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Abstract: It appears that the state complexity of each operation 

has its own special features. Thus, it is important and practical to 

calculate good estimates for some commonly used general cases. 

In this paper, the author consider the state complexity of 

combined Boolean operations on regular language and give an 

exact bound for all of them in the case when the alphabet is not 

fixed. Moreover, the author show that for any fixed alphabet, this 

bound can be reached in infinite cases.  

Index Terms: Alternating finite automaton, Automata, 

Combined operations, Estimation, Formal languages, Multiple 

operations, State complexity.  

I. INTRODUCTION 

  Motivated by the increasing sizes of finite automata 

machine that are used in recent applications, state complexity 

has become one of the most important topics in automata and 

formal language theory [7]. A  state complexity for regular 

languages is the the number of states needed by various 

finite-state automata(deterministic, non-deterministic) in 

order to accept the language. Often the state complexity 

influences the computational complexity of algorithms that 

use regular languages. All the most fundamental operations 

that preserve regularity are intersection, union and 

complementation. It is well known that if M languages are 

each recognized by deterministic (or non-deterministic) finite 

automata with n states, then their intersection is recognized by 

a deterministic (respectively non-deterministic) finite 

automaton with n
m
 states (obtained as the cartesian product of 

the M given automata[3]). Given n languages L
(0)

n, L
(1)

n, 

L
(2)

n,....,L
(n-1)

n each of which is recognized by a DFA 

(deterministic finite automaton) with n states: what is the 

minimum number of states of the minimal DFA for the 

intersection in the worst case? The author claims  a lower 

bound of n!+1; but, as Berstel[5] points out, this does not 

completely solve the problem, since the best known upper 

bound is n
n
. Below the author show a lower bound of n

n
; so the 

well-known upper bound is actually optimal. This  can be 

extend result to non-deterministic finite automata. The author 

also consider the operation of union of regular languages. For 

notation and the definition of DFA (deterministic finite 

automaton) and NFA (non-deterministic finite automaton) the 

author will follow [3]. A partial  DFA is an NFA whose 

next-state relation is a partial function (i.e., for every state and 

every input symbol there is one or no next state). An AFA 

(alternating finite automaton, see [2] and [1]) is a 
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generalization of an Non-deterministic Finite Automata; an 

AFA has a state graph like an NFA but, in addition, every 

state has a boolean function of states attached to it; 

recogination of an input is decided by these boolean functions 

(in the case of an NFA these boolean functions are the logical 

OR of some states); for the exact definition (which is rather 

long) see [2] or [4]. In this paper AFA's(Alternating finite 

automaton) are only mentioned in passing; the reader can skip 

any mention of AFA's without loss of continuity. 

II. DEFINITION ANS NOTATIONS  

Let Σ be an alphabet, i.e., a non-empty, finite set of 

letters(symbols). By Σ
∗

 the author denote the set of all finite 

words(strings of letters) over Σ, and by λ, the empty word (a 

word having zero symbols). The operation of concatenation 

of two words x and y is denoted by x.y, or simply xy. For 

w∈Σ
∗

,the reverse order of symbols in w is denoted by w
R
.  A 

NFA over Σ, is a tuple M=(Q, Σ, δ, q0, F) where Q is a finite 

set of states, δ:Q×Σ→2
Q
 is a next-state function, q0 is an initial 

state and F ⊆ Q is a set of final states. δ function is extended 

over (Q×Σ
∗

) in the usual way. M is deterministic (DFA) if 

δ:Q×Σ→Q. We consider complete DFAs, that is, those whose 

transition function “δ” is a total function. The size of M is the 

total number of its states. The language of M, denoted by 

L(M), belongs to the family of regular languages and consists 

of those strings accepted by M in the usual way. For a 

background on finite automata and regular languages the 

author refer the reader to[11]. 

III. STATE COMPLEXITY  

A. Star and Reversal 

In [8,9], estimation based state complexity of 

nondeterministic automata was introduced. Briefly speaking, 

for a combined operation on regular languages, the method 

first estimates the state complexity(nondeterministic) of the 

combined operation using the mathematical composition of 

the  state complexities of its component operations, and then 

converts it to an estimate of the deterministic state 

complexity. For example, for (L(A)∪L(B))
∗

 where A and B 

are DFAs of m states and n states, respectively, the state 

complexity(nondeterministic) of L=L(A)∪L(B) is m+n+1 

and that of L
∗

 is m+n +2, which is then converted to an 

estimate of the deterministic state complexity 2
m+n+2

. It has 

been shown that this method can obtain good estimates for the 

combined operations: star of intersection, star of union, star of 

catenation, and star of reversal. However, this method clearly 

has its limitations.  
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Using this method it is observed that the complexity of 

union of n1-state, n2-state, and n3-state DFA languages are  

2
n1+n2+n3+2

. However, the actual state complexity of this 

combined operation is n1n2n3. It seems that this method may 

work well for all combined operations with the final 

component operation having an exponential state complexity, 

e.g., star or reversal. Indeed, it works well when a combined 

operation is ended with the star operation. However, it does 

not work well in general for combined operations that are 

ended with reversal. For example, the state complexity of 

reversal of intersection of an m-state DFA language and an 

n-state DFA language is 2
m+n

−2
m
−2

n
+2. However, the author 

would obtain an estimate 2
mn+1 

using this method.  

The following result was obtained in [13], where a regular 

operation expression is an expression built from occurrences 

of binary operations union and concatenation, occurrences of 

the unary operation star, and variables, where each variable 

occurs at most once in the expression, and nsc(f) denotes the 

nondeterministic state complexity of the operation f denoted 

by a regular operation expression. 

   Theorem 1. Let f be an operation defined by a regular 

operation expression with k variables, and denote the sizes of 

the NFAs for the argument languages by m1 , . . . , mk. Then  

 

  nsc ( f ) ≤ 1 +     

 (1) 

 

Using the above result,  the author  can claim the following 

estimates.  

 Let f  be an operation defined by a regular operation 

expression with k variables and denote the sizes of the NFAs 

for the argument languages by m1 , . . . , mk. Then the state 

complexity of f is no more than  

2
 m1 + . . .+  mk+1

. So it is  clear that when the unary star operation 

is the final operation of f, the upper bound is pretty tight. 

There are many different combinations of two basic 

operations selected from catenation, star, reversal, 

intersection, and union. Note that the author consider (L1
R
)
∗

 

and ( L1
*
)

R
 as the same combined operation because (L1

R
)
∗

=( 

L1
*
)

R
. The combined operations (L1

*
)
∗

=L1
*
 and (L1

R
)

R
=L1 are 

not counted, either. Among these combined operations, the 

state complexities of the following ones have been studied in 

the literature:(L1∪L2)
∗

 in [11], ( L1∩L2)
∗

 in [8], (L1L2)
∗

, 

(L1
R
)
∗

  in [9], (L1∪L2)
R
 ,(L1∩L2)

R
, (L1L2)

R
 , L1L2

∗
,L1L2

R
 in 

[3], L1(L2∪L3) ,L1(L2∩L3) in [4], L1
∗∪L2 , L1

∗
∩L2 , L1

R∪L2 , 

L1
R
∩L2 in [11], L1L2L3, the combined Boolean operations 

L1∪L2∪L3 , L1∩L2∩L3 , (L1∪L2)∪L3, and (L1∩L2)∪L3 in 

[8], where L1, L2, and L3 are three regular languages.  

Although the state complexity of (L1L2)
R 

has been considered 

in[8], only an upper bound has been obtained. In this paper, 

the author prove, by providing some witness DFAs, that the 

upper bound,  

3·2
 m+n−2

−2
n
+1, proposed in [10] is indeed the state 

complexity of this combined operation when m≥2 and n≥1.  

The author also show that, unlike some other combined 

operations, the state complexities of (L1∩L2)L3, L1L2∩L3, and 

L1L2∪L3 in general cases are equal to the compositions of the 

state complexities of their component operations, while the 

state complexities of  L1
R
L2, L1

*
L2 and (L1∪L2)L3 are close to 

the compositions. 

 

Fig. 1.  Witness DFA N which shows that the upper 

bound of the state complexity of (L(M)L(N))
R
, 3·2

 

m+n−2
−2

n
+1, is reachable when m, n≥2. 

Theorem 2.  For any integers m≥2 and n≥2, there exist a 

binary DFA  A of m-states and a binary DFA B of n-states 

such that any DFA accepting the language L(A)L(B) needs at 

least m2
n
−2

n-1
 states. 

Proof. Let m and n be arbitrary but fixed integers such that  

m≥2 and n≥2 . Let  d=(m−n+1) mod (m−1) and let = {a,b} 

 

Fig. 2. The deterministic finite automaton A; d=(m−n+1) 

mod (m−1). 

 

Fig. 3. The deterministic finite automaton B. 

Define an m-state DFA A = (Q A ,Σ, δA , q0, FA), where QA = 

{q0, q1, . . . , qm-1}, FA ={qm-1}, and for any 

 i∈ {0, 1, . . . , m − 1}, 

     

 

δA(qi, X)=  

 

 

Define an n-state DFA B=(QB , Σ, δB , q0, FB), where QB = {q0 

, q1, . . . , qn-1}, FA = {qn-1}, and for any i ∈  {0, 1, . . . , n − 1} 
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 δB(qi, X)=                 

 

The DFA  A and B are shown in Figs. 2 and 3, respectively. 

B. Intersection and union 

Note that for the complement operation of an m-state  DFA, it 

is easy to verify that m states are necessary and sufficient. In 

the following, the author consider the operations of 

intersection and union. Given two DFAs A and B, we can 

construct a DFA for the intersection of L(A) and L(B) based 

on the Cartesian product of states. For details on the Cartesian 

product construction, refer to Hopcroft and Ullman [6]. 

  Theorem 3. Given two DFAs A = (Q A , Σ, δA , q0, FA )  and  

DFA B = (Q B, Σ, δB, q0, FB)  

let A∩B(Q A×Q B, Σ, δ,(qA,qB), FA× FB ), where for all p∈QA 

and q∈QB and a∈Σ, 

  δ((p,q),a) = (δ A(p,a), δB(q,a)). Then, L(A∩B) = L(A)∩L(B). 

Since the automaton A∩B constructed in theorem 3.2.1 is 

deterministic, it follows that mn states are sufficient for the 

intersection of L(A) and L(B), where |A|=m and |B|=n. Note 

that mn is a tight bound for the intersection of two regular 

languages[10]. The author assign a unique number for each 

state from 1 to m in A and from 1 to n in B, where |A|=m and 

|B|=n. Assume that the m
th

 state and the n
th

 state are the sink 

states in A and B, respectively. Let A∩B denote the resulting 

intersection automaton that the author compute using the 

Cartesian product of states. By the construction, A∩B is 

deterministic since A and B are deterministic. Therefore, a 

DFA for L(A)∩L(B) is obtain. Next, the author minimize 

A∩B by merging all equivalent states and removing 

unreachable states from the start state. 

    Given minimal DFAs A and B, all states (i,n) for 1≤i≤ m 

and all states (m,j) for 1≤j≤ n of A∩B are equivalent.  

Consider all states (1,j), for 1<j≤n, of A∩B. Since the start 

state of A has no in-transitions. It implies that (1,j) is not 

reachable from (1,1) in A∩B and, therefore, these states are 

useless as shown in Fig. 4. A similar result can be establish for 

the states (i,1), for 1<i≤ m. 

 
Fig. 4 The figure depicts the intersection automaton A∩B 

constructed for two suffix-free minimal DFAs A and B. 

Note that, by theorem  3.2.1, all states in the last row and 

in the last column are equivalent. Similarly, by theorem 

3.2.2, all states, except for the start state (1,1), in  the 

first row and in the first column are unreachable from 

(1,1). 

Theorem 4. Given minimal DFAs A and B, all states(i,1), for 

1<i≤ m, and all states(1,j) , for 1<j≤ n, are useless in A∩B. 

Once the author minimize A∩B based on theorem 3 and 4, the 

resulting minimal DFA has  mn−2(m+n )+6 states. 

Theorem 5. Given two  minimal DFAs A and B, 

mn−2(m+n)+6 states are necessary and sufficient in the 

worst-case for the minimal DFA of L(A)∩L(B), where |Σ|≥3 

and m,n≥3. 

The previous consideration together with Fig. 4 shows that 

mn−2(m+n)+6 states are sufficient. We prove the necessary 

condition by giving two suffix-free minimal DFAs that reach 

the bound.  

Assume that Σ={a,b,#}. Let A be the minimal DFA for 

L={#w|w∈ {a,b}*, |w|a ≡ 0(mod m−2)} and B be the minimal 

DFA for L={#w|w∈ {a,b}*, |w|b ≡ 0(mod n−2)}  

L(A) and L(B) are suffix-free since all strings have only one 

occurrence of # which may occur only as the first symbol in 

any string. It is easy to verify that |A|=m and |B|=n. Let 

L=L(A)∩L(B) . We claim that the minimal DFA for L needs 

mn−2(m+n)+6 states. To prove the claim, it is sufficient to 

show that there exist a set R of mn−2(m+n)+6 strings over Σ 

that are pairwise inequivalent modulo the right-invariant 

congruence of L.  

Let R=R1∪R2 , where  

R1={λ, ##} ,  

R2={#a
i 
b

j
 |1≤i≤m−2 and 1≤j≤n−2} . 

Any string #a
i 
b

j 
 from R2 is inequivalent with λ since #a

i 
b

j 
· 

#does not ∈  L but λ·#∈L[12]. Similarly,  #a
i 

b
j 

 is 

inequivalent with ## since #a
i 

b
j 

·a
m-2-i

b
n-2-j

 ∈L but 

##.a
m-2-i

b
n-2-j

 does not ∈  L. The two strings λ and ## of R1 are 

inequivalent as well.  

Next, consider two distinct strings #a
i 
b

j
 and #a

k 
b

l
 from R2. 

Since #a
i 
b

j
 ≠ #a

k 
b

l
, #a

i 
b

j 
· a

m-2-i
b

n-2-j∈  L but #a
k 

b
l
a

m-2-i
b

n-2-j
 

does not ∈  L. Therefore, any two distinct strings from R 2 are 

inequivalent.  

Thus, all mn−2(m+n)+6 strings in R are pairwise 

inequivalent. This concludes the proof. 

IV. CONCLUSION 

In this paper, the we studied the state complexities of 

operations like, e.g., union, intersection, complementation, 

and reversal, on finite languages . We obtained the state 

complexities of  particular combined operations that are 

(L1L2)
R
 , L1L2, L1

∗
∩L2

∗   
 and L1

∗∪L2
∗

  where Li an ni-state 

DFA language, ni ≥ 2, 1 ≤ i ≤ k, and k ≥ 2. The state 

complexities of these combined operations are all less than 

the mathematical compositions of the state complexities of 

their component individual operations. Comparing with other 

known state complexities of combined operations, it is 

interesting to see that the state complexities of L1
∗

∩L2 and 

L1
∗∪L2 are the same, and L1

∗
∩L2

∗
 and L1

∗∪L2
∗

  share the 

same state complexity, whereas the state complexities of 

(L1∪L2)
∗

 and (L1∩L2)
∗

 are different.  
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