
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-7 Issue-5, November 2017

7 Retrieval Number: E3075117517/2017©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Solving Management Constraints of Traditional

Networks using the Concept of Software Defined

Networking

Muhamed Begović, Himzo Bajrić

Abstract: Computer networks, and in particular the Internet,

have significantly evolved in relation to their beginnings. The

number of users is constantly increasing, there are more and

more mobile and wireless users, the quantity and type of traffic

being transmitted is no longer the same, the way the storage and

provision of content changes, etc. Traditional network

architecture has not been made to meet the demands placed

before it by the traffic that travels through the networks today,

which significantly complicates the process of managing these

networks. Software defined networks provide the opportunity to

make the most of the architecture tailored according to the

behavior and expectations of today's users as well as content and

services providers by simplifying network management,

expanding the range of opportunities and fostering innovation.

Keywords: computer networks, computer network

management, network architecture.

I. INTRODUCTION

There is a lot of definitions of network management. It

can be simply defined as a process of configuring the

network to achieve a different kind of tasks. In a broader

sense [1], network management is defined as the execution

of the set of functions required for controlling, planning,

allocating, deploying, coordinating, and monitoring

resources of a telecommunication network or a computer

network, including performing functions as initial network

planning, frequency allocation, predetermined traffic routing

to support load balancing, cryptographic key distribution

authorization, configuration management, fault

management, security management, performance

management, and accounting management.

A key aspect to network management is configuring the

network. Juniper White paper [2] shows that human factors

are responsible for 50 to 80 percent of network outages, and

the most worrying thing is that the cause is no longer

incompetence, but system complexity with large number of

devices with multiple interactions and hard predicting

relationships that make it very hard or impossible to know

with certainty how will the implementation of a given policy

affect the rest of the network.

The interactions between multiple routing protocols can

in traditional architecture lead to unpredictability due to

configuration that is distributed across hundreds or more

devices. Furthermore, each autonomous system on the

Internet is independently configured, and the interaction

between their policies can lead to unwanted behavior.

Revised Version Manuscript Received on October 27, 2017

M.Sc. Muhamed Begović, Teaching Assistant, Faculty of Traffic and

Communications, University of Sarajevo, Bosnia and Herzegovina.
E-mail: m.begovic@live.com

 Dr. Himzo Bajrić, Associate Professor, Faculty of Traffic and

Communications, University of Sarajevo, Bosnia and Herzegovina.
E-mail: himzo.bajric@bih.net.ba

Compared with traditional vendor-specific low-level

configuration, Software Defined Networking (SDN) on a

high level provides exactly the primitives that operators

need to run the network better.

Since the Open Networking foundation is the biggest,

and the most influential organization in terms of SDN, their

definition of SDN is accepted in wider circles. ONF defines

SDN as an emerging network architecture where network

control is decoupled from forwarding and is directly

programmable [3]. More pragmatic definition [4] views

SDN as a functionality that enables the network to be

accessed by operators programmatically, allowing

automated management and orchestration techniques;

application of configuration policy across multiple routers,

switches, and servers; and the decoupling of the application

that performs these operations from the network device’s

operating system. Kreutz et al. define SDN through four

main pillars [5]: (1) The control and data planes are

decoupled. (2) Forwarding decisions are flow-based, instead

of destination-based. (3) Control logic is moved to an

external entity, SDN controller. (4) The network is

programmable through software applications running on top.

II. RELATED RESEARCH

The idea of programmable network is not so new as one

might think. It is a rather new concept but some ideas that

this new network architecture is based on has its roots in

technologies that evolved in final years of last millennium.

SDN even uses early telephony networks principle [6] of

clear separation of control and data planes in order to

simplify network management and the deployment of new

services.

The history of SDN can be divided into three stages [6],

each with its own contributions:

• active networks introduced programmable functions

leading to greater innovation;

• control and data-plane separation, which developed

open interfaces between the control and data planes;

• the OpenFlow API and network operating systems,

which represented the first widespread adoption of an

open interface.

DARPA research community introduced active

networking concept [7] around 1996 as an answer to rising

problems that the traditional networks architecture causes in

networking systems development, growth and innovations.

Networks are called active because switching elements can

perform computations on packets and modify the content

they are carrying and

processing can be customized

on a per user or per application

basis.

mailto:m.begovic@live.com
mailto:himzo.bajric@bih.net.ba

Solving Management Constraints of Traditional Networks using the Concept of Software Defined

Networking

8 Retrieval Number: E3075117517/2017©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The idea is that a user (or network administrator) of an

active network sends a program which executes on the

switching element when their packets are processed. There

were two proposed approaches [8]. First approach is called

programmable switch approach (1) and it “maintains the

existing packet/cell format, and provides a discrete

mechanism that supports the downloading of programs”. It

is clear that even in this early idea we have a separation of

injecting the programs from processing the messages.

Capsule approach (2) replaces traditional packets by “active

miniature programs that are encapsulated in transmission

frames and executed at each node along their path”.

It is important to note that the very first concept of

separating control and forwarding processes can be found in

early 1990s by the BSD 4.4 routing sockets [9].

Previous to 2004, configuration was distributed which

lead to complexity, buggy and unpredictable behavior and

low manageability [10]. Around 2004, emerged the idea to

control the network from a logically centralized high-level

program [11]. Even in that time, it was obvious that the

main limitation of traditional network architecture was

distributed approach in computation of paths through the

network on standard routers. Routing Control Platform

(RCP) was introduced as a solution that provides routes

selection on behalf of the IP routers in each AS and

exchange reachability information with other domains

[12,13].

In 2005 researchers generalized the concept of RCP for

different planes [14]. 4D planes philosophy consists of the

decision plane which computed the forwarding state for

devices in the network, the data plane, which forwarded

traffic based on decisions made by the decision plane, and

the dissemination and discovery planes, which provide the

decision plane the information that it needs to compute the

forwarding state, which ultimately gets pushed to the data

plane.

Idea of new architecture emerged embracing the 4D

philosophy and driven by the shortcomings of classical

architecture in ensuring the effective functioning and

management of large and complex enterprise networks, with

various vendor equipment, multiple protocols and security

mechanisms. The new Ethane network architecture [15] was

presented as a new solution to the mentioned problems that

will not make network more complicated and will not only

“hide complexity” as it is done in some earlier methods such

as middleboxes and adding new functionality to existing

networks (access lists, VLANs, spanning tree algorithms).

Ethan supports a new concept “by not allowing any

communication between end-hosts without explicit

permission.” The central controller has a global view of the

network and calculates the path and movement through

communication nodes, and simple job of forwarding is

performed by Ethan switch that works according to direct

orders of the controller.

Growing security issues, that are especially big problem

in enterprise network which do not tolerate data loss or

confidential information leaks, lead to proposing SANE

architecture (Secure Architecture for the Networked

Enterprise) [16]. It represents a concept of architecture with

security as the main goal, and one of the three basic

principles is also to have “only one trusted component” so

the policy enforcement is centralized.

Around 2008, software defined networking concepts

effectively hit the mainstream, thanks to the emergence of

OpenFlow under Open Networking Foundation (ONF) [3]

consortium that is leading the advancement of SDN and

standardizing elements of SDN architecture.

III. PLACEMENT OF NETWORK MANAGEMENT

FUNCTIONS IN SDN ARCHITECTURE

Architecture of SDN networks includes three layers

according to the reference model [3] proposed by the ONF:

infrastructural layer, control layer and application layer.

Layers perform mutual communication via interfaces. Fig.

3. shows simplified SDN architecture modeled by the ONF

proposal and supplemented with position and short

description of some basic processes in SDN enabled

networks.

Fig. 1. SDN architecture model with basic processes.

A. Infrastructure layer

The infrastructure layer includes transmission media and

switching devices that have the task of forwarding packets,

and collecting data about the state of the network. SDN-

enabled switching devices are exempt from the process of

selecting the best route. SDN switch receives instructions

from SDN controller about packet forwarding rules, these

rules are stored in one or more tables in its memory, and

based on them decides where to forward packets. This

device has no intelligence of its own, nor can autonomously

make decisions about forwarding packets because they are

no longer required to understand the routing process and the

principles of routing protocols, but only need to understand

the language in which the SDN

controller addresses them.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-7 Issue-5, November 2017

9 Retrieval Number: E3075117517/2017©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Routing is not exclusively based on the destination IP or

MAC address, but also on other parameters from the headers

such as TCP or UDP port, or VLAN tag. SDN switching

devices can be implemented as software running on a host

operating system, on vendor’s switch, or on an open

network hardware [17]. Since the ONF SDN architecture is

the most widespread, it is important to briefly describe how

does ONF OpenFlow enabled switch works. Specifications

of OpenFlow switches are defined by ONF and the latest

version is 1.5.1 released in March 2015 by ONF TS-025.

OpenFlow switch is characterized by three components (1)

flow table – one or more connected through “pipelines”, (2)

secured channel - connection with the controller, (3)

OpenFlow protocol – way of communication with the

controller. Structure of one OpenFlow entry is shown in

Table I.

TABLE I. MAIN COMPONENTS OF A FLOW ENTRY IN A

FLOW TABLE [18]

Match
Fields

Priority Counters
Instruc-

tions
Time-
outs

Cooki
e

Flags

Open Flow switch works using one or more flow tables

that contain rules. of matching packets to a particular flow,

actions to be taken when the belonging flow of the package

is determined, as well as counters that maintain statistics of

forwarded packets. When a packet arrives, lookup process

starts in the first flow table. If a match is found, it is

forwarded to corresponding outgoing port. If a match is not

found, the packet is forwarded to the next flow table. If there

is no match in any of the existing tables, packet can be

forwarded to the controller for the decision, or it can be

dropped.

B. Control layer

SDN controllers are situated at the control layer and they

are in charge of importing packet forwarding rules based on

the policy received from the application layer, and in this

way, they govern the operations of switching devices on the

infrastructure layer. Control layer in SDN networks is very

important because it is a place where most of the complex

network issues happen.

Since SDN controller is placed in the very middle of the

SDN architecture - control layer (see Fig. 3.), besides lower

infrastructure layer, it also has a bond toward upper

application layer. Applications use open APIs and through

controllers access and govern the behaviour of switching

devices at the bottom of the SDN architecture to meet the

requirements. Controller-infrastructure interface is refered to

as southbound interface. In order to be able to perform an

essential function of SDN - dynamic network management,

it is necessary to have the information about the current

status of the network. This information is collected by one

or more SDN controllers from statistics kept by the devices

on the infrastructure layer.

Wenfen Xia et al. [17] presented possible logical design

of the SDN controller considering its primary functions and

distinguish four main building components of SDN

controller. Communication in north - south direction: High

level language (1) is responsible for delivering the policy

requirements of applications and transforming them into

packet forwarding rules and needs to be developed as a

language whose syntax enables simple translation of

application requirements in order to ensure the desired

behavior of the network. Controller then needs to generate

packet forwarding rules (2) extracted from the policy

received from the applications, install them into switching

devices, and update the rules as the network needs to be

dynamically controlled. Communication in south - north

direction: Application layer needs to have unique view of

the network, which enables the process of making decisions.

SDN controllers collect status of the network (3) from

switching devices that keep statistics on forwarding, or they

themselves report that statistic to the controller. If there are

two or more SDN controllers governing the behavior of

switching devices, it is crucial to maintain synchronized

view of the network status (4), otherwise applications that

receive unsynchronized information can make wrong

network management policies resulting in unwanted

network behavior.

Table II contains examples of SDN controllers from first

OpenFlow controller realization – NOX, to latest proposals

like ParaFlow.

TABLE II. CONTROLLER IMPLEMENTATION

EXAMPLES

Controll

er

Pro

gra

m.

lang

uage

Description

NOX

[19]
C++

First OpenFlow controller. Supports centralized

architecture and has ad-hoc API.

Open-

Daylight

[20]

Java

Enables support of multiple southbound protocol

plugins and a diverse set of services and apps,

brings network applications closer to the network
and allows developers and researchers to focus on

SDN APIs rather than protocols used to

communicate with devices.

Onix
[21]

Pyth

on,

C

Onix allows operating with a global network view,

and use of basic state distribution primitives

provided by the platform. Ensures a general API
for control plane implementations, while allowing

them to make their own trade-offs among

consistency, durability, and scalability.

ParaFlo

w [22]
C++

Multithreaded SDN controller that supports fine-
grained parallelism by exploiting application

parallelism and utilizing multi-/many-core

resources to accelerate event processing. Provides a
flow-based programming interface for application

developers to program with network flows rather

than various types of low-level events.

Controllers must have a way to communicate in order to

exchange various types of information (e.g. synchronize

network status and topology view). This communication is

achieved through east-west interface (see Fig.1.).

C. Application layer

SDN application layer contains applications that create

rules based on collected data on the status of the network

and forward them to the controllers that ultimately govern

the switching devices. Application-controller interface is

referred to as northbound interface.SDN applications have a

view of the entire network, thanks to the data on the current

status of the network obtained by the controllers and

delivered to them through the

northbound interface. Thanks

to the dynamic programs it is

possible to have flexible

Solving Management Constraints of Traditional Networks using the Concept of Software Defined

Networking

10 Retrieval Number: E3075117517/2017©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

network management and network resources allocation in

real time, changing the behavior according to the needs of

users, administrators and network operators.

Through open APIs and programmable platform, it is

relatively easy and not as much time-consuming (as in

traditional networks) to develop and implement applications

without worrying about multi-vendor environment, and

without being tied to details of their implementation since

SDN applications are not so much “network-aware” as

“network-capability-aware” [3]. SDN applications enable

enhancement of existing traditional networks main functions

(e.g., routing of packets through network and security

management), as well as many new capabilities that were

hard or impossible to realize with traditional architectures,

e.g., energy aware routing or saving energy in Data center

networks [23] and QoS over heterogenous networks [24].

IV. IDENTIFIED POTENTIAL PROBLEMS IN

INTRODUCING AND EXPLOITATION OF SDN

WITH PROPOSED SOLUTIONS

A. Scalability

Since the idea of SDN emerged, and the first SDN

controller was made and tested [25], there were concerns

over the scalability. One SDN controller can manage very

large networks [26], even those which are composed of

several thousand of switches (tens of thousands of ports),

but regardless of this, at some point in time, the exhaustion

of CPU or memory will inevitably and undoubtedly happen.

It is a simple math: bigger the network - larger the requests

and information sent to the controller. This is especially a

problem in network environments with high flow initiation

rates like in data centers and big enterprises [27], [28].

If, by its nature, SDN is centralized, it would mean that

there are real problems of scalability as the network (more

precisely SDN controller) in certain situations is unable to

ensure expanding. However, in reality, the term used in

SDN is “logically centralized”, which essentially means that

“it is a centralized programmatic model, but was really

distributed” [26]. Thus, the devices in charge of

computation “appear as a single machine but in practice they

can be replicated” [29].

B. Inter-controller communication

Concept of distributed control plane elements rises

another issue. To ensure that we preserve one of the main

benefits of SDN – a unique global view of complete

network – those distributed control elements must have a

standardized way to communicate and exchange various

information about network status. If more controllers are

present in the network, it is necessary to synchronize the

information gathered by the various controllers to be able to

forward the information to applications that lie on the layer

above. There are two approaches to this problem. The first

speaks of the logically centralized control plane in which

there is a shared database for all controllers to be used for

synchronization of decisions. Example of this approach can

be found in OpenDayLight (ODL) controller [20]. Because

of the limitations of this approach in case of large and

distributed networks, other ideas appeared on logically

distributed control plane in which each controller takes care

of its domain and distributes the necessary data to other

controllers. Example of logically distributed approach is

Disco [30] (Distributed multi-domain SDN controllers)

control plane organization that provides manageable inter-

controller channel with agents for sharing network-wide

information and supporting end-to-end network services.

Although it is clear what is the importance of the

interface between controllers, there is still no standardized

way for controllers to exchange information in distributed

environment, so CIDC - Communication Interface for

Distributed Control plane [31] was proposed as an east-west

SDN interface to ensure reliable message exchange and

support for achieving distributed network services. First

simulations and testing showed that CIDC has significantly

better results than previous solutions like ODL “in terms of

delay, overhead, and system consumption such as CPU and

Memory”.

C. Network topology, increased delays, failure

recovery

Some other questions that rise are how to determine the

exact number of controllers that we need and what will be

their geographical position in the network [32], what will

control plane topology look like, is it better to have flat or

hierarchical organization, and how to ensure their reliability

and security.

Flow initiation procedure overhead and resilience to

failures [33] are as well things to be worried about. Reactive

requesting, computation and installing of flow forwarding

rules creates additional delays. The main concern over

increased delays are not within controllers and their speed of

reacting to new flow rule requests, but in switching devices

that have limited hardware capabilities and relatively week

management CPUs. Reacting to failures and convergence of

the network is not a problem bigger than in traditional

networks as long as the failed link or switch malfunction

does not effect on switch-controller or controller-controller

communication. However, if this happens, it can lead to

serious problems due to the fact that a controller cannot

react to the problem if itself did not receive the information

about the failure. One of the possible solutions can be

creating out-of-band control network, but even with this

approach all the problems are not solved.

D. Deployment issue

There are proposals on how to overcome the limitations

of traditional network architectures by using the existing

routing protocols to create programmable networks or how

to combine SDN with some other ideas on network

management, i.e. how to improve SDN concept and work

around its potential flaws.

Stefano Vissicchio et al., present an idea called Fibbing

[34], [35]. Main arguments in favor of this idea are that

despite its advantages SDN is sacrificing robustness

provided by the distributed routing protocols,

building SDN controller to replace the tasks currently

performed by scalable, robust and fast responding OSPF or

IS-IS protocol is in itself a challenge, as well as the fact that

even the simple task of updating forwarding rules on the

switch would be a major

problem for the central

controller that controls the

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-7 Issue-5, November 2017

11 Retrieval Number: E3075117517/2017©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

operation of hundreds of switches. The deployment is cited

as another drawback of SDN, because many networks have

a huge installed base of devices, management tools, and

employees who are not familiar with the principles of SDN.

Fibbing technique relies on a distributed architecture of

the current networks and routing protocols, but controls the

information centrally by lying routers about network

topology, adding false nodes, and thus forwards the traffic

according to current needs. Fibbing works by injecting fake

link state advertisements (LSAs) to construct a shared view

of the topology. So, fibbing creates false routing messages

as wanted by the central control, lets routing protocols

transmit them through the network, router than computes the

routes and stores them in the routing tables, and forwards

the traffic according to those routes.

Although it cannot provide the flexibility enabled by

SDN, as stated in the “Opportunities and research challenges

of hybrid software defined networks”, fibbing techniques

and algorithms can help “during the transition by providing

access to the FIBs of legacy routers to any SDN controller”

[36].

E. Combining vertical and horizontal separation of

the network

One of the basic postulates of SDN networks is to create

a simple, “dumb” hardware in the infrastructure layer, which

is responsible for forwarding packets according to orders

from higher instances. It is true that the horizontal

separation of data and control plane achieved a significant

simplification, but SDN switches still have to examine a

large number of bits from packet headers to implement a

process of matching [18] even in the core network.

One of the proposed solutions is the horizontal

separation of the network modeled on the one in MPLS

networks [37]. It is possible to have devices on the edges of

the network that will be different from those in the core

which will forward only on the basis of certain minimum

information (such as labels in MPLS networks). In this case,

the devices in the core network will truly be able to meet the

requirement of simplicity and speed up the process of

forwarding because the number of bits that are being tested

will be reduced a dozen times.

On the other hand, such an approach would certainly

complicate things in the sense that there should be different

core edge devices, as well as various edge and core network

elements controllers. More specifically, there should be two

versions of the OpenFlow protocol. Furthermore, the

interface between the edge and core devices would have to

be precisely defined in the sense of mapping the edge

context to the core (and vice versa) on how to manipulate

specific packets.

V. UTILIZING SDN FOR CONCRETE

SOLUTIONS

SDN provides three main things to the administrators of

the network. Network-wide views (1) of both topology and

traffic. The ability (2) to satisfy network level objectives

including load balance, QoS, security, and other high-level

goals in a dynamic way by controlling the network from a

high-level program. Direct control (3) from a logically

centralized controller by allowing writing of control

program that directly affects the data plane rather than

having to configure each device individually and guess what

might happen.

SDN limits the consumption of power in data centers

[23], reduces the cost of equipment and complexity of

network configuration and management in Wireless

networks [38].

If we create application programming interface (API)

between control and data plane, we will ensure independent

evolving. However, software written components of control

plane will evolve faster than forwarding elements of data

plane that are usually built from highly specialized

application-specific integrated circuits (ASICs) [33].

From the perspective of users who do not have adequate

technical knowledge, but want to adapt to the performance

of their private network, SDN will enable the use of

applications like RENEMA [39] that simplify network

management, and at the same time will hide the low-level

details of the configuration. Regarding routing process, SDN

ensures more control over the logic of forwarding decisions

e.g. shortest path based on energy consumption [40]. For

enterprise networks, SDN gives the opportunity to write

security applications e.g. applications that manage network

access control [41]. In research networks, the separation of

data and control allows to virtualize the network, so that

research networks and experimental protocols can co-exist

with production networks on the same underlying network

hardware.

VI. CONCLUSION

Bringing things back to beginning of the paper and

provided definition of network management, it is obvious

that SDN is capable to bring improvements to each and

every aspect of network management to all types of users,

from residential, across enterprise networks, to ISPs

networks. A large number of applications already in use, and

many more that are being developed, as well as the research

results that were conducted for SND on behavioral and

programming abstractions, testing, and verification, and

extensibility show that it has a great potential to be used for

many traditional network architectures problem solving. At

this point in time it is clear that the benefits that the concept

of SDN brings should not be called into question. The real

question would be whether all the fuss about the

implementation of SDN is justified, and how much will we

gain in accordance with the efforts and resources invested in

the implementation of these networks. One must also be

aware of the fact that the SDN is still going through a lot of

research and testing and that there is still a lot of work to be

done to fully solving all detected issues and standardize the

solutions.

REFERENCES

1. J. Ding, “Advances in Network Management,” Taylor&Francis Group
LLC, 2010.g. , pp. 43.

2. Juniper Networks, White paper, “What’s behind network downtime?,

proactive steps to reduce human error and improve availability of
Networks”, 2008. [Online]. Available: http://www-05.ibm.com/uk/

juniper/pdf/200249.pdf

3. Open Networking Foundation, White paper, “Software-defined
networking: The new norm for networks,” Palo Alto, CA, USA, April

2012. [Online]. Available: https://www.opennetworking.org/images/

stories/downloads/sdn- resources/white-papers/wp-sdn-newnorm.pdf
4. Thomas D. Nadeau and Ken

Gray, SDN: Software Defined

Networks, First Edition, O’Reilly
Media, August 2013

Solving Management Constraints of Traditional Networks using the Concept of Software Defined

Networking

12 Retrieval Number: E3075117517/2017©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

5. D. Kreutz et al., “Software-defined networking: A comprehensive

survey”, Proceedings of the IEEE, vol. 103, issue 1, pp. 14-76,
January 2015.

6. N. Feamster , J. Rexford, and E. Zegura, “The road to SDN,” in ACM

SIGCOMM Computer Communication Review, Volume 44 Issue 2,
pp. 87-98, April 2014.

7. Active Networks home page (DARPA funded program), “Upcoming

events and related research efforts in active networks,” [Online].
Available: http://www.sds.lcs.mit.edu/darpa-activenet/

8. D.Tennenhouse, J. Smith, D. Sincoskie, D. Wetherall, and G.

Minden,,”A survey of active network research,” IEEE
Communications Magazine, vol. 35, issue: 1, pp. 80 - 86, January

1997.

9. G. Wright and W. Stevens, “TCP/IP illustrated,” vol. 2, chapter 20,
June 1995.

10. [S. Jain et al., “B4: Experience with a globally-deployed software

defined WAN,” in SIGCOMM '13 Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pp. 3-14, Hong Kong,

China, August 2013.

11. N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der

Merwe, “The case for separating routing from routers,” in FDNA '04

Proceedings of the ACM SIGCOMM workshop on Future directions

in network architecture, pp. 5-12, Portland, Oregon, USA, August
2004.

12. M. Caesar et al., “Design and implementation of a routing control

platform,” in NSDI'05 Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation, vol. 2,

pp. 15-28, May 2005.
13. C. E. Rothenberg et al., “Revisiting routing control platforms with the

eyes and muscles of software-defined networking,” in HotSDN '12

Proceedings of the first workshop on Hot topics in software defined
networks, pp. 13-18, Helsinki, Finland, August 2012.

14. Greenberg et al., “A clean slate 4D approach to network control and

management,” in ACM SIGCOMM Computer Communication
Review Homepage archive, vol. 35, issue 5, pp. 41-54, October 2005.

15. Martìn Casado et al., “Ethane: Taking control of the enterprise,” in

SIGCOMM '07 Proceedings of the 2007 conference on Applications,

technologies, architectures, and protocols for computer

communications, pp 1-12, Kyoto, Japan, August 2007.

16. M. Casado et al., “SANE: A protection architecture for enterprise
Networks”, in USENIX-SS'06 Proceedings of the 15th conference on

USENIX Security Symposium, vol. 15, Article No. 10, Vancouver,

B.C., Canada, July 31 - August 04, 2006.
17. W. Xia, Y.,Wen, Y., C.H. Foh, D. Niyato, and H. Xie, “A survey on

software-defined networking,” IEEE Commununication Surveys &

Tutorials, vol. 17, issue: 1, pp. 27-51, June 2014.
18. Open Networking Foundation, “OpenFlow switch specification”,

Version 1.5.1 (Protocol version 0x06), ONF TS-025, [Online].

Available:
https://www.opennetworking.org/images/stories/downloads/ sdn-

resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf

19. N. Gude et al., “NOX: Towards an Operating System for Networks”,
in ACM SIGCOMM Computer Communication Review, vol. 38,

issue 3, pp. 105-110, July 2008.

20. J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight:
Towards a model-driven sdn controller architecture,” in IEEE 15th

International Symposium on World of Wireless, Mobile and

Multimedia Networks WoW-MoM, pp. 1-6, October 2014.
21. T. Koponen et al., “Onix: A Distributed Control Platform for Large-

scale Production Networks,” in OSDI'10 Proceedings of the 9th

USENIX conference on Operating systems design and
implementation, pp. 351-364, Vancouver, BC, Canada, October 2010.

22. P. Songa, Y. Liua, C. Liua, and D. Qian., “ParaFlow: Fine-grained

parallel SDN controller for large-scale networks,” Journal of Network
and Computer Applications, vol. 87, issue C, pp. 46-59, June 2017.

23. Heller et. al, “ElasticTree: Saving energy in data center networks,” in

NSDI'10 Proceedings of the 7th USENIX conference on Networked
systems design and implementation, pp. 17, San Jose, California,

April 2010.

24. Duan, Q., “Network-as-a-service in software-defined networks for
end-to-end qos provisioning,” in Wireless and Optical

Communication Conference (WOCC), pp. 1–5, May 2014.

25. A.Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying
NOX to the datacenter,” in Proceedings of the 8th ACM Workshop on

Hot Topics in Networks, pp, 1-6, New York City, New York, 2009.

26. Network heresy, “Tales of the network reformation,” [Online].
Available: https://networkheresy.com/2011/06/08/the-scaling-

implications-of-sdn/
27. Curtis et al., “DevoFlow: Scaling flow management for high-

performance networks,” in SIGCOMM '11 Proceedings of the ACM

SIGCOMM 2011 conference, pp. 254-265, Toronto, Ontario, Canada,

August 2011.
28. T. Benson, A. Akella, and D. A. Maltz, “Network traffic

characteristics of data centers in the wild,” in IMC '10 Proceedings of

the 10th ACM SIGCOMM conference on Internet measurement, pp.
267-280, Melbourne, Australia, November 2010.

29. J. McCauley, A. Panda, M. Casado, T. Koponen, and S. Shenker,

“Extending SDN to large-scale networks,” [Online]. Available:
http://www.cs.columbia.edu/~lierranli/coms6998-

10SDNFall2014/papers /Xbar-ONS2013.pdf

30. K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-
domain sdn controllers,” in Network Operations and Management

Symposium (NOMS) IEEE, pp. 1-4, June 2014.

31. F. Benamrane, M. Ben Mamoun, and R. Benaini, “An East-West
interface for distributed SDN control plane: Implementation and

evaluation,” Computers and Electrical Engineering, vol. 57, issue C,

pp. 162-175, January 2017.
32. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control

plane for OpenFlow,” in INM/WREN'10 Proceedings of the 2010

internet network management conference on Research on enterprise

networking, pp. 3-3, San Jose, California, 2010.

33. S. H. Yaganeh, A. Tootoonchian, and Y. Ganjali, “On the scalability

of software-defined networking,” IEEE Communications Magazine,
vol. 51, issue: 2, pp. 136-141, February 2013.

34. S. Vissicchio, L. Vanbever, and J. Rexford, “Sweet little lies: Fake

topologies for flexible routing,” in HotNets-XIII Proceedings of the
13th ACM Workshop on Hot Topics in Networks, pp. 3, Los Angeles,

CA, USA, October 2014.
35. S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central

control over distributed routing,” in SIGCOMM '15 Proceedings of

the 2015 ACM Conference on Special Interest Group on Data
Communication, pp. 43-56, London, United Kingdom, August 2015.

36. S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and

research challenges of hybrid software defined networks,” ACM
SIGCOMM CCR, vol. 44, no. 2, pp. 70-75, 2014.

37. M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A

retrospective on evolving SDN,” in HotSDN '12 Proceedings of the

first workshop on Hot topics in software defined networks, pp. 85-90,

Helsinki, Finland, August 2012.

38. K. K. Yap et al., “OpenRoads: Empowering research in mobile
networks,” in Newsletter ACM SIGCOMM Computer

Communication Review, vol. 40, issue 1, pp. 125-126, January 2010.

39. R. Moyano, D. Cambronero, and L. Triana, “A user-centric SDN
management architecture for NFV-based residential networks,”

Computer Standards & Interfaces, vol. 54, issue P4, pp. 279-292, in

press.
40. J. Wang, Y. Miaob, P. Zhoub, M. S. Hossainc, and Sk Md M.

Rahmand, “A software defined network routing in wireless multihop

network,” Journal of Network and Computer Applications, vol. 85,
issue C, pp. 76-83, May 2017.

41. H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FlowGuard: Building

Robust Firewalls for Software-defined Networks,” in HotSDN '14
Proceedings of the third workshop on Hot topics in software defined

networking, pp. 97-102, Chicago, Illinois, USA, August 2014.

AUTHORS PROFILE

M.Sc. Muhamed Begović, works as Teaching Assistant at Faculty of

Traffic and Communications, University of Sarajevo, and is a PhD

Candidate at Department of Communication Technologies. Main fields of
interest: Computer Networks, Networks Architecture, Software Defined

Networks.

Prof. Himzo Bajrić, works as Associate Professor, Faculty of Traffic

and Communications, University of Sarajevo. Worked at BH Telecom dd

Sarajevo in the position of Executive directorate for technology and
development services. Main fields of interest: Computer Communications

(Networks), Computer Security and Reliability, Computing in

Mathematics, Natural Science, Engineering and Medicine.

https://networkheresy.com/2011/06/08/the-scaling-implications-of-sdn/
https://networkheresy.com/2011/06/08/the-scaling-implications-of-sdn/

