Super (a,1)-Tree-Antimagicness of Sun Graphs

Muhammad Awais Umar, Mujtaba Hussain, Basharat Rehman Ali, Muhammad Numan

Abstract: Let G = (V, E) be a finite simple graph with |V(G)| vertices and |E(G)| edges. An edge-covering of G is a family of subgraphs H_1, H_2, \ldots, H_t such that each edge of E(G) belongs to at least one of the subgraphs H_i , i = 1, 2, ..., t. If every subgraph H_i is isomorphic to a given graph H, then the graph G admits an H-covering. A graph G admitting H covering is called an (a, d)-H-antimagic if there is bijection a $f: V \cup E \rightarrow \{1, 2, \dots, |V(G)| + |E(G)|\}$ such that for each subgraph H' of G isomorphic to H, the sum of labels of all the edges and vertices belonged to H' constitutes an arithmetic progression with the initial term *a* and the common difference d. For $f(V) = \{1, 2, 3, ..., |V(G)|\}$, the graph G is said to be super (a,d) - H -antimagic and for d=0 it is called H-supermagic.

In this paper, we investigate the existence of super (a,1)- S_3 -antimagic labeling of Sun graphs SG_n , its uniform subdivision $SG_n(r)$, disjoint union of sun graphs and its uniform subdivision denoted by mSG_n and $mSG_n(r)$ respectively, where $r, m \ge 1$.

Keywords: Sun graph SG_n , uniform subdivided Sun graph $SG_n(r)$, su- per (a, 1)-S3-antimagic, super (a, 1)-S3(r)-antimagic, disjoint union of Sun graph mSG_n and its uniform subdivision mSG_n(r). MR (2010) Subject Classification: 05C78, 05C70

I. INTRODUCTION

An edge-covering of finite and simple graph G is a family of subgraphs H_1, H_2, \ldots, H_t such that each edge of E(G) belongs to at least one of the subgraphs H_i , $i = 1, 2, \ldots, t$. In this case we say that G admits an (H_1, H_2, \ldots, H_t) -(edge) covering. If every subgraph H_i is isomorphic to a given graph H, then the graph G admits an H-covering. A graph G admitting an H -covering is called (G, G)-H-antimagic if there exists a total labeling

Revised Version Manuscript Received on November 13, 2017

$$f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, |V(G)| + |E(G)|\}$$

such that, for all subgraphs H' of G isomorphic to H, the H-weights,

$$wt_f(H') = \sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e),$$

constitute an arithmetic progression a, a+d, a+2d, ..., a+(t-1)d, where a > 0 and $d \ge 0$ are two integers, and t is the number of all subgraphs of G isomorphic to H. Moreover, G is said to be *super* (a, d) - H-antimagic, if the smallest possible labels appear on the vertices. If G is a (super) (a, d) - H-antimagic graph then the corresponding total labeling f is called the *(super)* (a, d) - H-antimagic labeling. For d = 0, the (super) (a, d) - H-antimagic graph is called H-magic and H-supermagic, respectively.

The (super) H-magic graph was first introduced by Gutiérrez and Lladó in [9]. They proved that the star K_{1n} and the complete bipartite graphs $K_{n,m}$ are $K_{1,h}$ -supermagic for some h. They also proved that the path P_n and the cycle C_n are P_h -supermagic for some h. Lladó and Moragas [15] investigated C_n -(super)magic graphs and proved that wheels, windmills, books and prisms are C_h -magic for some h. Some results on C_n -supermagic labelings of several classes of graphs can be found in [19]. Maryati et al. [17] gave P_h -(super)magic labelings of some trees such as shrubs, subdivision of shrubs and banana tree graphs. Other examples of H - supermagic graphs with different choices of H have been given by Jeyanthi and Selvagopal in [11]. Maryati et al. [16] investigated the G-supermagicness of a disjoint union of c copies of a graph G and showed that disjoint union of any paths is cP_h supermagic for some c and h.

The (a,d) - H -antimagic labeling was introduced by Inayah et al. [9]. In [10] Inayah et al. investigated the super (a,d) - H - antimagic labelings for some shackles of a connected graph H.

For $H \cong K_2$, (super) (a,d) - H - antimagic labelings are also called (super) (a,d) - edge - antimagic total labelings. For further information on (super) edge-magic labelings, one can see [4, 5, 7, 14]. The (super) (a,d) - H-antimagic labeling is related to a (super) d -antimagic labeling of type (1,1,0)

Retrieval Number: F3086017618/2018©BEIESP

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering

Muhammad Awais Umar, Abdus Salam School of Mathematical Sciences, G C University, Lahore, Pakistan. E-mail: <u>owais054@gmail.com</u>

Mujtaba Hussain, Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan. E-mail: <u>mjtbhussain@gmail.com</u>

Basharat Rehman Ali, Abdus Salam School of Mathematical Sciences, G C University, Lahore, Pakistan. E-mail: basharatrwp@gmail.com

Muhammad Numan, Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan. E-mail: numantng@gmail.com

of a plane graph that is the generalization of a face-magic labeling introduced by Lih [12]. Further information on super d - antimagic labelings can be found in [2, 3, 6].

In this paper, we investigate the existence of super (a, 1)-S₃-antimagic labeling of Sun graphs SG_n, its uniform subdivision SG_n(r), disjoint union of sun graphs and its uniform subdivision denoted by mSG_n and $mSG_n(r)$ respectively, where r, $m \ge 1$.

II. SUPER TREE-ANTIMAGIC LABELING OF SUN GRAPHS

A star S_m is a tree consisting of one vertex adjacent to m vertices. In other words, a complete bipartite graph $K_{1,m}$ is called a Star S_m .

The Sun graph SG_n , $n \ge 3$, is obtained from a cycle C_n by attaching one (1) pendant edge at each vertex of the C_n . The vertices on the cycle will be called the *cycle* vertices and the edges of the cycle will be called the cycle edges. Remaining vertices and edges will be called the pendant vertices and the pendant edges.

The Sun Graph SG_n contains 2n vertices and edges. The vertex set $V(SG_n)$ consists of the elements $\{u_i, v_i\}$ and the edge set $E(SG_n)$ consists of the elements $\{u_{i}u_{i+1}\} \cup \{u_{i}v_{i}\}$, where indices are taken modulo n.

Super (a,1) - S_3 -antimagic Labeling of Sun Graph 2.1. $SG_{...}$

Let S_3 be a star on 4 vertices. Every star S_3 in SG_n has the vertex set $V(S_3^{(j)}) = \{u_{j-1}, u_j, u_{j+1}, v_j\}$ and the edge set $E(S_3^{(j)}) = \{u_{i-1}u_i, u_iu_{i+1}, u_iv_i\},\$

where indices are taken modulo n.

Under a total labeling g, for the S_3 weight of $S_{3}^{(j)}, j = 1, ..., n$, we have

$$wt_g(S_3^{(j)}) = \sum_{v \in V(S_3^{(j)})} g(v) + \sum_{e \in E(S_3^{(j)})} g(e).$$

$$4.3cm = \sum_{s=j-1}^{j+1} g(u_s) + \sum_{s=j-1}^{j} g(u_s u_{s+1}) + g(v_j) + g(u_j v_j)$$
(1)

Theorem 1 Let $n \ge 3$ be positive integer and S_3 be a star on 4 vertices. Then Sun graph SG_n admits a super (a,1) - S_3 -antimagic labeling.

Proof. Consider the total labeling g_1 defined as:

$$g_{1}(u_{j}) = j \qquad j = 1, 2, ..., n$$

$$g_{1}(v_{j}) = 2n + 1 - j \qquad j = 1, 2, ..., n$$

$$g_{1}(u_{j}u_{j+1}) = 3n + 1 - j \qquad j = 1, 2, ..., n - 1$$

$$g_{1}(u_{j}v_{j}) = 3n + j \qquad j = 1, 2, ..., n$$

Above assignment of numbers shows g_1 is a super labeling since vertices are labeled with integers $\{1,2,...,2n\}.$

Under the labeling g_1 the pendent edges receive labels $\{3n+1,\ldots,4n\}$ and the cycle edges receive labels $\{2n+1,...,3n\}.$

Moreover, sum of the pendent edge label and its end vertex (degree 1) label is constant. More precisely, we have

$$g_1(v_k) + g_1(u_k v_k) = 5n + 1 \tag{2}$$

Also, the cycle C_n is P_3 antimagic, that is,

$$\sum_{k=j-1}^{j+1} g(u_k) + \sum_{k=j-1}^{j} g(u_k u_{k+1}) = 6n + 3 + j$$
(3)

where indices are taken modulo n. According to (1), (2) and (3), we obtain

$$wt_{g_1}(S_3^{(j)}) = 11n + 4 + j$$

Thus under the labeling g_1

$$\{wt_{g_1}(S_3^{(j)}): 1 \le j \le n\} = \{A+j: 1 \le j \le n\}$$

where $A = 11n + 4 + j$.

This concludes the proof.

w

2.2. Super (a,1)- $S_3(r)$ antimagic Labeling of unifromly Subdivided Sun Graphs $SG_n(r)$

Let $SG_n(r)$ be a graph obtained from SG_n such that into every edge of SG_n are inserted $r \ge 1$ new vertices.

The graph $SG_n(r)$ contains 2n(r+1) vertices and edges. The vertex set $V(SG_n(r))$ consists of the elements $\bigcup_{j=1}^{n} \{ \{u_j, v_j\} \cup \{u_{j,s}, v_{j,s} : 1 \le s \le r \} \}$

and the edge set $E(SG_n(r))$ consists of the elements

Published By:

& Sciences Publication

$$\{u_{j}u_{j,1}\} \cup \{u_{j,r}u_{j+1}\} \cup \{v_{j}v_{j,1}\} \cup \{v_{j,r}u_{j}\} \bigcup_{s=1}^{r-1} \{u_{j,s}u_{j,s+1}, v_{j,s}v_{j,s+1}\},\$$

where indices are taken modulo n.

Let $S_3(r)$ be a graph on 3(r+1)+1 vertices obtained from the star graph S_3 such that into every edge of S_3 are inserted $r \ge 1$ new vertices. Every graph $S_3(r)$ in $SG_n(r)$ has the vertex set

$$V(S_3^{(j)}(r)) = \bigcup_{k=j-1}^{j+1} \{u_k\} \bigcup_{k=j-1}^j \bigcup_{s=1}^r \{u_{k,s}\} \bigcup_{s=1}^r \{v_j, v_{j,s}\}$$

And the edge set

$$E(S_{3}^{(j)}(r)) = \bigcup_{s=1}^{r-1} \left\{ \bigcup_{k=j-1}^{j} \{u_{k}u_{k,1}, u_{k,s}u_{k,s+1}\}, \{v_{j,s}v_{j,s+1}\} \right\}$$
$$\bigcup_{k=j-1}^{j} \{u_{k,r}u_{k}+1\} \bigcup \{v_{j}v_{j,1}, v_{j,r}u_{j}\}$$
where

indices are taken modulo n.

For the $S_3(r)$ weight of $S_3^{(j)}(r)$ under a total labeling h we have

$$wt_{h}(S_{3}^{(j)}(r)) = \sum_{v \in V(S_{3}^{(j)}(r+1))} h(v) + \sum_{e \in E(S_{3}^{(j)}(r+1))} h(e)$$

$$= \sum_{k=j-1}^{j+1} h(u_{k}) + h(v_{j}) + \sum_{k=j-1}^{j} \sum_{s=1}^{r} h(u_{k,s}) + \sum_{s=1}^{r} h(v_{j,s})$$

$$+ \sum_{k=j-1}^{j} h(u_{k}u_{k,1}) + \sum_{k=j-1}^{j} \sum_{s=1}^{r-1} h(u_{k,s}u_{k,s+1}) + \sum_{k=j-1}^{j} h(u_{k,r}u_{k+1})$$

$$+ h(v_{j}v_{j,1}) + h(v_{j,r}u_{j}) + \sum_{s=1}^{r-1} h(v_{j,s}v_{j,s+1})$$

Theorem 2. Let $n \ge 3$, $r \ge 1$ be positive integers and $S_3(r)$ be a graph on 3(r+1)+1 vertices obtained from star S_3 on 4 vertices. Then uniformly subdivided Sun graph $SG_n(r)$ admits a super (a,1) - $S_3(r)$ -antimagic *labeling.* **Proof.** Consider the total labeling h define in the following way

$$\begin{split} h(u_{j}) &= j, \qquad j = 1, 2, \dots, n \\ h(v_{j}) &= (r+2)n + 1 - j, \qquad j = 1, 2, \dots, n \\ h(u_{j}u_{j,1}) &= (3r+4)n + 1 - j, \qquad j = 1, 2, \dots, n \\ h(u_{j,r}u_{j+1}) &= 4(r+1)n + 1 - j, \qquad j = 1, 2, \dots \\ h(v_{j}v_{j,1}) &= 2(r+1)n + j, \qquad j = 1, 2, \dots, n \\ h(v_{j,r}u_{j}) &= (3r+2)n + j, \qquad j = 1, 2, \dots, n \\ h(u_{j,s}) &= sn + j, \qquad j = 1, 2, \dots, n \\ h(u_{j,s}) &= sn + j, \qquad j = 1, 2, \dots, n \\ s &= 1, 2, \dots, r, \ h(v_{j,s}) &= (2r-s+3)n + 1 - j \\ j &= 1, 2, \dots, n \end{split}$$

$$h(u_{j,s}u_{j,s+1}) = [4(r+1) - s]n + 1 - j \quad j = 1, 2, ..., n$$

$$s = 1, 2, ..., r - 1,$$

$$h(v_{j,s}v_{j,s+1}) = (2r + s + 2)n + j \quad j = 1, 2, ..., n$$

s = 1, 2, ..., r - 1

where indices are taken modulo n.

Above assignment of numbers shows h is a super labeling as vertices are labeled with integers $\{1,2,\ldots,2(r+1)n\}.$

The sum of the vertices and edges labels on pendent edges is constant. More precisely, we have

$$h(v_j) + h(v_j v_{j,1}) + h(v_{j,r} u_j) +$$

$$\sum_{s=1}^{r} h(v_{j,s}) + \sum_{s=1}^{r-1} h(v_{j,s}v_{j,s+1}) = [6(r+1)n+1+j] + r[\frac{(3r+5)n}{2} + 1-j] + (r-1)[\frac{(5r+4)n}{2} + j] = 4n(r^2 + 2r + 1) + r + 1$$
(5)

Under the labeling h, the cycle $C_n(r)$ is P_{2r+3} antimagic, that is,

$$\sum_{k=j-1}^{j+1} h(u_{k}) + \sum_{k=j-1}^{j} \sum_{s=1}^{r} h(u_{k,s}) + \sum_{k=j-1}^{j} h(u_{k}u_{k,1}) + \sum_{k=j-1}^{j} h(u_{k,r}u_{k+1}) + \sum_{k=j-1}^{j} \sum_{s=1}^{r-1} h(u_{k,s}u_{k,s+1}) + \sum_{k=1}^{r} h(v_{j,k}) + \sum_{s=1}^{r-1} h(v_{j,s}v_{j,s+1}) = [j(2r+3) + rn(r+1) - r] +$$
(4)

$$+rn(7r+15)+(r+1)(3-2j)+8n$$

$$=8n(r^{2}+2r+1)+(2r+3)+j$$

According to (4), (5) and (6), we obtain

$$wt_g(S_3(r)) = 12rn(r+2) + 3(4n+r) + 4 + j$$

Thus under the labeling h the set of all $S_3(r)$ -weights consists of consecutive integers. This concludes the proof.

2.3. $S_3(r)$ antimagic Labeling of disjoint union of Graphs $SG_n(r)$

In [1], the following result is proved on tree-antimagicness of disconnected graphs.

Published By:

& Sciences Publication

Corollary 1. Let G be an (a,1)-T -antimagic graph, where T is a tree. Then the disjoint union of arbitrary number of copies of G, that is, mG, $m \ge 1$, also admits a super (b,1)-T -antimagic total labeling.

In the light of corollary (1) and from theorem (1) and (2), we immediately obtain:

Corollary 2. Let $m \ge 1$, and $n \ge 3$ be positive integers. Then m copy of SG_n , that is mSG_n , is a super (b,1) -

 S_3 -antimagic.

Corollary 3 Let $r, m \ge 1$, and $n \ge 3$ be positive integers. Then m copy of $SG_n^{(1)}(r)$, that is $mSG_n^{(1)}(r)$, is a super $(b,1) - S_3(r)$ -antimagic.

REFERENCES

- Ba C a, M., Kimáková, Z., A. Semani C ová-Fe n ov C íková and Umar, M.A., Tree-Antimagicness of Disconnected Graphs, *Mathematical Problems in Engineering*, Vol. 2015, Article ID 504251, 4 pages, http://dx.doi.org/10.1155/2015/504251.
- Ba Č a, M., Brankovic, L., Semani Č ová-Fe ň ov Č íková, A., Labelings of plane graphs containing Hamilton path, Acta Math. Sinica - English Series, 2011, 27(4), 701–714.
- Ba C a, M., Miller, M., Phanalasy, O., Semani C ová-Fe n ov C íková, A., Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sinica - English Series, 2010, 26(12), 2283–2294.
- Ba C a, M., Lin, Y., Muntaner-Batle, F.A., Rius-Font, M., Strong labelings of linear forests, Acta Math. Sinica - English Series, 2009, 25(12), 1951–1964.
- Ba C a, M., Numan, M., Shabbir, A., Labelings of type (1,1,1) for toroidal fullerenes, Turkish Journal of Mathematics, 2013 37, 899–907.
- Figueroa-Centeno, R.M., Ichishima, R., Muntaner-Batle, F.A., The place of super edge-magic labelings among other classes of labelings, Discrete Math., 2001, 231, 153–168.
- Gutiérrez, A., Lladó, A., Magic coverings, J. Combin. Math. Combin. Comput., 2005, 55, 43–56.
- Inayah, N., Salman, A.N.M., Simanjuntak, R., On (a,d) H -antimagic coverings of graphs, J. Combin. Math. Combin. Comput., 2009, 71, 273–281.
- 10. Inayah, N., Simanjuntak, R., Salman, A.N.M., Syuhada, K.I.A., On (a, d) H -antimagic total labelings for shackles of a connected

graph $\,H$, Australasian J. Combin., 2013, 57, 127–138.

- 11. Jeyanthi, P., Selvagopal, P., More classes of H -supermagic graphs, Internat. J. Algor. Comput. Math., 2010, 3, 93–108.
- Lih, K.W., On magic and consecutive labelings of plane graphs, Utilitas Math., 1983, 24, 165–197.
- Lladó, A., Moragas, J., Cycle-magic graphs, Discrete Math., 2007, 307, 2925–2933.
- Marr, A.M., Wallis, W.D., Magic Graphs, Birkhäuser, New York, 2013.
- 15. Maryati, T.K., Baskoro, E.T., Salman, A.N.M., P_h -(super)magic labelings of some trees, J. Combin. Math. Combin. Comput., 2008, 65, 198–204.
- Maryati, T.K., Salman, A.N.M., Baskoro, E.T., Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math., 2013, 313, 397–405.
- 17. Ngurah, A.A.G., Salman, A.N.M., Susilowati, L., *H* -supermagic labelings of graphs, Discrete Math., 2010, 310, 1293–1300.

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering