

pre-determined selection probability and generating a 

random number between 0 and 1 and comparing it with this 

pre-determined value. The pseudo-code for the tournament 

operator designed for this work is given in Algorithm 1 

below. 
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Algorithm 1 – Design of Tournament Operator 

A pre-set tournament selection probability of 0.7 will be 

used in this design. This is to favour the selection of better 

chromosome for reproduction. The crossover operator used 

in this research is 2-D in nature for compatibility with the 2-

D chromosome on which it will operate.  It is an adaptation 

of the Partially-mapped Crossover (PMX) operator used in 

[13].  The adaption of the normal 1-D PMX for a 2-D 

chromosome is shown in Algorithm 2 below 

 

Algorithm 2 – A 2-D PMX Algorithm 

For the above algorithm, r = room index, while t= time 

index. A gene in our representation is defined by both 

indices. Based on results reported in [13] and [17] and also 

on our own trial results, the crossover probability was fixed 

at 0.75. A swap mutation operator was adopted for this 

research. This is due to the nature of the chromosome 

representation method. The algorithm designed for our 

mutation operator is shown in Algorithm 3 below. 

 

Algorithm 3 – A 2-D Swap Mutation Operator 

In the above algorithm C1(r,t) must not be empty while 

C2(r,t) may or may not be empty. This is because it would 

be meaningless to swap two empty genes.. A small swap 

mutation probability of 0.01 (or 1%) was used to limit 

possible disruption of very good chromosomes. 

D. Design of Fitness function 

  The fitness function adopted for this problem was based on 

the concept of reward. Points are allocated for the non-

violation of an instance of any of the 12 constraints in a 

particular chromosome in the entire population of possible 

solution to the problem. Hard and soft fitness functions are 

then defined based on the sum of points earned for each 

constraint. The Hard fitness function f(H), is simply the sum 

of all the percentage rewards associated with each hard (H) 

constraint. Thus, the algorithms evaluate all points of 

potential violation of a particular constraint and not just 

summarising if a constraint is violated or not. For instance, 

the algorithm can determine if only 8 out of 10 lectures can 

be scheduled in a room of adequate capacity. However, one 

might reason that it would prolong the run time for the 

algorithm, if there were many good genes in a chromosome. 

This is defined in equation 2 below.    

F (H) = % of H2 + % of H3+% of H4+% of H5+ % of H6+ 

% of H7+ % of H8 .......... (2) 

It should be noticed in equation (2) that H1 was omitted. 

This is intentional. The nature of the chromosome 

representation ensures that the constraint of fixing two 

events at the same venue and at the same time will never 

occur (see Table 1). Hence, all individuals in the population 

will always have same fitness value for this constraint. We 

simply assumed the fitness value to be zero so that it cancels 

out for all individuals in the population.  

 

For a chromosome to be a feasible solution to the 

timetabling problem, equation 3 must be satisfied.  

F(H) = 100% of f(H)max 

.....................................................(3) 

Where : 

 

F (H)max = H2max + H3max + H4max + H5max + H6max 

+ H7max + H8max ..............(4) 

 

On the other hand, the Soft fitness function, f(S), is the sum 

of the rewards from each constraint considered as a soft(S) 

constraint. This is given by equation, 5: 

 

(S) = S9 + S10 + S11 + S12 .............................................. (5) 

 

The maximum value that f(S) can have is given as f(S) max 

and is given by equation 6.  

 

F(S)max = S9max + S10max + S11max + S12max 

....................................(6) 

 

Thus, the overall fitness value, FVoverall, for a chromosome 

is therefore a combination of 

equations 2 and 5. Thus: 

 

FVoverall = F (H) + F 
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(S)............................................. (7) 

 

However, given that equation 3 must be true for an 

acceptable chromosome (due to the fact that all hard 

constraints must be satisfied), it becomes evident that 

equation 7 is the objective function that the genetic 

algorithm will tend to maximize. 

 The program file for the implementation of the algorithm in 

figure 3 and all these design computations is kept in the git 

repository: 

https://github.com/KingPeter2014/Uosutpsolver.git.  

V. EXPERIMENTS 

The major aim of this research is to solve the University 

Timetabling problem as it occurs in the Department of 

Computer Science at the University of Sheffield by 

designing and implementing a suitable GA. Hence, 

experiments based on five levels of difficulty were carried 

out to determine the efficacy of the developed algorithms in 

solving the problem and also on the effectiveness of the 

representation method, initialisation method and the genetic 

operators used. The five levels are determined by the 

number of core and elective modules and on the number of 

constraints factored into the experiments. Table 2 states the 

data used for the five test cases.  

Table 2: Test Cases and Test data for Experiments 

 
TEST CASES 

1 2A 2B 3A 3B 

1 No of Laboratories 6 6 6 6 6 

2 No of lecture rooms 19 19 19 19 19 

3 No of Lecturers 29 29 29 29 29 

4 
No of lecture-based 

modules 
10 12 12 20 20 

5 
No of lab-based 

modules 
5 7 7 13 13 

6 
No of Part-time 

lecturers 
0 0 2 0 2 

7 
No of special rooms 

with time constraints 
0 0 3 0 10 

 
 CASE 1 - Only Level 1 (five core and one optional 

module) and 2 (six core) modules were considered. H4 

(Part time lecturers) and H6 (Special room and time 

constraints) were not considered in calculating the 

number of hard constraints satisfied.  

 CASE 2A – Core and optional Levels 1 to 3 modules 

were considered but H4 and H6 constraints were not 

considered.  

 CASE 2B - It is the same as 2A but there are two part 

time lecturers and three modules with special   room and 

time requirements.  

 CASE 3A - It includes all core and optional modules 

from levels 1-3, level 4 (M.Eng) and level 6 

(postgraduate M.Sc). However, no part-time or   special 

room and time requirements were considered.  

 CASE 3B - It is the same as 3A but it has up to ten 

modules with special room and time requirements   plus 

two part time lecturer requirements.    

All other constraints, whether soft or hard, were always 

included for all calculations. For each of the test cases, 

following the constructive initialization step, the GA was 

run ten times with a population size of 100 for 500 

generations. Each experiment was repeated 10 times and 

average value of the results taken. The experiments were run 

on MAC OSX 10.9.5 with Intel Core i5 with processor 

speed of 2.6GHz and 8GB 1600MHz DDR3 RAM memory.  

VI. RESULTS AND DISCUSSION 

The success of the designed algorithm is measured in terms 

of convergence rate, average number of feasible solutions 

obtained, level of soft constraint satisfaction and the time 

taken (speed) in terms of CPU time to run the GA in each 

case. The results will be presented and discussed using 

appropriate graphs. Case 3B above is the case that is most 

typical of the degree of complexity of real timetabling 

problem and will thus be the focus of the evaluation. 

 

 Convergence rate 

The goal of evolutionary algorithms is to improve a 

candidate solution until it is maximally optimised and 

cannot be improved further (convergence). Here, we 

measure the rate of increase of fitness value of the best 

chromosome over the generations for each run. The average 

convergence rate for case 3B is shown in figure 4. The 

fitness value increased progressively and consistently from 

fitness value of about 93.8 per cent   to 95.8 per cent from 

zero to 500 generations. Note that the constructive 

initialisation has fixed the fitness value at about 93.8 per 

cent in most cases before evolution of the chromosomes. 

 

Figure 4 – Convergence and Solution optimisation of the 

GA 

The error bars represent standard deviations for the 10 runs 

of the GA  

 Number of feasible solutions 

The distribution of the number of runs that produced at least 

one feasible solution per run per test case is shown in figure 

5 below. 
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Figure 5 – Number of runs from a total of 10 per case 

with at least one feasible solution out of 100 candidates 

Hence, at least 7 out of every 10 runs for each of the test 

cases produced at least one feasible solution. As shown in 

figure 5 above, 8 out of 10 runs of the algorithm with Case 

3B produced feasible solutions. It should be noted that this 

case contains all the taught modules offered by the 

Department of Computer Science in the autumn semester for 

all levels of study. Thus, with constructive initialisation, 

feasible solutions can be obtained to solve the timetabling 

problem. Note that in the absence of constructive 

initialization, no feasible solutions were found for any case 

even after running the GA for 1000 iterations. 

   The rather unexpected pattern of feasible solutions needs 

some explanation. One would expect the number of feasible 

solutions to decrease progressively as the difficulty level of 

the problem increases. The reason that this is not observed 

here is that a degree of randomisation was introduced into 

the constructive initialisation process to ensure diversity of 

the population. Hence, some random genes were introduced 

before constructively created genes were inserted. 

Feasibility was not guaranteed for any of the test cases 

during initialisation but was possible. Hence, the above 

result was stochastic in nature. Most of the solutions that 

were not feasible were very close to feasibility (each up to 

98% feasible). 

 Level of Soft Constraint satisfaction 

It can be seen from figure 6 that, as expected, Case 1 has the 

best level of solution optimisation. A trend apparent in 

figure 7 is that optimisation reduces as problem size and 

constraint stringency increases. One can see the progressive 

decrease in optimisation from 87% in case 1 to 75% in case 

3B. However, the optimisation level of 75% for case 3B, 

which is of greatest interest in this research, represents a 

promising level of soft constraint satisfaction. 

 

Figure 6 – Percentage optimisation of soft constraints 

obtained per test case 

 Solution time 

Figure 7 shows the average total time taken to run the GA 

for each test case. According to the profiling that was 

performed, the GA took longer to evaluate a chromosome 

with better genes than a chromosome that has bad genes. 

The reason for this is that the GA was designed to minimize 

the amount of  time spent on iterations that will not produce 

a better offspring. A reward-based fitness function was used, 

where a condition is initially evaluated to determine whether 

a gene is fit to satisfy an instance of a constraint. Only in the 

event that the gene is found to be fit, will the body of the 

conditional statement be evaluated in order to give a reward 

to the chromosome containing the gene. Hence, if the gene 

is “bad”, the body of the conditional is not executed. This 

implies that the more “bad “ genes that exist in a population, 

the less time it will take to evaluate the entire population for 

that particular model iteration. 

 

Figure 7 – Average time to run the GA 

Without constructive initialisation (CI), the solution never 

converged to a feasible solution within the 500 generations 

or the upper limit of runtime allotted for the GA to run. For 

case 3B, constraints H4 (time 

preference of part-time 

lecturers) and H6 (lectures that 
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must be held in a specific room at a given time) may never 

be satisfied by a totally random initialisation process. 

Though eventually a feasible solution may be possible, a 

higher capacity computer may be needed to ascertain the 

possibility. However, the time (computational and clock) 

will definitely be longer than necessary.  

VII. CONCLUSION AND RECOMMENDATIONS 

Here we have demonstrated the effectiveness of a genetic 

algorithm incorporating a constructive initialization pre-

processing stage, for solving a subset of the UTP problem, 

based on a real problem from the Department of Computer 

Science at the University of Sheffield. The complexity of 

the problem was large – incorporating 40 time slots, 25 

type-specific teaching rooms and up to 33 modules, giving 

rise to chromosome containing1000 genes. With 100 

candidate solutions and iterating up to 500 generations, one 

should appreciate the problem size as compared to the test 

system described in [13]. Thus, the average runtime of 2.74 

minutes per run of the GA is acceptable based on the fact 

that it takes the timetabling officer hours of work to resolve 

equivalent problems. Comparing this with the time currently 

spent by the timetabling officer (hours of work for each 

manual change and resolution of clashes), it is obvious that 

there is a significant improvement in the time taken to 

generate a feasible and flexible timetable based on changes 

in input parameters and constraints. Future extensions to this 

work include adapting the algorithm to take into account the 

fact that other departments also compete for teaching space, 

allowing for the fact some modules may have irregular 

teaching periods for some weeks of a semester,. More 

generic investigations leading to potential improvements 

could include a comparative investigation into the speed of 

reward-based and penalty-based fitness functions and the 

design of appropriate genetic operators that could allow the 

GA to obtain a solution to a highly constrained problems 

without constructive initialization, or the possibility of 

developing a distributed form of the algorithm that could be 

run on a multicore cluster or a GPU-based environment.  
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