
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-6, March 2019

7

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

Workload Pruning for Effective Architecture

Exploration

Byeong Kil Lee

Abstract: Design exploration requires the detailed simulation

which is running multiple applications on a cycle-level

microprocessor simulator. Main objectives of simulation-level

design exploration include understanding the architectural

behaviors of target applications and finding optimal

configurations to cover wide range of applications in terms of

performance and power. However, full simulation of an industry

standard benchmark suite takes several weeks to months to

complete. This problem has motivated several research groups to

come up with methodologies to reduce simulation time while

maintaining a certain level of accuracy. Among many techniques

for reducing simulation time, a tool called SimPoint is popularly

used. However, simulation load even with the reduced workloads

is still heavy, considering design complexity of modern

microprocessors. Motivation of this research is started from how

design exploration is actually performed. Designers will observe

the performance impact from resource variations or configuration

changes. If a simulation point shows low sensitivity to resource

variations, designers would skip those simulations. In this paper,

we focus on identifying those simulation points which do not give

big impact to representative behaviors, by which overall

simulation time can be effectively reduced. We also performed the

performance-sensitivity-based similarity analysis (K-mean

clustering) among simulation points on specific performance

metric which can lead to effective workload pruning.

 Index: Workload Characterization; Performance Evaluation;

Workload Reduction; Early-Stage Design Exploration;

Performance Evaluation.

I. INTRODUCTION

Design exploration requires the detailed simulation

which is running applications on a cycle-level

microprocessor simulator. Simulators are extremely valuable

tool for computer architects which can reduce the cost and

time of a project by allowing the architect to quickly evaluate

different processor implementations. Additionally, they allow

the architect to quickly determine the expected performance

improvement of a new processor enhancement [1]. However,

full simulation of an industry standard benchmark suite (e.g.,

SPEC CPU 2006 [6]) takes several weeks to months to

complete. This problem has motivated several research

groups to come up with methodologies to reduce simulation

time while maintaining a certain level of accuracy.

One of the popular techniques for reducing simulation time,

a tool called SimPoint [10][11] is popularly used. The

SimPoint employs offline phase classification algorithm

which calculates phases for a program/input pair, and then

chooses a single representative from each phase and

estimates the remaining intervals. The tool chooses this

representative for each phase by finding the interval closest to

the cluster’s centroid.

Revised Version Manuscript Received on March 05, 2019.

Byeong Kil Lee, Department of Electronics and Communication

Engineering, UCCS, 1420 Austin Bluffs Parkway, Colorado Springs, CO

80918, USA.

This selected interval for a phase is called a simulation

point for that phase. Then, detailed simulations are performed

at the simulation points and weigh each performance metric

values by the size in its cluster. In addition to multiple

simulation points, SimPoint also provides the mechanism to

get both standard single simulation point and early single

simulation point for each benchmark [11].

Fig. 1. Error rate of IPC and cache miss rate: individual

simulation points vs. single simulation point.

(reference: full simulation)

Even with the reduced simulation workloads, design

exploration time cannot be ignored. Particularly in MID

(mobile internet devices) domain, performance exploration

and evaluation time is very critical. A standard single

simulation point, which is extracted from the Sim Point tool,

can be a solution for reducing the simulation time. However,

as shown in Figure 1, a standard single simulation point does

not provide accuracy. Figure 1 shows the percentage error to

the full simulation with respect to IPC and cache miss rate. In

the case of IPC, some simulation points such as s0, s2, s3, s5,

and s11 show better accuracy than single simulation point

(right-most one). Particularly, s11 shows the smallest

difference (1.7%) while s8 shows the biggest difference

(339.3%). Each individual point has its weight information

(from the SimPoint tool) which is used for overall metric

calculation with multiple simulation points. Fortunately, s8

(0.2) and s11 (0.6) has small weights which means their

impact to multiple simulation points is not remarkable.

Workload Pruning for Effective Architecture Exploration

8

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

This study is based on above observations and two

fundamental motivations: (i) pruning of simulation points

instead of using all simulation points or a single simulation

point; and (ii) identifying the simulation points which are

less-sensitive to resource variation because it might be a

waste of time to evaluate performance without sensitive

variation on resource changes or hardware configuration

changes.

In this paper, we propose a performance-sensitivity-based

workload pruning mechanism for improving simulation

methodology. From the above example in Figure 1, the

overall IPC value from all simulation points with weight

information shows 12.1% error rate to full simulation.

Performance evaluation with standard single simulation point

is closed to the result with multiple simulation points, but it is

not the best choice for all metrics. Also, some phase of

simulation points in dynamic simulation constraint overall

performance. We want to extract this critical information

through the performance-sensitivity-based workload pruning.

The proposed mechanism can also apply to investigate

fine-grained similarity in inter-application level. This

information can be useful for multi-threading and multi-core

simulation.

Basic motivation of this research is started from how

design exploration is actually performed. Designers will

observe the performance impact from resource variations or

configuration changes. If a simulation point shows low

sensitivity to resource variations, designers would eliminate

those simulation points from the simulation setup procedure.

This research is a follow-up study of Yi’s research [1],

Simpoints methodology [10] and Raghunath’s approach [23].

The rest of the paper is organized as follows. In Section II,

we describe statistical approaches such as Simpoints,

Plackett and Burman designs and resource boundaries for

hardware components. The proposed research is described in

Section III which gives details about PB design matrix with

simulation points, ranking and performance-sensitivity-based

grouping methodology, and discusses the degree of

performance sensitivity, the degree of performance similarity

and validity check of the proposed pruning scheme. In

Section IV, we describe the related work, and we conclude

with section V.

II. STATISTICAL APPROACH

1.1. Simulation Points

The full simulation of SPEC 2006 benchmarks takes long

time because of large number of instructions and large

number of data access footprints [8]. Hence, it is very

difficult to conduct the performance and power estimation of

such application benchmarks at each stage of the design. It

will be getting worse as the complexity of microprocessors

keeps increasing. Simpoint methodology [10] is proposed to

extract sets of simulation points for the general-purpose

benchmark suite [8]. Simpoint method is used for capturing

and separating unique phase behavior that exists in many

programs. In our experiment, first, we extract the basicblock

vectors with an interval of 100,000,000 instructions, and then

the clustering algorithm is applied. The maximum value of k

(maxK) is taken as 30. Simplescalar’s [19] fastfwd

functionality is used to simulate each simpoints, and the

various metric values are obtained for each simpoint. With

maxK value of 1, we extract a standard single simulation

point.

1.2. Plackett and Burman Designs

The Plackett and Burman (PB) design has been applied in

Yi’s research [1] to investigate statistical similarity among

SPEC 2000 benchmarks with the reduced input sets [13]. PB

design was chosen due to its relatively fewer simulations

required, compared to other methods [3]. The PB design with

N parameters requires (N+1) simulations which is minimal

number of simulations required to estimate the effect of each

of the N parameters. There is an improvement on the original

PB design call “foldover” PB design [5]. It requires

approximately 2N simulations. Because PB design exist only

in sizes that are multiples of 4, the base PB design requires X

simulation combination cases, where X is the next multiple of

4 that is larger than N, and the foldover PB design requires

2X simulations.

In our study, we applied the PB design to investigate how

resource parameters impact on the processor’s performance

from fine-grained simulation point level rather than

application level. We picked similar hardware parameters and

PB values used in Yi’s paper [1], but we use 31 PB design

parameters which end up with 64 distinct configurations. As

PB design does not simulate every possible combination of

cases, it should be noted that it cannot quantify the effects of

all of the interactions. However, fortunately, the results in [4]

show that if an interaction between parameters is critical, the

result will be meaningful only because each of the constituent

parameters are equally important to the result. Hence,

applying foldover to PB design does not compromise the

results.

The parameter’s evaluation for each simulation is given by

PB matrix. The matrix size of foldover PB design will be

2X*(X-1). When N < (X-1), extra columns are redundant

which have no effect on simulation results. The value of the

matrix’s first row is given by [2], and the next X-2 rows are

formed by doing a circular right shift on the preceding row.

The last row is a row of minus ones. The foldover part is

exactly the invert values of the upper part [1].

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-6, March 2019

9

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

Table1. Plackett-Burman Design in 12 Runs for up to 11 Factors

Pattern N1 N2 N3 N4 N5 N6 N7 N8 N9

N N

10 11

1 ++-+++---+- 1 1 -1 1 1 1 -1 -1 -1 1 -1

2 -++-+++---+ -1 1 1 -1 1 1 1 -1 -1 -1 1

3 +-++-+++--- 1 -1 1 1 -1 1 1 1 -1 -1 -1

4 -+-++-+++-- -1 1 -1 1 1 -1 1 1 1 -1 -1

5 --+-++-+++- -1 -1 1 -1 1 1 -1 1 1 1 -1

6 ---+-++-+++ -1 -1 -1 1 -1 1 1 -1 1 1 1

7 +---+-++-++ 1 -1 -1 -1 1 -1 1 1 -1 1 1

8 ++---+-++-+ 1 1 -1 -1 -1 1 -1 1 1 -1 1

9 +++---+-++- 1 1 1 -1 -1 -1 1 -1 1 1 -1

10 -+++---+-++ -1 1 1 1 -1 -1 -1 1 -1 1 1

11 +-+++---+-+ 1 -1 1 1 1 -1 -1 -1 1 -1 1

12 ----------- -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table 1 shows a sample PB matrix. For each pattern of

configuration, specific performance metrics will be evaluated.

The impact to the performance of each parameter can be

measured by performance impact values and PB design

parameters. Its calculation formula is shown as below.

(1) ()k i i

i

Perf_Impact Perf_metric  

where k is N1, N2, N3, …, N11; i is number of rows.

The value “+1” and “-1” describe the hardware

configuration for a simulation. Only two values were chosen

to represent two extreme cases: “+1” means the parameter’s

configuration is higher than normal cases, while “-1” means

lower than normal situation. In the case of memory

configuration, if we set the normal value range for il1

(instruction level-1) cache size is 4KB~128KB, then we can

set “+1” =128KB and “-1”=4KB. To conclude, “+1”

represents a configuration that guarantee a higher

performance, while “-1” means a lower one. This value does

not represent numerical value only; it is also used in other

parameters such as branch prediction. We can set “+1” =

“perfect” and “-1” = “taken (or nottaken)”.

Using the Perf_Impact formula, we can calculate the

intensity that a hardware parameter impacts on the

processor’s performance. By examining the magnitude of the

impact value, performance-sensitivity (PS) and PS-based

similarity can be identified. The sign of the Perf_Impact

value has no meaning. In the case of Table 1, final PB matrix

size will be 24x11 by applying the “foldover” concept [5].

1.3. Resource Boundaries for Hardware Components

In our experiments, we choose 31 variables for hardware

components to avoid “dummy parameters”. In other words,

PB matrix (X=32) is saturated with 31 variables. Table 2

shows 31 elements, but final matrix size will be 64x31

including the foldover. Eventually, 64 independent hardware

configurations will be used for simulations for similarity

analysis and sensitivity analysis.

We used similar PB boundary values with Yi’s research [1].

In order to choose parameters which can well represent the

processor’s performance, all aspects of the processor should

be taking into account, including processor core parameters,

functional unit parameters and memory related parameters.

We also need to notice that the setting of the normal value

range will also greatly influence the simulation result. Too

wide range will inflate the importance of the parameter, while

too narrow range has opposite effect. We deliberately choose

parameter values to be slightly lower and slightly higher than

normal values. Besides, some parameters interact with each

other, thus their values cannot be chosen totally

independently of other parameters. For example, the inter

memory access latency must be much smaller than the first

memory access latency. Also, to make the number of

parameters to 31 (32 minus 1), we exclude D-TLB page size

and latency in the parameters. If we include those two

parameters, the number of parameters should be 35 (36 minus

1) – four multiple number, including 2 dummy parameters.

Table 2 shows the selections of parameters and their

configuration of low value and high value, and Table 3

includes the fixed parameters with default value.

III. PS (PERFORMANCE SENSITIVITY)

SIMILARITY-BASED WORKLOAD PRUNING

3.1. PB Design Matrix with Simulation Points

With the designed PB matrix (64x31), we choose six

SPEC CPU 2006 benchmarks, soplex, hmmer, astar,

perlbench, namd, bwaves which have 11, 9, 15, 16, 24 and 16

simulation points respectively. Each simulation points have

been measured with all 64 configurations. In our experiments,

we ran 5824 (704+576+960+1024+1536+1024) simulations

with Simplescalar toolsets. We use the CPI (cycle per

instruction) as an overall performance metric to make

rankings on impact among hardware components and

simulation points. If the designers want to focus on a specific

hardware module (e.g., cache memory, branch prediction

module, etc.) for their design exploration, they can choose an

individual performance metric to represent each component

such as cache miss rate or branch prediction miss rate.

Workload Pruning for Effective Architecture Exploration

10

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

In Yi’s paper [1], they use the execution time to

represent overall performance, but measuring execution time

might cause a lot of possible errors due to other factors such

as system time and other machine activity factors by other

users. Particularly, we use multiple machines to simulate

which will make it worse. Therefore, we choose the CPI as an

overall performance metric which can be a pure reference

only for the simulation itself.

Table 2. Processor parameters (31) and their PB values

Parameter Low Value High Value

Branch predictor taken perfect

BTB Entries 16 512

BTB Assoc 2-way Fully-Assoc

Fetch Queue Entries 4 32

RUU Size 8 64

LSQ Entries 0.25*RUU = 2 1.0*RUU = 64

Memory Ports 1 4

Int ALUs 1 4

Int Mult/Div Units 1 4

FP ALUs 1 4

FP Mult/Div Units 1 4

L1 I-Cache Size 4 KB 128 KB

L1 I-Cache Block

Size
16 Bytes 64 Bytes

L1 I-Cache Assoc 1-way 8-way

L1 I-Cache Latency 4 Cycles 1 Cycles

L1 D-Cache Size 4 KB 128 KB

L1 D-Cache Block

Size
16 Bytes 64 Bytes

L1 D-Cache Assoc 1-way 8-way

L1 D-Cache Latency 4 Cycles 1 Cycles

L2 Cache Size 256 KB 8192 KB

L2 Cache Block Size 64 Bytes 256 Bytes

L2 Cache Assoc 1-way 8-way

L2 Cache Latency 20 Cycles 5 Cycles

Memory Latency,

First
200 Cycles 50 Cycles

Memory Bandwidth 4 Bytes 32 Bytes

I-TLB Entries 32 128

I-TLB Page Size 8 KB 4096 KB

I-TLB Assoc 2-way Fully-Assoc

I-TLB Latency 80 Cycles 30 Cycles

D-TLB Entries 32 128

D-TLB Page Size Same as I-TLB Page Size

D-TLB Assoc 2-way Fully-Assoc

D-TLB Latency Same as I-TLB Latency

Table 3.Fixed parameters with default value

Parameters Default Value

Fetch Mis-prediction

Latency 3

Fetch Speed 1

RAS Entries 8

Decode Width 4

Issue Width 4

Commit Width 4

L2 I-Cache Latency 6

Spec Branch Update Non-spec

Issue:inorder False

Issue:wrongpath True

Cache:flush False

Table 4. PB Design Results for all Processor Parameters (ASTAR)

Param

eter

si

m0

si

m1

si

m2

si

m3

si

m4

si

m5

si

m6

si

m7

si

m8

si

m9

sim

10

sim

11

sim

12

sim

13

sim

14

Su

m

I-TLB

Page

Size

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15

I-TLB

Latency
2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 31

I-TLB

Size
3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 44

RUU

Size
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 60

D-TLB

Assoc
7 7 5 8 5 6 7 6 6 5 5 7 7 5 5 91

Mem

Latency

, First

6 12 6 10 10 8 31 8 9 9 9 6 6 13 6
14

9

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-6, March 2019

11

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

Branch

predict

or

5 31 7 7 12 20 14 5 16 11 16 5 5 8 7
16

9

L2

Cache

Size

9 15 11 9 24 14 13 9 8 16 6 9 9 27 16
19

5

LSQ

Entries
10 21 23 16 8 9 17 10 11 8 18 10 10 7 25

20

3

L2

Cache

Block

Size

8 6 25 5 27 21 9 7 5 26 8 8 8 22 22
20

7

L1

D-Cach

e Size

14 8 10 15 15 12 29 15 18 12 13 14 14 12 10
21

1

Memor

y

Bandwi

dth

30 5 8 13 6 5 5 30 13 6 21 31 30 6 8
21

7

Fetch

Queue

Entries

25 17 12 24 7 7 8 21 21 7 7 25 25 9 11
22

6

L2

Cache

Assoc

22 11 20 20 9 11 6 19 10 13 11 22 22 11 23
23

0

FP

Mult/Di

v Units

19 9 9 21 13 13 20 22 7 21 26 16 17 30 9
25

2

BTB

Assoc
16 27 16 19 22 16 12 16 12 17 10 17 16 21 17

25

4

L1

D-Cach

e Block

Size

13 29 21 23 11 10 23 13 20 10 27 13 12 10 21
25

6

I-TLB

Assoc
20 13 29 11 14 15 19 17 19 15 12 21 20 15 31

27

1

L1

D-Cach

e Assoc

17 14 13 27 25 22 10 23 14 24 29 18 19 24 13
29

2

Int

Mult/Di

v Units

11 18 19 17 26 30 25 12 15 27 31 12 11 23 19
29

6

FP

ALUs
21 16 22 22 16 17 26 20 25 14 23 20 21 14 20

29

7

Memor

y Ports
12 24 14 31 23 23 24 11 24 25 24 11 13 26 14

29

9

L1

I-Cache

Assoc

15 25 27 12 21 26 22 14 22 22 25 15 15 17 28
30

6

L1

I-Cache

Size

18 26 26 14 20 19 18 18 23 18 28 19 18 16 26
30

7

L2

cache

latency

23 19 30 18 17 18 30 24 28 19 15 23 23 18 29
33

4

Int

ALUs
24 20 28 25 18 25 11 25 29 23 19 24 24 20 24

33

9

BTB

Entries
28 23 18 28 19 24 21 29 30 20 17 28 28 19 18

35

0

Workload Pruning for Effective Architecture Exploration

12

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

L1

I-Cache

Block

Size

29 10 15 30 31 29 15 28 27 29 14 29 29 28 12
35

5

L1

I-Cache

Latency

31 22 24 6 29 27 27 31 17 28 22 30 31 29 30
38

4

D-TLB

Size
26 28 17 29 28 31 16 26 31 30 30 26 27 31 15

39

1

L1

D-Cach

e

Latency

27 30 31 26 30 28 28 27 26 31 20 27 26 25 27
40

9

Table 4 shows PB design results (X=32) for all 31

processor parameters which are based on all simulations and

ranking by performance impact, where all individual ranks

are added for each hardware component (right-most column).

The results are based on 64 (=2X) simulations with different

hardware configurations for each simulation point. The

smaller value means the hardware component is more

significant in overall performance (CPI in this experiment).

From the result of Table 4, we observe that only the first 7

parameters are significant across all simulation points. This is

drawn by examining the difference of the result between the

seventh parameter (Branch predictor) and the eighth one (L2

cache size). Based on the PB design results, memory related

components such as I-TLB page size/latency/size, D-TLB

assoc are potential enhancement factors that can be made to

greatly improve the system’s performance. The performance

impact of each parameter can be clearly seen in this result. It

can be really useful for design exploration to observe the

influence of certain simulation point or certain parameter.

3.2. Degree of Performance Sensitivity

Microprocessor designers need sets of workloads for their

design exploration to decide optimal configuration. The

choice of workloads is very critical for their design

optimization. Due to long simulation time, designers tend to

choose a sample of simulation points or they can use

simulation points from Simpoint mechanism [10]. If the

selected simulation points are not sensitive to hardware

configuration and resource variation, it might be waste of

time in design exploration. Therefore, the sensitivity of each

simulation point is one of the important factors to choose a

benchmark and it needs to be identified for effective design

exploration. Based on our experiments with PB design matrix,

we can also extract performance sensitivity of each

simulation point against 64 different configurations which

have sets of resource variations. Figure 2 shows the

performance sensitivity for each simulation points. We use

the performance sensitivity equation as shown below, for

which standard deviation and mean value of the CPI are used

to evaluate for each simulation point.

.
(%) 100%

std Dev
performance sensitivity

mean
 

The standard deviation is based on its mean value, but the

mean values for each simulation points are widely spread. In

this equation, standard deviation value is divided by each

mean value observe each simulation point’s performance

sensitivity. As shown in Figure 2 (a), the soplex simulation

points 0, 3 and 9 are identified as high-sensitive simulation

points for overall performance. These higher sensitivity

groups (0, 3 and 9) should be independently simulated and

should not be categorized into any similarity group. We can

observe that all other groups have similar performance

sensitivity within 10~15% boundary. The hmmer simulation

results show very similar sensitivity among simulation points

as shown in Figure 2 (b). The simulation point 0 and 3 are

distinct (relatively less sensitive), and all other simulation

points are very similar. The hmmer can be categorized as very

high performance-sensitivity group in both simulation point

level and application level, but it doesn’t need to simulate all

simulation points due to similar performance sensitivity

among them.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-6, March 2019

13

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

(a) soplex

(b) hmmer

(C) astar

(D) perlbench

(E) namd

(E) bewaves

Fig. 2. Degree of performance sensitivity for simulation points

3.3. Workload Pruning with K-mean Clustering

In this research, we choose K-mean technique to cluster

simulation points based on their performance sensitivity.

K-mean is one of most widely used clustering algorithms,

which typically applied to objects in a continuous

n-dimensional [25]. We use R language and software

environment [26], a professional tool for statistical

computing and graphics, to achieve K-mean algorithm. Each

simulation points is a 31-dimensinal vector, all simulation

points in a certain benchmark can form K clusters/groups by

select K points as initial centroids based on their similarity of

performance impact. In fact, design exploration should be

based on performance variations on different resources or

different configurations. If designers need smaller number of

simulation points, first thing they need to consider is

performance sensitivity to resource variations. The concept,

degree of performance-sensitivity, proposed in this paper can

be applied. Secondly, they should consider the degree of

performance-similarity to reduce the number of simulation

points. In this case, weighting factors from the SimPoint

needs to be added within the group. One representative

simulation point in a group, which has the highest sensitivity

within that group, is used to calculate the performance

metric with combined weighting values. Table 5-10 show

workload pruning based on K-mean clustering.

In the case of astar (Table 7), the first column K represents

the selected number of K (1 ≤ K ≤ No. of simulation points -

1) points, and also equals to the new number of simulations

points after pruning. The second and third columns are

grouped simulation points and the representative simulation

point with highest performance sensitivity in this group. For

example, its 15 simulation points can be clustered as 12

groups by selecting K equal to 12. Simulation points (s0, s11

and s12) can be in same PS (performance-sensitivity) group

and simulation points (s4 and s9) can be in same PS group.

All the other simulation points (s1, s2, s3, s5, s6, s7, s8, s10,

s13 and s14) need to be independently evaluated. In the first

PS group, the sensitivity of s0 (160.79%) is higher than s11

(157.95%) and s12 (158.44%), so s0 is the representative

simulation point in this group. We calculate the percentage

of pruned workload over the original workload; the result is

workload reduction which means simulation time reduction.

The error rate of CPI is reference to the original entire

simulation points based on 64 configurations. More

workload reduction, higher error rate can be produced. The

results from all other benchmarks are shown in Table 5, 6, 8,

9 and 10.

Workload Pruning for Effective Architecture Exploration

14

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

Table 5. Workload Pruning Results (SOPLEX)

K
Grouped

Simpoints

Representative

Simpoints

Workload

Reduction
Error

10 s1, s7 s7 17.18% 0.59%

9
s1, s7 s7

23.59% 0.78%
s8, s10 s8

8

s1, s7 s7

29.14% 0.85% s2, s4 s2

s8, s10 s8

7

s1, s7 s7

49.71% 0.84% s2, s4, s5 s2

s8, s10 s8

Table 6. Workload Pruning Results (HMMER)

K
Grouped

Simpoints

Representative

Simpoints

Workload

Reduction
Error

8 s4, s7 s7 12.64% 0.04%

7
s1, s5 s5

22.95% 0.11%
s4, s7 s7

6

s1, s5 s5

31.53% 0.17% s4, s7 s7

s6, s8 s6

5

s1, s4, s5,

s7
s5

52.48% 0.21%

s6, s8 s6

Table 7. Workload Pruning Results (ASTAR)

K
Grouped

Simpoints

Representative

Simpoints

Workload

Reduction
Error

14 s0, s12 s0 9.81% 0.11%

13
s0, s11,

s12
s0 19.24% 0.16%

12

s0, s11,

s12
s0

24.33% 1.33%

s4, s9 s9

11

s0, s11,

s12
s0

26.81% 1.26%
s2, s14 s14

s4, s9 s9

10

s0, s7, s11,

12
s0

29.78% 1.57%
s2, s14 s14

s4, s9 s9

9

s0, s7,

s11,s12
s0

36.97% 2.95%
s2, s14 s14

s4, s5, s9 s5

8

s0, s7, s11,

12
s0

38.98% 3.01% s2, s14 s14

s3, s8 s3

s4, s5, s9 s5

7

s0, s7, s11,

12
s0

46.33% 3.49%
s2, s14 s14

s3, s8 s3

s4, s5, s9,

s13
s5

6
s0, s7, s11,

12
s0 48.23% 3.48%

s1, s10 s10

s2, s14 s14

s3, s8 s3

s4, s5, s9,

s13
s5

Table 8. Workload Pruning Results (PERLBENCH)

K
Grouped

Simpoints

Repre

sentati

ve

Simpo

ints

Workload

Reduction
Error

1

5 s1, s9 s1 3.73% 0.06%

1

4

s1, s9 s1
8.74% 0.33%

s2, s13 s2

1

3

s1, s9 s1
17.08% 1.43%

s2, s3, s13 s3

1

2

s1, s9 s1

26.66% 1.67% s2, s3, s13 s3

s5, s14 s14

11

s1, s9 s1

30.46% 1.74%
s2, s3, s13 s3

s5, s14 s14

s10, s11 s11

1

0

s0, s12 s12

38.83% 1.65%

s1, s9 s1

s2, s3, s13 s3

s5, s14 s14

s10, s11 s11

9

s0, s12 s12

47.85% 3.82%

s1, s9 s1

s2, s3, s5,s13,

s14 s3

s10, s11 s11

8

s0, s8, s12 s12

54.66% 3.55%

s1, s9 s1

s2, s3, s5,s13,

s14 s3

s10, s11 s11

Table 9. Workload Pruning Results (NAMD)

K
Grouped

Simpoints

Representa

tive

Simpoints

Workloa

d

Reductio

n

Error

2

3 s0, s5 s5 1.99% 0.08%

2

2

s0, s5 s5
5.46% 0.17%

s6, s19 s6

2

1

s0, s5 s5

14.11% 0.19% s3, s22 s22

s6, s19 s6

2

0

s0, s5 s5

23.00% 0.25%
s2, s13 s13

s3, s22 s22

s6, s19 s6

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-6, March 2019

15

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

1

9

s0, s5 s5

22.44% 0.33%

s2, s13 s13

s3, s22 s22

s6, s19 s6

s16, s20 s20

1

8

s0, s5 s5

33.20% 0.71%
s2, s13 s13

s3, s22,s16,s20 s20

s6, s19 s6

1

7

s0, s5 s5

34.73% 0.65%

s1, s4 s4

s2, s13 s13

s3, s22 s22

s6, s19 s6

s7, s11 s11

s16, s20 s20

1

6

s0, s5 s5

44.93% 1.03%

s1, s4 s4

s2, s13 s13

s3, s22,s16,s20 s20

s6, s19 s6

s7, s11 s11

1

5

s0, s5 s5

47.91% 1.53%

s1, s9 s9

s2, s13 s13

s3, s22,s16,s20 s20

s6, s19 s6

s7, s11 s11

s10, s17 sin17

1

4

s0, s5 s5

55.98% 1.51%

s1, s4, s9 s9

s2, s13 s13

s3, s22, s14 s14

s6, s19 s6

s7, s11 s11

s10, s17 s17

s16, s20 s20

Table 10. Workload Pruning Results (BEWAVES)

K
Grouped

Simpoints

Representative

Simpoints

Workload

Reduction
Error

15 s0, s3 s3 3.32% 0.13%

14
s0, s3 s3

11.75% 0.69%
s11, s14 s14

13
s0, s1, s3 s3

15.19% 0.88%
s11, s14 s14

12

s0, s1, s3,

s5 s3 21.95% 1.08%

s11, s14 s14

11

s0, s1,

s3,s5 s3
30.63% 1.09%

s8, s15 s8

s11, s14 s14

10

s0, s1,

s3,s5 s3

32.06% 1.44% s2, s13 s2

s8, s15 s8

s11, s14 s14

9

s0, s1,

s3,s5, s14 s3 36.01% 1.09%

s2, s13 s2

s8, s15 s8

s11, s12 s11

8

s0, s1,

s3,s5, s14 s3

42.75% 1.44% s2, s13 s2

s8, s10, s15 s8

s11, s12 s11

7

s0, s1,

s3,s5, s14 s3

50.09% 1.57% s2, s13 s2

s7, s11, s12 s11

s8, s10, s15 s8

3.4. Validity Check of the PS-based Workload

Pruning

In order to check the validity of performance-sensitivity

based workload pruning, we compared CPI values between the

proposed scheme and Simpoint methods. Figure 3 shows the

analysis results for soplex and hmmer. One representative

simulation point in a group, which has the highest sensitivity

within a group, is used to calculate the performance metric

with combined weighting values. The soplex shows 5.15%

error rate on average with 36% pruned workload compared to

all simulation points with weight, while hmmer shows 0.22%

error rate on average with 44% pruned workload.

IV. RELATED WORKS

There are several researches that are related to our studies,

but we could not find any of that focused on the simulation

points classifying for individual benchmark. Most of

researches focused on finding the representative of simulation

points or classifying of benchmarks. This paper is built upon

previous work by using PB design method on simulation

points, analyzing and classifying based on performance

sensitivity.

Plackett and Burman [2] invented the PB design method to

measure the effect of component, it provides the logically

minimal number of simulations required to estimate the

impact of each selected component with accuracy guarantee.

Yi et al. [1] described a method for analyzing and

classifying benchmarks which based on the PB design method.

Their result shows PB design can significantly reduce the

number of simulation. Then, they divide the benchmarks from

SPEC2000 benchmarks suit into several groups via the

similarity threshold defined by user.

There have also been extensive works to reduce the

simulation time in microprocessor design

[12][13][14][15][22]. KleinOsowski et al. [13] proposed a

method to reduce the simulation time of the SPEC CPU 2000

benchmark suite by using the reduced input data sets. They

propose to use small input data sets called MinneSPEC that

reflect the behavior of the full input data sets instead of using

the reference input data sets provided by SPEC. Eeckhout et

al.

Workload Pruning for Effective Architecture Exploration

16

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

12][18] present their analysis results on the impact of input

data sets on program behavior using PCA (principal

components analysis) and cluster analysis. Phansalkat et al. [8]

studied the redundancy of SPEC CPU 2006 benchmark suite

based on principal component analysis. Main idea is that

SPEC CPU 2006 is biased to some of the applications and

simulation time can be reduced by taking benchmarks that are

specific to an application. Wunderlich et al. [16] explains

about SMARTS, a trace sampling technique for reducing

runtimes in simulators but executions still need to handle tens

of millions of instructions. Simpoint [7][10] tools are proposed

to cluster the simulation points using phase information in

dynamic execution, and the PIN tool [9][17][21] is also used

for solving the problem of long simulation time.

(a) soplex (error rate: 5.15% on average with 36% pruned workload)

(b) hmmer (error rate: 0.22% on average with 44% pruned workload)

Fig.3.Validity Check of PS-based workload Pruning

V. CONCLUSION

Basic motivation of this research is started from how

design exploration is actually performed. Designers will

observe the performance impact from resource variations or

configuration changes. If a simulation point shows less

sensitive to resource variations, designers would eliminate

those simulation points from the simulation setup procedure.

In this paper, we focus on identifying those simulation points

which are more sensitive or less sensitive, by which overall

simulation methodology can be improved. We also

performed the performance-sensitivity-based similarity

analysis (grouping) among simulation points on specific

performance metric which can be overall performance metric

or component-level metric. The proposed pruning methods

are checked its validity with the analysis on the degree of

sensitivity. The error rate on average is 0.22%~5.15% with

36%~44% pruned workload compared to all simulation

points with weight. Our experiments also show that the

proposed methodologies can be applied to simulation points

of multiple applications for multi-threaded processors or

multi-core environments.

 As future works, the proposed schemes will be applied to

simulation points of multiple applications for multi-threaded

or multi-core simulation workload pruning.

REFERENCES

1. Joshua J. Yi, David J. Lilja, Douglas M. Hawkins, A statistically
rigorous approach for improving simulation methodology, International

Symposium on High-Performance Computer Architecture (HPCA),

February, 2003
2. R. Plackett and J. Burman, “The Design of Optimum Multifactorial

Experiments", Biometrika, Vol. 33, Issue 4, June 1956, Pages 305-325

3. D. Lilja, “Measuring Computer Performance”, Cambridge University
Press, 2000

4. J. Yi and D. Lilja, "Effects of Processor Parameter Selection on

Simulation Results", MSI Report 2002/146, 2002
5. D. C. Montgomery, “Design and Analysis of Experiments”, Third

Edition, Wiley 1991

6. Standard Performance Evaluation Corporation (SPEC) website,
7. http://www.spec.org/

8. A. Nair and L. John, “Simulation Points for SPEC 2006,” International

Conference on Computer Design (ICCD'08). October 2008
9. A. Phansalkar, A. Joshi and L. K. John, “Analysis of Redundency and

Application Balance in the SPEC CPU2006 Benchmark Suite,” The
34th International Symposium on Computer Architecture (ISCA). June

2007

10. PIN home page: http://rogue.colorado.edu/Pin/
11. G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: Faster

and More Flexible Program Analysis ,” Workshop on Modeling,

Benchmarking and Simulation, June 2005

0

5

10

15

20

C
P

I

64 configurations in PB Design Matrix

PS-based tailoring

Simpoint method

0

10

20

30

40

50

C
P

I

64 configurations in PB Design Matrix

PS-based tailoring

Simpoint method

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-6, March 2019

17

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: E3182018519/19©BEIESP

12. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. “Automatically

Characterizing Large Scale Program Behavior,” Proc. International
Conf. Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pp. 45–57, Oct. 2002

13. http://cseweb.ucsd.edu/~calder/simpoint/single-sim-pionts.htm
14. L. Eeckhout, R. H. Bell, B. Stougie, K. Bosschere and L. K. John,

“Control Flow Modeling in Statistical Simulation for Accurate and

Efficient Processor Design Studies,” ISCA. pp. 350-361 2004
15. A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A New SPEC

Benchmark Workload for Simulation-Based Computer Architecture

Research,” Computer Architecture Letters, vol.1, May, 2002
16. K. Lee, S. Evans, and S. Cho "Accurately Approximating Superscalar

Processor Performance from Traces,” Proceedings of the ISPASS, pp.

238~248, Boston, Massachusetts, April, 2009
17. K. Ganesan, J. Jo, and L. K. John, “Synthesizing Memory-Level

Parallelism Aware Miniature Clones for SPEC CPU2006 and

ImplantBench Workloads,” ISPASS, March, 2010
18. R. E. Wunderlich, T. F. Wenisch, B. Falsafi, J. C. Hoe, “SMARTS:

accelerating microarchitecture simulation via rigorous statistical

sampling,” Proceedings. 30th Annual International Symposium on
Computer Architecture, pp. 84-95 ,June, 2003

19. H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun and A. Karunanidhi,

“Pinpointing Representative Portions of Large Intel Itanium Programs

with Dynamic Instrumentation,” In Proceedings of the 37th Annual

IEEE/ACM international Symposium on Microarchitecture, 2004

20. L. Eeckhout, H. Vandierendonck and K. Bosschere, “Quantifying the
Impact of Input Data Sets on Program Behavior and its Applications,”

Journal of Instruction-Level Parallelism, vol. 5, pp. 1-33, 2003
21. D. C. Burger and Todd M. Austin, “The Simplescalar Tool Set, Version

2.0,” UW Madison Computer Sciences Technical Report #1342, 1997

22. D. B. Noonburg and J. P. Shen. “A Framework for Statistical Modeling
of Superscalar Processor Performance,” Proc. Int’l Symp.

High-Performance Computer Architecture (HPCA), pp. 298–309,

Feb.1997
23. C. Luk, R. zohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.

Reddi, and K. Hazelwood, “Pin: building customized program analysis

tools with dynamic instrumentation,” In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’05. ACM, pp. 190-200, 2005

24. R. H. Bell and L. K. John, “Improved Automatic Testcase Synthesis for
Performance Model Validation,“ 19th ACM International Conference

on Supercomputing, June 2005

25. S. Raghunath and B. Lee, “Selection of Representative Simulation Point

using Performance Metric based Similarity,” Sixth workshop on Unique

Chips and System (UCAS-6), December 2010

26. L. Eeckhout, H. Vandierendonck,and K. De Bosschere, “Workload
Design: Selecting Representative Program-Input

Pairs,”InternationalConference on Parallel Architectures and

Compilations Techniques, 2002
27. P. Tan, M. Steinbach, and V. Kumar, “Intruction to Dada Mining”,

pp.496-513, 2006

28. R language and enviroment website, http://www.r-project.org/

Byeong Kil Lee, received the Ph.D. degree in

computer engineering from the University of Texas
at Austin, Austin, in 2005. He is currently an

assistant professor in the Electrical and Computer

Engineering Department, University of Colorado,
Colorado Springs. His current research interests

include computer architecture, application-specific

embedded systems, low power mobile processors,

workload characterization of emerging applications,

machine learning and cyber security.

