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Abstract: Minimization of Power Loss expenses of the rapidly 

expanding larger distribution network is always an attention for 

Electric Power Utilities. Moreover, if power loss can be 

minimized at the highest extent, network voltage improves 

inherently in overall, therefore enhancing the quality of power at 

the consumer end. This paper presents an integrated method for 

optimal allotment of distributed generation (DG) and shunt 

capacitor (SC) simultaneously in the largescale distribution 

system with the primary objective to minimize the network power 

loss. To perform this task of optimization, one latest algorithm 

named L-SHADE, linear population size reduction technique of 

success history based adaptive differential evolution, has been 

utilized. This is an advanced one of the previous Differential 

Evolution algorithm, namely SHADE [17] where the control 

parameters scaling factor (F) and the crossover rate (CR) are 

only adapted. In L-SHADE [18], the control parameter 

population size (Np) is also reduced linearly over successive 

generations. The algorithm optimizes the rating (continuous 

variable) and corresponding bus number (discrete variable) for 

both DG and SC. IEEE 69 bus, 119 bus standard distribution 

networks and a practical 83 bus distribution network have been 

studied. The simulation results have been compared with similar 

equivalent algorithms in the largescale distribution system and 

found as the best among them. 

Keywords: Power loss minimization, Larger Distribution 

networks, voltage profile, distributed generation, shunt capacitor, 

L-SHADE algorithm. 

I. INTRODUCTION 

Electrical power distribution network is a large and 

widely scattered complex low voltage system as per 

consumers’ requirements. Therefore, this continuously 

expanding network needs to carry higher current to deliver 

the substantial electrical power and facing significant power 

losses due to its inherent resistance. 10% to 13% of the 

power consumption is lost at the distribution level [1] as per 

the studies. This high distribution loss increases the cost of 

energy and affects the quality of power in terms of under-

voltage.  

The total power loss can be divided into two parts, i.e., 

power loss due to real power consumption and the other part 

due to reactive power flow because consumers are mostly 

reactive in nature like transformers, induction motors, power 

supply lines. Simultaneous installation of distributed 

generators and shunt capacitors near to the consumer centers 

in the network can minimize the overall power loss 

substantially.  
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Increase in real & reactive power generation near to the 

consumer end relieves the burden of the transmission & 

distribution lines, boosts up system capacity, improves 

system reliability and enhances power quality as well.  

Distributed Generations are of different types. Emerging 

and industrialized countries are investing in renewable 

energy based distributed generations, e.g., solar 

photovoltaics, solar thermal, wind turbine, tidal & wave 

power, geothermal power, etc. to reduce the environmental 

emission. Besides, conventional internal combustion engine 

generators, fuel cells, micro turbine, small hydro turbine 

generators can be utilized. However appropriate 

methodology must be followed for integrating DG units 

along with shunt capacitors into the network so that required 

system parameters like bus voltage profile, line capacity, 

power flow, harmonic distortion, etc. are taken care. Non-

appropriate allotment of these units leads to negative 

consequences in terms of increase in power loss, system 

voltage instability & reliability. 

Power loss minimization in the recent past either by 

optimization of DGs or by SCs had been performed in 

several literatures. Algorithms implemented using DGs only 

are genetic algorithm (GA) [2], analytical approach [3], PSO 

& hybrid PSO [4, 5, 6], hybrid method with ant colony 

optimization (ACO) & artificial bee colony (ABC) [7]. 

Similarly, optimization assignment by SCs only are using 

mixed integer nonlinear programming approach [8], teaching 

learning based optimization [9], analytical approach [10], etc. 

However better result only achieved when integrated 

approach of optimal siting and sizing of both DGs and SCs 

implemented. Accordingly, algorithms utilized are analytical 

approach [11], PSO [12], hybrid harmony search algorithm 

(HSA) and particle artificial bee colony (PABC) [13], 

intersect mutation differential evolution (IMDE) [14], back-

tracking search algorithm (BSA) [15], IPSO [16]. 

For this current study, L-SHADE algorithm [18] has been 

implemented for optimal sizing & siting of DGs & SCs 

simultaneously at larger distribution networks with the 

objective of network power loss minimization. IEEE 

standard 69 bus & 119 bus radial distribution network and 

one practical 83 bus network have been selected. In the 

recent time, L-SHADE has been successfully implemented 

for other power loss optimization assignment [19] for large 

scale distribution network. For this current study as well, the 

simulation results using L-SHADE algorithm have been 

found as the best among other equivalent algorithms 

mentioned. 
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In the consecutive sections of this paper, mathematical 

formulation for this assignment with assumptions & 

constraints has been included in section II. Section III 

mentions the case studies with ratings & limits. Section IV 

details the algorithm. Section V describes the simulation 

results with comparison followed by section VI for the 

conclusion. 

 

 

II. MATHEMATICAL FORMULATION 

The successive subsections describe Power flow 

formulation followed by assumptions and constraints. 

A. Power flow formulations 

Single line diagram of a typical simple radial distribution 

system has been represented in Fig.1.  

P0 ,Q0 P1 ,Q1 Pk-1 ,Qk-1 Pk ,Qk Pk+1 ,Qk+1 PN ,QN

0 1 k-1 k k+1 N

PL1 ,QL1 PLk-1 ,QLk-1 PLk ,QLk PLk+1 ,QLk+1 PLN ,QLN

 

Fig.1: Single line diagram of a radial feeder 

 

The active & reactive power flow and bus voltages can be calculated by empirical equations as given by [19]: 

 

𝑃𝑘+1 = 𝑃𝑘 − 𝑃𝐿𝑘+1 − 𝑅𝑘,𝑘+1.
𝑃𝑘

2 + 𝑄𝑘
2

|𝑉𝑘|2
 (1) 

𝑄𝑘+1 = 𝑄𝑘 − 𝑄𝐿𝑘+1 − 𝑋𝑘,𝑘+1.
𝑃𝑘

2 + 𝑄𝑘
2

|𝑉𝑘|2
 (2) 

|𝑉𝑘+1|2 = |𝑉𝑘|2 − 2(𝑅𝑘,𝑘+1. 𝑃𝑘 + 𝑋𝑘,𝑘+1. 𝑄𝑘) + (𝑅𝑘,𝑘+1
2 + 𝑋𝑘,𝑘+1

2).
𝑃𝑘

2 + 𝑄𝑘
2

|𝑉𝑘|2
 (3) 

 

where, |𝑉𝑘| representing the voltage magnitude of bus 𝑘; 𝑃𝑘 and 𝑄𝑘 being the real & reactive power flowing out of bus 𝑘; 

𝑃𝐿𝑘+1 & 𝑄𝐿𝑘+1being the real & reactive load at bus 𝑘 + 1. 𝑅𝑘,𝑘+1& 𝑋𝑘,𝑘+1being the resistance & reactance of the line section 

between buses 𝑘 & 𝑘 + 1 and 𝑃𝐿𝑜𝑠𝑠 representing the power loss of the same line section. 

 
𝑃𝐿𝑜𝑠𝑠(𝑘, 𝑘 + 1) = 𝑅𝑘,𝑘+1.

𝑃𝑘
2 + 𝑄𝑘

2

|𝑉𝑘|2
 (4) 

Accordingly, 𝑇𝑃𝐿𝑜𝑠𝑠is the total loss after summing up for all line sections in the network, 

 

𝑇𝑃𝐿𝑜𝑠𝑠 = ∑ 𝑃𝐿𝑜𝑠𝑠(𝑘, 𝑘 + 1)

𝑁−1

𝑘=0

 (5) 

B. Assumptions 

In this study, it is assumed that the DGs deliver real power only. Therefore, a DG connected to 𝑘-th bus having real load 

𝑃𝐿𝑘and delivering power 𝑃𝐷𝐺, the net loading of 𝑘-th bus becomes (𝑃𝐿𝑘 − 𝑃𝐷𝐺). Similarly, a SC of rating 𝑄𝑆𝐶 connected to 𝑗-

th bus having inductive load 𝑄𝐿𝑗 , the net reactive loading of the 𝑗-th bus becomes (𝑄𝐿𝑗 − 𝑄𝑆𝐶). The algorithm during 

execution checks all practical locations and ratings of the DGs & SCs to find the most optimum allotment so that overall 

power loss is minimized. 

C. Constraints 

During execution of the algorithm, voltage |𝑉𝑘| of any bus of the network must be within minimum & maximum allowable 

voltage limits specified and the current |𝐼𝑘,𝑘+1| flowing through any branch must not exceed its rated capacity, 

 𝑉𝑚𝑖𝑛 ≤ |𝑉𝑘| ≤ 𝑉𝑚𝑎𝑥 (6) 

 |𝐼𝑘,𝑘+1| ≤ 𝐼𝑘,𝑘+1(max) (7) 

In this study, following bus voltage limits have been considered,  

𝑉𝑚𝑖𝑛 = 0.90 p.u. and 𝑉𝑚𝑎𝑥 = 1.05 p.u.  

For branch current limits of IEEE standard bus systems, there is no clear guidelines defined. However proper integration of 

DGs & SCs in the network reduces the burden of the branches and the branch current loading reduces automatically. 

Therefore, if the network is having connected load can comply the line current constraint, it will not at all violate the same 

constraint after this optimization assignment. 
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III. CASE STUDIES 

The optimization assignment has been performed for 3 larger distribution networks. IEEE standard 69 bus & 119 bus 

radial network and one practical 83 bus network have been selected. 

A. IEEE standard 69 bus network 

Fig.2 shows the 69 bus network having 68 branches. Total load demand of the network is 3.8 MW and 2.69 MVAr. The 

detailed information of bus wise load data along with electrical parameters of the interconnecting line sections are as specified 

in [20]. Few case studies as listed in Table–I have been chosen judiciously considering technical and commercial viability, 

these also include the studies done by equivalent algorithm at the recent past for comparison. 

 

TABLE–I : Summary of Case Studies for 69 bus network 
Network Case Study 

Number 

Case Study 

Description 

No. of 

DGs 

Range of 

rating for 

individual DG 

Max limit of 

cumulative 

total DG rating 

No. of 

SCs 

Range of rating 

for individual SC 

Max limit of 

cumulative 

total SC rating 

69 bus 

Case 11 1 DG + 1 SC 1 0.2 – 2.25 MW 2.25 MW 1 0.2 – 2.69MVAr 2.69MVAr 

Case 12 2 DGs + 2 SCs 2 0.2 – 2.0 MW 2.8 MW 2 0.2 – 2.0MVAr 2.69MVAr 

Case 13 3 DGs + 3 SCs 3 0.2 – 2.0 MW 2.8 MW 3 0.2 – 2.0MVAr 2.69MVAr 

Case 14 3 DGs + 4 SCs 3 0.2 – 2.0 MW 2.8 MW 4 0.2 – 2.0MVAr 2.69MVAr 

Case 15 4 DGs + 4 SCs 4 0.2 – 2.0 MW 2.8 MW 4 0.2 – 2.0MVAr 2.69MVAr 

B. IEEE standard 119 bus network 

Fig.4 shows the 119 bus network having 118 branches. Total load demand of the network is 22.71 MW and 17.04MVAr. 

The detailed information of bus wise load data along with electrical parameters of the interconnecting line sections are as 

specified in [21]. Few case studies as listed in Table–II have been chosen judiciously considering technical and commercial 

viability, these also include the studies done by equivalent algorithm at the recent past for comparison. 

 

TABLE–II : Summary of Case Studies for 119 bus network 
Network Case Study 

Number 

Case Study 

Description 

No. of 

DGs 

Range of 

rating for 

individual DG 

Max limit of 

cumulative 

total DG rating 

No. of 

SCs 

Range of rating 

for individual SC 

Max limit of 

cumulative 

total SC rating 

119 bus 

Case 21 1 DG 1 0.2 – 4.0 MW 4.0 MW - - - 

Case 22 3 DGs 3 0.2 – 4.0 MW 12.0 MW - - - 

Case 23 1 DG + 6 SCs 1 0.2 – 4.0 MW 4.0 MW 6 0.2 – 2.5 MVAr 15.0 MVAr 

Case 24 4 DGs + 4 SCs 4 0.2 – 2.5 MW 10.0 MW 4 0.2 – 2.5 MVAr 10.0 MVAr 
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C. 83 bus practical TPC network 

Fig.3 represents a practical 11.4kV distribution network 

of Taiwan Power Company (TPC). The network consists of 

11 feeders, 83 normally closed switches and 13 normally 

open switches (sw83 to sw95). Total load demand of the 

network is 28.35 MW and 20.70 MVAr. The detailed 

information of bus wise load data along with electrical 

parameters of the interconnecting line sections are as 

specified in [22].  Loss minimization using reconfiguration 

studied in [22, 23, 24]. But in this current study, loss 

minimization studied using simultaneous allotment of DGs 

and SCs for the base configuration with tie-switches sw83 to 

sw95 remaining open. Since this network is having higher 

loading than IEEE standard 119 bus distribution network 

even, relatively more number of DGs and SCs have been 

considered. 

 

TABLE–III : Summary of Case Studies for 83 bus TPC network 

Network 
Case Study 

Number 

Case Study 

Description 

No. of 

DGs 

Range of 

rating for 

individual DG 

Max limit of 

cumulative 

total DG rating 

No. of 

SCs 

Range of rating 

for individual SC 

Max limit of 

cumulative 

total SC rating 

83 bus 
Case 31 4 DGs + 4 SCs 4 0.2 – 3.0 MW 12.0 MW 4 0.2 – 3.0MVAr 12.0 MVAr 

Case 32 6 DGs + 6 SCs 6 0.2 – 2.0 MW 12.0 MW 6 0.2 – 2.0MVAr 12.0 MVAr 

 

IV. L-SHADE ALGORITHM AND ITS APPLICATION 

Differential evolution (DE), a population based stochastic 

optmization algorithm, is getting advanced and highly 

efficient in the recent years by some adaptation time to time 

to solve optimization assignments. SHADE [17] is the 

success history based adaptive DE where the scaling factor 

(F) and the crossover rate (CR) are adapted automatically 

during the process of evolution. In L-SHADE [18], as a 

further advancement, the control parameter population size 

(Np) is also linearly reduced over successive generations. 

This section briefs the L-SHADE first and then describes its 

application for the optimization assignment. 

A. Initialization 

Firstly, to initiate the DE process, an initial population of 

decision vectors (Np) having individual dimension d for 

probable solutions generated randomly within the search 

space specified by lower and upper bounds. Accordingly, 

the initialization of jth component of the ith decision vector is 

as below: 

𝑥𝑖,𝑗
(0)

= 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑𝑖𝑗[0,1] ∗ (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗)      (8) 

 

Where i = 1 to Np and j = 1 to d. 𝑟𝑎𝑛𝑑𝑖𝑗[0,1] is a random 

number between 0 and 1 and superscript ‘0’ represents 

initialization. 

B. Mutation 

After initialization process, a mutant vector 𝑣𝑖
(𝑡)

for the 

current generation t is generated for individual member of 

population vector through mutation operation. 

The mutation strategy chosen in the current assignment is 

referred as ‘current-to-p best/1’: 

 

𝑣𝑖
(𝑡)

= 𝑥𝑖
(𝑡)

+ 𝐹𝑖
(𝑡)

∗ (𝑥𝑝𝑏𝑒𝑠𝑡
(𝑡)

− 𝑥𝑖
(𝑡)

) + 𝐹𝑖
(𝑡)

∗ (𝑥
𝑅1

𝑖
(𝑡)

− 𝑥
𝑅2

𝑖
(𝑡)

)  

(9) 

𝑥𝑝𝑏𝑒𝑠𝑡
(𝑡)

is from the top 𝑁𝑝 × 𝑝  (𝑝 ∊ [0,1]) individuals of 

current generation. Both indices 𝑅1
𝑖 & 𝑅2

𝑖  are selected 

randomly from the range [1, Np] and also mutually 

exclusive.𝐹𝑖
(𝑡)

is the scaling factor and a positive control 

parameter, it scales the difference vectors corresponding to 

the ith individual for the tth generation. If any element 𝑣𝑖,𝑗
(𝑡)

 is 

not within the boundary limit [𝑥𝑚𝑖𝑛,𝑗 , 𝑥𝑚𝑎𝑥,𝑗], the value is 

updated as: 

𝑣𝑖,𝑗
(𝑡)

= {
(𝑥𝑚𝑖𝑛,𝑗 + 𝑥𝑖,𝑗

(𝑡)
)/2 if 𝑣𝑖,𝑗

(𝑡)
< 𝑥𝑚𝑖𝑛,𝑗

(𝑥𝑚𝑎𝑥,𝑗 + 𝑥𝑖,𝑗
(𝑡)

)/2 if𝑣𝑖,𝑗
(𝑡)

> 𝑥𝑚𝑎𝑥,𝑗

          (10) 

 

C. Crossover 

Next in the crossover operation, the mutant vector 𝑣𝑖
(𝑡)

 

merges its elements with the corresponding target vector 

𝑥𝑖
(𝑡)

and forms the new vector called as trial/offspring vector 

which is described as 𝑢𝑖
(𝑡)

= (𝑢𝑖,1
(𝑡)

, 𝑢𝑖,2
(𝑡)

, … . . , 𝑢𝑖,𝑑
(𝑡)

). Binomial 

crossover with crossover rate 𝐶𝑅𝑖
(𝑡)

is commonly adopted 

and expressed as: 

 

𝑢𝑖,𝑗
(𝑡)

= {
𝑣𝑖,𝑗

(𝑡)
if 𝑗 = 𝐾 or 𝑟𝑎𝑛𝑑𝑖,𝑗[0,1] ≤ 𝐶𝑅𝑖

(𝑡)
,

𝑥𝑖,𝑗
(𝑡)

otherwise
       (11) 

 

Where K is any natural number randomly chosen in the 

dimension range [1, 𝑑]. 

D. Parameter Adaptation 

At a generation t, both parameters 𝐹𝑖
(𝑡)

and 𝐶𝑅𝑖
(𝑡)

are 

adapted as follows, 

𝐹𝑖
(𝑡)

= 𝑟𝑎𝑛𝑑𝑐(µ𝐹𝑟
(𝑡)

, 0.1)                         (12) 

𝐶𝑅𝑖
(𝑡)

= 𝑟𝑎𝑛𝑑𝑛(µ𝐶𝑅𝑟
(𝑡)

, 0.1)                    (13) 

where 𝑟𝑎𝑛𝑑𝑐(µ𝐹𝑟
(𝑡)

, 0.1) & 𝑟𝑎𝑛𝑑𝑛(µ𝐶𝑅𝑟
(𝑡)

, 0.1)  are the 

values from Normal and Cauchy distributions with location 

parameter µ𝐹𝑟
(𝑡)

and mean µ𝐶𝑅𝑟
(𝑡)

respectively. The value 0.1 

is the variance and scale parameter for the corresponding 

distributions. µ𝐹𝑟
(𝑡)

& µ𝐶𝑅𝑟
(𝑡)

 are chosen randomly from the 

memory where those of successful candidates of past 

generations are stored. These two values are initialized first 

as 0.5 and thereafter modified by weighted Lehmer mean 

[17, 18]. 

E. Selection 

After the crossover process, the selection process verifies 

whether the trial/offspring vector is going to replace the 

target vector at next generation t+1 by performing the 

following comparison: 
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𝑥𝑖
(𝑡+1)

= {
u𝑖

(𝑡)if 𝑓(u𝑖
(𝑡)) ≤  𝑓(𝑥𝑖

(𝑡)
),

𝑥𝑖
(𝑡)

otherwise
             (14) 

where f(.) is the objective function to be minimized. 

F. Linear population size reduction (LPSR) 

In the previous algorithm SHADE [17], scaling factor (F) 

and the crossover rate (CR) are adapted during evolution 

based on their past success history. With further 

advancement in L-SHADE [18], the population size (Np) is 

also dynamically reduced for accelerating the performance. 

After any generation t, the population size (Np)in the next 

generation t+1 is reduced by following linear equation, 

 

𝑁𝑝(𝑡 + 1)  =  𝑟𝑜𝑢𝑛𝑑 [(
𝑁𝑝𝑚𝑖𝑛−𝑁𝑝𝑖𝑛𝑖

𝑁𝐹𝐸𝑚𝑎𝑥
) ∗ 𝑁𝐹𝐸 + 𝑁𝑝𝑖𝑛𝑖]  (15) 

The initial population size 𝑁𝑝𝑚𝑖𝑛 is set to 4 because the 

selected mutation strategy needs 4 individuals as a 

minimum. NFE and 𝑁𝐹𝐸𝑚𝑎𝑥 are the present and the 

maximum number of fitness evaluations respectively.  

If 𝑁𝑝(𝑡 + 1) < 𝑁𝑝(𝑡), a total of [𝑁𝑝(𝑡) − 𝑁𝑝(𝑡 + 1)] 

elements are deleted from the population. 

G. Summary of the Algorithm 

i. Input and initialization: 

1. Decide the value of 𝑁𝑝𝑖𝑛𝑖  & 𝑁𝐹𝐸𝑚𝑎𝑥. 

2. Define decision vectors 𝑥. 

3. Define minimum to maximum limit of 𝑥 for all its 

elements. 

4. Create random initial population as per equation (8). 

5. Set generation counter t = 0, dynamic population 

size  𝑁𝑝(𝑡) = 𝑁𝑝𝑖𝑛𝑖 , evaluation counter 𝑁𝐹𝐸 = 1 

and control parameters µ𝐹𝑟
(0)

= µ𝐶𝑅𝑟
(0)

= 0.5. 

 

ii. Algorithm loop: 

1. Calculate 𝑓(𝑥𝑖
(𝑡)

) , i.e. 𝑇𝑃𝐿𝑜𝑠𝑠 as per equation (5) 

for 𝑥𝑖
(𝑡)

where i = 1 to Np.  

2. Increase counter NFE by Np i.e. NFE = NFE+ Np. 

3. while termination criteria 𝑁𝐹𝐸 < 𝑁𝐹𝐸𝑚𝑎𝑥 do 

4. for i = 1 to Np do 

--------------- 

5. Adapt control parameters 𝐹𝑖
(𝑡)

 and 𝐶𝑅𝑖
(𝑡)

 as per 

equations (12) & (13). 

6. Perform mutation to generate vector 𝑣𝑖
(𝑡)

 as per 

equation (9).  

7. Perform crossover to generate element 𝑢𝑖,𝑗
(𝑡)

 as per 

equation (11). 

8. Evaluate 𝑓(𝑢𝑖
(𝑡)

)i.e. 𝑇𝑃𝐿𝑜𝑠𝑠 as per equation (5) for 

𝑢𝑖
(𝑡)

. Increase evaluation counter NFE by 1, i.e., 

NFE = NFE+1. 

9. Select best fit individuals for next generation. If, 

𝑓(u𝑖
(𝑡)) ≤  𝑓(𝑥𝑖

(𝑡)
) , 𝑥𝑖

(𝑡+1)
= 𝑢𝑖

(𝑡)
; else 𝑥𝑖

(𝑡+1)
=

𝑥𝑖
(𝑡)

. 

End for loop. 

------------------ 

10. Update population size for next generation 

𝑁𝑝 (𝑡 + 1) as per LPSR strategy in equation (15). 

11. Increase generation counter, i.e., t = t+1. Go to step 

2 of algorithm loop. 

 

For the case studies of Table-I, II & III, various parameters of L-SHADE have been summarized in Table-IV.  

 

TABLE–IV : Parameters of L-SHADE 

Parameter Case No. Value 

Dimension of optimization assignment, d All Cases 2 x (No. of DGs + No. of SCs) 

Initial population size, 𝑁𝑝𝑖𝑛𝑖 
All Cases except Case 32 100 

Case 32 120 

Maximum number of fitness evaluations, 𝑁𝐹𝐸max 
All Cases except Case 32 20,000 

Case 32 25,000 

 

Any Case Study is for optimal sizing & siting of DGs & 

SCs. The algorithm will check for suitable buses in the 

network for each DG and/or SC. Therefore, one decision 

variable is for sizing for each DG/SC and another variable is 

for its location (bus), in total, 2 decision variables for each 

DG/SC in any case study. Since for case 32, number of 

variables is relatively higher, initial population sizes and 

numbers of fitness evaluations have been chosen higher as 

summarized in Table-IV. However, these parameters have 

been finally selected for all the case studies after many trials 

of the algorithm. 

V. RESULTS AND COMPARISONS 

This section analyzes the simulation results utilizing L-

SHADE algorithm. Each case study as mentioned in section 

III has been run several times and reasonable results have 

been found among different runs with negligible variations.  

 

 

A. IEEE standard 69 bus network 

Table-V presents the summary result for 69 bus network 

and shows the comparison with similar available past 

studies done with equivalent algorithms. The favorable loss 

magnitude from comparable algorithms has been marked in 

bold for clear understanding. Also selected ratings of DGs 

& SCs have been mentioned in the table with corresponding 

bus numbers in bracket alongwith. It is very clear from 

result of all the case studies that L-SHADE algorithm in 

comparison with any other available algorithms for the 

available cases studied at the past can efficiently allocate the 

DGs & SCs suitably meeting the system constraint to 

achieve comparatively lower loss figure. Specifically, for 

case 12 with 2 DGs & 2 SCs, loss figure brings down to 

nearly 50% extra than the only available IMDE algorithm 

result with similar rating of equipment. 
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If the number of DGs and SCs are increased as shown for 

case 13, 14 & 15, further loss reduction can be achieved. 

However, this may always not be beneficial to increase 

number of such equipment in the network. Case 13 with 3 

DGs & 3 SCs is coming up with lower loss than case 14 

having more equipment, i.e., 3 DGs & 4 SCs, evenif 

cumulative total equipment ratings are similar. Therefore, 

option for case 14 can be avoided. 

Fig.5 shows voltage profiles for various case studies 

(except case 14) performed for the 69 bus radial distribution 

network. The profile is becoming more uniform when 

number of DGs and SCs are increased, even for case 12 with 

2 DGs & 2 SCs than for case 11 with 1 DG & 1 SC and 

most uniform for case 15 with 4 DGs & 4 SCs. However, 

careful judgment is necessary for technical and commercial 

viability before adding more number of equipment.  

TABLE–V : Summary of Results with Comparison for 69 bus network 

Network 
Case Study 

Description 
Parameter 

Available Optimization Algorithms 

L-SHADE IMDE [14] PSO [12] IPSO [16] 

 

 

69 bus 

 

 

 

Base Case 

(No DG / SC) 

Real power loss (kW) 225 224.59 225 225 

Min bus voltage (p.u.) 0.9092 0.9102 0.9092 0.9092 

Case 11 

(1 DG +  

1 SC) 

Real power loss (kW) 23.17 - 25.90 - 

DG size in MW (bus no.) 1.828 (61) - 1.566 (61) - 

SC size in MVAr (bus no.) 1.301 (61) - 1.401 (61) - 

Min bus voltage (p.u.) 0.9725  - 0.970  - 

Case 12 

(2 DGs + 

2 SCs) 

Real power loss (kW) 7.20 13.83 - - 

DG size in MW (bus no.) 1.735 (61), 0.522 (17) 1.738 (62), 0.479 (24) - - 

SC size in MVAr (bus no.) 1.238(61), 0.353 (17) 0.109 (63), 1.192 (61) - - 

Min bus voltage (p.u.) 0.9943  0.9915  - - 

Case 13 

(3 DGs +  

3 SCs) 

Real power loss (kW) 4.25 - - 4.37 

DG size in MW (bus no.) 1.674 (61), 0.495 (11),  

0.379 (18) 

- - 0.557 (11), 0.321 (21), 

1.672 (61) 

SC size in MVAr (bus no.) 1.195 (61), 0.375(11), 

0.231(21) 

- - 0.3 (11), 0.3 (18), 

1.2 (61) 

Min bus voltage (p.u.) 0.9943 - - 0.9943 

Case 14 

(3 DGs +  

4 SCs) 

Real power loss (kW) 4.32 - - - 

DG size in MW (bus no.) 1.674 (61), 0.495 (11), 

0.379 (18) 

- - - 

SC size in MVAr (bus no.) 0.8 (61), 0.265 (18), 

0.322 (66), 0.37 (64) 

- - - 

Min bus voltage (p.u.) 0.9943 - - - 

Case 15 

(4 DGs +  

4 SCs) 

Real power loss (kW) 3.26 - - - 

DG size in MW (bus no.) 1.675 (61), 0.3 (21), 

0.3 (11), 0.269 (12) 

- - - 

SC size in MVAr (bus no.) 1.195 (61), 0.515 (50), 

0.374 (11), 0.23 (21) 

- - - 

Min bus voltage (p.u.) 0.9971 - - - 

 

 

Fig.5: Voltage profiles of buses for 69 bus system for case studies  

B. IEEE standard 119 bus network 

Now for more larger network having 119 buses also, L-SHADE algorithm can efficiently allocate the DGs and/or SCs 

complying the system constraint to achieve comparatively lower loss figure as presented in Table-VI summary results.   
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The comparison has been done with the only available past study result using Hybrid algorithm. Case 21 with 1 DG 

achieves similar loss figure but with lower DG rating. Case 22 with 3 DGs achieves 10 kW less loss figure even with lower 

cumulative total DG rating, i.e., 8.98 MW, unlike 9.4 MW in Hybrid algorithm. Similarly, Case 23 with 1 DG & 6 SCs 

achieves 46 kW less loss figure even with overall lower cumulative total DG & SC rating. Lower Equipment rating 

undoubtedly saves higher installation cost. Comparing between case 21 & case 23, it can be noticed very importantly that 

much lower loss figure can be achieved for case 23 where DGs and SCs are used simultaneously. 

If the number & rating of DGs & SCs are chosen judiciously, substantial loss reduction can be achieved as shown for case 

24 with 4 DGs & 4 SCs. Fig.6 shows voltage profiles for various case studies for the 119 bus network. The profile is 

becoming more uniform for case 24 when DGs and SCs are more evenly rated and distributed throughout the entire network.  

TABLE–VI : Summary of Results with Comparison for 119 bus network 

Network 
Case Study 

Description 
Parameter 

Available Optimization Algorithms 

L-SHADE Hybrid [13] 

 

 

119 bus 

 

 

 

Base Case 

(No DG / SC) 

Real power loss (kW) 1298.09 1298.1 

Min bus voltage (p.u.) 0.8688 0.8688 

Case 21 

(1 DG) 

 

Real power loss (kW) 1016.76 1016.77 

DG size in MW (bus no.) 2.978 (71) 3 (71) 

Min bus voltage (p.u.) 0.9053 0.9052 

Case 22 

(3 DGs) 

Real power loss (kW) 667.29 677.74 

DG size in MW (bus no.) 2.883 (50), 2.978 (71), 3.12 (109) 2.95 (71), 3.25 (47), 3.2 (108) 

Min bus voltage (p.u.) 0.9541 0.9474 

Case 23 

(1 DGs + 

6 SCs) 

Real power loss (kW) 595.73 641.61 

DG size in MW (bus no.) 2.918 (71) 2.65 (73) 

SC size in MVAr (bus no.) 
1.535 (40), 1.126 (96), 2.5 (50), 

2.33 (110), 1.485 (74), 1.63 (80) 

4.4 (28), 2.9 (34), 1.85 (70), 

1.2 (86), 0.5 (85), 2.35 (110) 

Min bus voltage (p.u.) 0.9315 0.9317 (112) 

Case 24 

(4 DGs + 

4 SCs) 

Real power loss (kW) 271.54 - 

DG size in MW (bus no.) 2.489(50), 2.5(110), 1.81(96), 2.431(73) - 

SC size in MVAr (bus no.) 2.312(110), 2.5(50), 1.612(74), 1.755(80) - 

Min bus voltage (p.u.) 0.9603 - 

 

 

Fig.6: Voltage profiles of buses for 119 bus system for case studies  

C. 83 bus practical TPC network 

Table-VII presents the summary result for case studies for a practical network having 83 buses. Case 31 with 4 DGs & 4 

SCs achieves 218.12 kW loss figure in comparison with 531.99 kW for the base case without any DG and SC. Network’s 

minimum voltage is also improved from 0.9285 p.u. to 0.9651 p.u. However, case 32 brings down to much lower loss figure 

of 152.48 kW using more uniform distribution of DG and SC. Case 32 uses 6 DGs & 6 SCs but cumulative total equipment 

rating have been kept same as shown in Table-III. However due to practical installation and commercial constraints, the 

number of equipment also needs to be restricted judiciously. The result of case 32 can be implemented for the TPC network 

to minimize the network loss, boost up system capacity and network reliability. 
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Fig.7 shows bus voltage profiles for both cases. The profile is more uniform for case 32 also when DGs and SCs are more 

evenly rated and distributed throughout the entire network.  

 

TABLE–VII : Summary of Results with Comparison for 83 bus TPC network 

Network 
Case Study 

Description 
Parameter 

Available Optimization Algorithms 

L-SHADE 

 

 

83 bus 

 

 

 

Base Case 

(No DG / SC) 

Real power loss (kW) 531.99 

Min bus voltage (p.u.) 0.9285 

Case 31 

(4 DGs + 

4 SCs) 

Real power loss (kW) 218.12 

DG size in MW (bus no.) 3(79), 2.517(71), 2.959(33), 2.998 (6) 

SC size in MVAr (bus no.) 1.917 (71), 2.546 (79), 2.382 (32), 2.254 (6) 

Min bus voltage (p.u.) 0.9651 

Case 32 

(6 DGs + 

6 SCs) 

Real power loss (kW) 152.48 

DG size in MW (bus no.) 2 (19), 2(34), 2 (53), 2(81), 2(6), 2(71) 

SC size in MVAr (bus no.) 1.997 (79), 2 (33), 1.75 (52), 2 (7), 1.776 (19), 1.934 (71) 

Min bus voltage (p.u.) 0.9675 

 

 

Fig.7: Voltage profiles of buses for 83 bus TPC network for case studies  

For all case studies, voltage of the buses is found within the specified limits (0.9 p.u. to 1.05 p.u.) as shown in Fig. 5, 6 & 

7. 

VI. CONCLUSION 

This paper successfully implements the L-SHADE 

algorithm in the larger distribution systems and optimizes 

efficiently the large number of continuous (rating) and 

discrete variables (bus number). The results clearly highlight 

that optimal sizing & siting of DGs & SCs simultaneously 

rather than individually is the best in power loss 

minimization and comparing with available other algorithms 

in the recent past. Reduction of the network power loss by 

any more amounts is commercially advantageous. 

Technically this reduces burden to the overall network and 

boost up network capacity as well. Besides this lost power 

dissipates as heat and saving the same enhances the system 

components reliability in long term. The system voltage 

profile has also improved significantly. 
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