
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-7 Issue-3, July 2017

42

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C3031077317/2017©BEIESP

Abstract: It appears that the state complexity of each operation

has its own special features. Thus, it is important and practical to

calculate good estimates for some commonly used general cases.

In this paper, the author consider the state complexity of

combined Boolean operations on regular language and give an

exact bound for all of them in the case when the alphabet is not

fixed. Moreover, the author show that for any fixed alphabet, this

bound can be reached in infinite cases.

Index Terms: Alternating finite automaton, Automata,

Combined operations, Estimation, Formal languages, Multiple

operations, State complexity.

I. INTRODUCTION

 Motivated by the increasing sizes of finite automata

machine that are used in recent applications, state complexity

has become one of the most important topics in automata and

formal language theory [7]. A state complexity for regular

languages is the the number of states needed by various

finite-state automata(deterministic, non-deterministic) in

order to accept the language. Often the state complexity

influences the computational complexity of algorithms that

use regular languages. All the most fundamental operations

that preserve regularity are intersection, union and

complementation. It is well known that if M languages are

each recognized by deterministic (or non-deterministic) finite

automata with n states, then their intersection is recognized by

a deterministic (respectively non-deterministic) finite

automaton with n
m
 states (obtained as the cartesian product of

the M given automata[3]). Given n languages L
(0)

n, L
(1)

n,

L
(2)

n,....,L
(n-1)

n each of which is recognized by a DFA

(deterministic finite automaton) with n states: what is the

minimum number of states of the minimal DFA for the

intersection in the worst case? The author claims a lower

bound of n!+1; but, as Berstel[5] points out, this does not

completely solve the problem, since the best known upper

bound is n
n
. Below the author show a lower bound of n

n
; so the

well-known upper bound is actually optimal. This can be

extend result to non-deterministic finite automata. The author

also consider the operation of union of regular languages. For

notation and the definition of DFA (deterministic finite

automaton) and NFA (non-deterministic finite automaton) the

author will follow [3]. A partial DFA is an NFA whose

next-state relation is a partial function (i.e., for every state and

every input symbol there is one or no next state). An AFA

(alternating finite automaton, see [2] and [1]) is a

Revised Version Manuscript Received on June 22, 2017

 Assistant Prof. Rajesh Kumar, Computer Science & Applications,

CRM Jat College, Hisar, Haryana, India. E-mail: Rajtaya@kuk.ac.in

 Assistant Prof. Manju, Computer Science & Applications, CRM Jat

College, Hisar, Haryana, India. E-mail Id: duham.manju@gmail.com

generalization of an Non-deterministic Finite Automata; an

AFA has a state graph like an NFA but, in addition, every

state has a boolean function of states attached to it;

recogination of an input is decided by these boolean functions

(in the case of an NFA these boolean functions are the logical

OR of some states); for the exact definition (which is rather

long) see [2] or [4]. In this paper AFA's(Alternating finite

automaton) are only mentioned in passing; the reader can skip

any mention of AFA's without loss of continuity.

II. DEFINITION ANS NOTATIONS

Let Σ be an alphabet, i.e., a non-empty, finite set of

letters(symbols). By Σ
∗

 the author denote the set of all finite

words(strings of letters) over Σ, and by λ, the empty word (a

word having zero symbols). The operation of concatenation

of two words x and y is denoted by x.y, or simply xy. For

w∈Σ
∗

,the reverse order of symbols in w is denoted by w
R
. A

NFA over Σ, is a tuple M=(Q, Σ, δ, q0, F) where Q is a finite

set of states, δ:Q×Σ→2
Q
 is a next-state function, q0 is an initial

state and F ⊆ Q is a set of final states. δ function is extended

over (Q×Σ
∗

) in the usual way. M is deterministic (DFA) if

δ:Q×Σ→Q. We consider complete DFAs, that is, those whose

transition function “δ” is a total function. The size of M is the

total number of its states. The language of M, denoted by

L(M), belongs to the family of regular languages and consists

of those strings accepted by M in the usual way. For a

background on finite automata and regular languages the

author refer the reader to[11].

III. STATE COMPLEXITY

A. Star and Reversal

In [8,9], estimation based state complexity of

nondeterministic automata was introduced. Briefly speaking,

for a combined operation on regular languages, the method

first estimates the state complexity(nondeterministic) of the

combined operation using the mathematical composition of

the state complexities of its component operations, and then

converts it to an estimate of the deterministic state

complexity. For example, for (L(A)∪L(B))
∗

 where A and B

are DFAs of m states and n states, respectively, the state

complexity(nondeterministic) of L=L(A)∪L(B) is m+n+1

and that of L
∗

 is m+n +2, which is then converted to an

estimate of the deterministic state complexity 2
m+n+2

. It has

been shown that this method can obtain good estimates for the

combined operations: star of intersection, star of union, star of

catenation, and star of reversal. However, this method clearly

has its limitations.

 Complexity of Binary and Uniary Operations on

Regular Grammar

Rajesh Kumar, Manju

mailto:Rajtaya@kuk.ac.in
mailto:duham.manju@gmail.com

Complexity of Binary and Uniary Operations on Regular Grammar

43

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C3031077317/2017©BEIESP

Using this method it is observed that the complexity of

union of n1-state, n2-state, and n3-state DFA languages are

2
n1+n2+n3+2

. However, the actual state complexity of this

combined operation is n1n2n3. It seems that this method may

work well for all combined operations with the final

component operation having an exponential state complexity,

e.g., star or reversal. Indeed, it works well when a combined

operation is ended with the star operation. However, it does

not work well in general for combined operations that are

ended with reversal. For example, the state complexity of

reversal of intersection of an m-state DFA language and an

n-state DFA language is 2
m+n

−2
m
−2

n
+2. However, the author

would obtain an estimate 2
mn+1

using this method.

The following result was obtained in [13], where a regular

operation expression is an expression built from occurrences

of binary operations union and concatenation, occurrences of

the unary operation star, and variables, where each variable

occurs at most once in the expression, and nsc(f) denotes the

nondeterministic state complexity of the operation f denoted

by a regular operation expression.

 Theorem 1. Let f be an operation defined by a regular

operation expression with k variables, and denote the sizes of

the NFAs for the argument languages by m1 , . . . , mk. Then

 nsc (f) ≤ 1 +

 (1)

Using the above result, the author can claim the following

estimates.

 Let f be an operation defined by a regular operation

expression with k variables and denote the sizes of the NFAs

for the argument languages by m1 , . . . , mk. Then the state

complexity of f is no more than

2
 m1 + . . .+ mk+1

. So it is clear that when the unary star operation

is the final operation of f, the upper bound is pretty tight.

There are many different combinations of two basic

operations selected from catenation, star, reversal,

intersection, and union. Note that the author consider (L1
R
)
∗

and (L1
*
)

R
 as the same combined operation because (L1

R
)
∗

=(

L1
*
)

R
. The combined operations (L1

*
)
∗

=L1
*
 and (L1

R
)

R
=L1 are

not counted, either. Among these combined operations, the

state complexities of the following ones have been studied in

the literature:(L1∪L2)
∗

 in [11], (L1∩L2)
∗

 in [8], (L1L2)
∗

,

(L1
R
)
∗

 in [9], (L1∪L2)
R
 ,(L1∩L2)

R
, (L1L2)

R
 , L1L2

∗
,L1L2

R
 in

[3], L1(L2∪L3) ,L1(L2∩L3) in [4], L1
∗∪L2 , L1

∗
∩L2 , L1

R∪L2 ,

L1
R
∩L2 in [11], L1L2L3, the combined Boolean operations

L1∪L2∪L3 , L1∩L2∩L3 , (L1∪L2)∪L3, and (L1∩L2)∪L3 in

[8], where L1, L2, and L3 are three regular languages.

Although the state complexity of (L1L2)
R

has been considered

in[8], only an upper bound has been obtained. In this paper,

the author prove, by providing some witness DFAs, that the

upper bound,

3·2
 m+n−2

−2
n
+1, proposed in [10] is indeed the state

complexity of this combined operation when m≥2 and n≥1.

The author also show that, unlike some other combined

operations, the state complexities of (L1∩L2)L3, L1L2∩L3, and

L1L2∪L3 in general cases are equal to the compositions of the

state complexities of their component operations, while the

state complexities of L1
R
L2, L1

*
L2 and (L1∪L2)L3 are close to

the compositions.

Fig. 1. Witness DFA N which shows that the upper

bound of the state complexity of (L(M)L(N))
R
, 3·2

m+n−2
−2

n
+1, is reachable when m, n≥2.

Theorem 2. For any integers m≥2 and n≥2, there exist a

binary DFA A of m-states and a binary DFA B of n-states

such that any DFA accepting the language L(A)L(B) needs at

least m2
n
−2

n-1
 states.

Proof. Let m and n be arbitrary but fixed integers such that

m≥2 and n≥2 . Let d=(m−n+1) mod (m−1) and let = {a,b}

Fig. 2. The deterministic finite automaton A; d=(m−n+1)

mod (m−1).

Fig. 3. The deterministic finite automaton B.

Define an m-state DFA A = (Q A ,Σ, δA , q0, FA), where QA =

{q0, q1, . . . , qm-1}, FA ={qm-1}, and for any

 i∈ {0, 1, . . . , m − 1},

δA(qi, X)=

Define an n-state DFA B=(QB , Σ, δB , q0, FB), where QB = {q0

, q1, . . . , qn-1}, FA = {qn-1}, and for any i ∈ {0, 1, . . . , n − 1}

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-7 Issue-3, July 2017

44

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C3031077317/2017©BEIESP

 δB(qi, X)=

The DFA A and B are shown in Figs. 2 and 3, respectively.

B. Intersection and union

Note that for the complement operation of an m-state DFA, it

is easy to verify that m states are necessary and sufficient. In

the following, the author consider the operations of

intersection and union. Given two DFAs A and B, we can

construct a DFA for the intersection of L(A) and L(B) based

on the Cartesian product of states. For details on the Cartesian

product construction, refer to Hopcroft and Ullman [6].

 Theorem 3. Given two DFAs A = (Q A , Σ, δA , q0, FA) and

DFA B = (Q B, Σ, δB, q0, FB)

let A∩B(Q A×Q B, Σ, δ,(qA,qB), FA× FB), where for all p∈QA

and q∈QB and a∈Σ,

 δ((p,q),a) = (δ A(p,a), δB(q,a)). Then, L(A∩B) = L(A)∩L(B).

Since the automaton A∩B constructed in theorem 3.2.1 is

deterministic, it follows that mn states are sufficient for the

intersection of L(A) and L(B), where |A|=m and |B|=n. Note

that mn is a tight bound for the intersection of two regular

languages[10]. The author assign a unique number for each

state from 1 to m in A and from 1 to n in B, where |A|=m and

|B|=n. Assume that the m
th

 state and the n
th

 state are the sink

states in A and B, respectively. Let A∩B denote the resulting

intersection automaton that the author compute using the

Cartesian product of states. By the construction, A∩B is

deterministic since A and B are deterministic. Therefore, a

DFA for L(A)∩L(B) is obtain. Next, the author minimize

A∩B by merging all equivalent states and removing

unreachable states from the start state.

 Given minimal DFAs A and B, all states (i,n) for 1≤i≤ m

and all states (m,j) for 1≤j≤ n of A∩B are equivalent.

Consider all states (1,j), for 1<j≤n, of A∩B. Since the start

state of A has no in-transitions. It implies that (1,j) is not

reachable from (1,1) in A∩B and, therefore, these states are

useless as shown in Fig. 4. A similar result can be establish for

the states (i,1), for 1<i≤ m.

Fig. 4 The figure depicts the intersection automaton A∩B

constructed for two suffix-free minimal DFAs A and B.

Note that, by theorem 3.2.1, all states in the last row and

in the last column are equivalent. Similarly, by theorem

3.2.2, all states, except for the start state (1,1), in the

first row and in the first column are unreachable from

(1,1).

Theorem 4. Given minimal DFAs A and B, all states(i,1), for

1<i≤ m, and all states(1,j) , for 1<j≤ n, are useless in A∩B.

Once the author minimize A∩B based on theorem 3 and 4, the

resulting minimal DFA has mn−2(m+n)+6 states.

Theorem 5. Given two minimal DFAs A and B,

mn−2(m+n)+6 states are necessary and sufficient in the

worst-case for the minimal DFA of L(A)∩L(B), where |Σ|≥3

and m,n≥3.

The previous consideration together with Fig. 4 shows that

mn−2(m+n)+6 states are sufficient. We prove the necessary

condition by giving two suffix-free minimal DFAs that reach

the bound.

Assume that Σ={a,b,#}. Let A be the minimal DFA for

L={#w|w∈ {a,b}*, |w|a ≡ 0(mod m−2)} and B be the minimal

DFA for L={#w|w∈ {a,b}*, |w|b ≡ 0(mod n−2)}

L(A) and L(B) are suffix-free since all strings have only one

occurrence of # which may occur only as the first symbol in

any string. It is easy to verify that |A|=m and |B|=n. Let

L=L(A)∩L(B) . We claim that the minimal DFA for L needs

mn−2(m+n)+6 states. To prove the claim, it is sufficient to

show that there exist a set R of mn−2(m+n)+6 strings over Σ

that are pairwise inequivalent modulo the right-invariant

congruence of L.

Let R=R1∪R2 , where

R1={λ, ##} ,

R2={#a
i
b

j
 |1≤i≤m−2 and 1≤j≤n−2} .

Any string #a
i
b

j
 from R2 is inequivalent with λ since #a

i
b

j
·

#does not ∈ L but λ·#∈L[12]. Similarly, #a
i

b
j

 is

inequivalent with ## since #a
i

b
j

·a
m-2-i

b
n-2-j

 ∈L but

##.a
m-2-i

b
n-2-j

 does not ∈ L. The two strings λ and ## of R1 are

inequivalent as well.

Next, consider two distinct strings #a
i
b

j
 and #a

k
b

l
 from R2.

Since #a
i
b

j
 ≠ #a

k
b

l
, #a

i
b

j
· a

m-2-i
b

n-2-j∈ L but #a
k

b
l
a

m-2-i
b

n-2-j

does not ∈ L. Therefore, any two distinct strings from R 2 are

inequivalent.

Thus, all mn−2(m+n)+6 strings in R are pairwise

inequivalent. This concludes the proof.

IV. CONCLUSION

In this paper, the we studied the state complexities of

operations like, e.g., union, intersection, complementation,

and reversal, on finite languages . We obtained the state

complexities of particular combined operations that are

(L1L2)
R
 , L1L2, L1

∗
∩L2

∗
 and L1

∗∪L2
∗

 where Li an ni-state

DFA language, ni ≥ 2, 1 ≤ i ≤ k, and k ≥ 2. The state

complexities of these combined operations are all less than

the mathematical compositions of the state complexities of

their component individual operations. Comparing with other

known state complexities of combined operations, it is

interesting to see that the state complexities of L1
∗

∩L2 and

L1
∗∪L2 are the same, and L1

∗
∩L2

∗
 and L1

∗∪L2
∗

 share the

same state complexity, whereas the state complexities of

(L1∪L2)
∗

 and (L1∩L2)
∗

 are different.

Complexity of Binary and Uniary Operations on Regular Grammar

45

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C3031077317/2017©BEIESP

REFERENCES

1. A. Chandra, D. Kozen and L. Stockmeyer, Alternation, J. ACM 28

(1981) 114-133

2. E. Leiss, Succint representation of regular languages by boolean

automata, Theoret. Comput. Sci. 13 (1981) 323- 330.

3. G. Liu, C. Martin-Vide, A. Salomaa, S. Yu, State complexity of basic

language operations combined with reversal, Information and

Computation 206 (2008) 1178–1186.

4. G. Rozenberg, A. Salomaa, Handbook of Formal Languages,

Springer-Verlag, Berlin, Heidelbergm, New York, 1997

5. J. Berstel, D. Perrin, Theory of Codes, Academic Press Inc., 1985.

6. J. Hopcroft, J. Ullman, Introduction to Automata Theory Languages

and Computation, 2nd ed., Addison-Wesley, Reading, MA,

1979.

7. K. Salomaa, S. Yu, On the state complexity of combined operations

and their estimation, International Journal of Foundations of

Computer Science 18 (4) (2007) 683–698.

8. M. Domaratzki, State complexity of proportional removals, Journal of

Automata Languages and Combinatorics 7 (4) (2002) 455–468.

9. M. Domaratzki, K. Salomaa, State complexity of shuffle on

trajectories, Journal of Automata Languages and Combinatorics 9

(2–3) (2004) 217–232.

10. S. Yu, Q. Zhuang, K. Salomaa, The state complexities of some basic

operations on regular languages, Theoretical Computer Science 125

(2) (1994)315–328

11. S. Yu, Regular Languages, In [23] Ch.1 (1997) 41–110.

12. S. Yu, State complexity: Recent results and open problems, invited

talk at International Colloquium on Automata, Languages and

Programming 2004 Formal Language Workshop, also appears in

Fundamenta Informaticae 64 1–4 (2005) 471–480.

13. S. Yu, On the state complexity of combined operations, in: invited

talk at 11th International Conference on Implementation and

Application of Automata, in: Lecture Notes in Computer Science, vol.

4094, Springer, 2006, pp. 11–22.

AUTHORS PROFILE

 Rajesh Kumar, obtained his B.Sc. Degree,

Master’s degree – (Master of Computer

Applications) from Kurukshetra University,

Kurukshetra. He is An Assistant Professor in

the Department of Computer Science and

Applications, C R M Jat College, Hisar,

Haryana, India. His research interests are in

Genetic Algorithm, Software Testing and

Design of Algorithms.

Miss Manju, obtained her B.Sc.

degree(Computer Science) from Govt. college,

jind and Master’s Degree (Master of Computer

Applications) from Banasthali University,

Rajasthan. She is UGC NET qualified.

Currently, She is Research Scholar in Guru

Jambheshwar University, Hisar,

Haryana,India. Her research interest in

Software Quality Metrics in Object Oriented

environment.

