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Abstract: Design exploration requires the detailed simulation 

which is running multiple applications on a cycle-level 

microprocessor simulator. Main objectives of simulation-level 

design exploration include understanding the architectural 

behaviors of target applications and finding optimal 

configurations to cover wide range of applications in terms of 

performance and power. However, full simulation of an industry 

standard benchmark suite takes several weeks to months to 

complete. This problem has motivated several research groups to 

come up with methodologies to reduce simulation time while 

maintaining a certain level of accuracy. Among many techniques 

for reducing simulation time, a tool called SimPoint is popularly 

used. However, simulation load even with the reduced workloads 

is still heavy, considering design complexity of modern 

microprocessors. Motivation of this research is started from how 

design exploration is actually performed. Designers will observe 

the performance impact from resource variations or configuration 

changes. If a simulation point shows low sensitivity to resource 

variations, designers would skip those simulations. In this paper, 

we focus on identifying those simulation points which do not give 

big impact to representative behaviors, by which overall 

simulation time can be effectively reduced. We also performed the 

performance-sensitivity-based similarity analysis (K-mean 

clustering) among simulation points on specific performance 

metric which can lead to effective workload pruning. 

   Index: Workload Characterization; Performance Evaluation; 

Workload Reduction; Early-Stage Design Exploration; 

Performance Evaluation.  

I. INTRODUCTION 

Design exploration requires the detailed simulation 

which is running applications on a cycle-level 

microprocessor simulator. Simulators are extremely valuable 

tool for computer architects which can reduce the cost and 

time of a project by allowing the architect to quickly evaluate 

different processor implementations. Additionally, they allow 

the architect to quickly determine the expected performance 

improvement of a new processor enhancement [1]. However, 

full simulation of an industry standard benchmark suite (e.g., 

SPEC CPU 2006 [6]) takes several weeks to months to 

complete. This problem has motivated several research 

groups to come up with methodologies to reduce simulation 

time while maintaining a certain level of accuracy. 

One of the popular techniques for reducing simulation time, 

a tool called SimPoint [10][11] is popularly used. The 

SimPoint employs offline phase classification algorithm 

which calculates phases for a program/input pair, and then 

chooses a single representative from each phase and 

estimates the remaining intervals. The tool chooses this 

representative for each phase by finding the interval closest to 

the cluster’s centroid.  

 
 

Revised Version Manuscript Received on March 05, 2019. 

Byeong Kil Lee, Department of Electronics and Communication 

Engineering, UCCS, 1420 Austin Bluffs Parkway, Colorado Springs, CO 

80918, USA. 

This selected interval for a phase is called a simulation 

point for that phase. Then, detailed simulations are performed 

at the simulation points and weigh each performance metric 

values by the size in its cluster. In addition to multiple 

simulation points, SimPoint also provides the mechanism to 

get both standard single simulation point and early single 

simulation point for each benchmark [11].   

 

 

Fig. 1. Error rate of IPC and cache miss rate: individual 

simulation points vs. single simulation point. 

(reference: full simulation) 

Even with the reduced simulation workloads, design 

exploration time cannot be ignored. Particularly in MID 

(mobile internet devices) domain, performance exploration 

and evaluation time is very critical. A standard single 

simulation point, which is extracted from the Sim Point tool, 

can be a solution for reducing the simulation time. However, 

as shown in Figure 1, a standard single simulation point does 

not provide accuracy. Figure 1 shows the percentage error to 

the full simulation with respect to IPC and cache miss rate. In 

the case of IPC, some simulation points such as s0, s2, s3, s5, 

and s11 show better accuracy than single simulation point 

(right-most one). Particularly, s11 shows the smallest 

difference (1.7%) while s8 shows the biggest difference 

(339.3%). Each individual point has its weight information 

(from the SimPoint tool) which is used for overall metric 

calculation with multiple simulation points. Fortunately, s8 

(0.2) and s11 (0.6) has small weights which means their 

impact to multiple simulation points is not remarkable.  
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This study is based on above observations and two 

fundamental motivations: (i) pruning of simulation points 

instead of using all simulation points or a single simulation 

point; and (ii) identifying the simulation points which are 

less-sensitive to resource variation because it might be a 

waste of time to evaluate performance without sensitive 

variation on resource changes or hardware configuration 

changes. 

In this paper, we propose a performance-sensitivity-based 

workload pruning mechanism for improving simulation 

methodology. From the above example in Figure 1, the 

overall IPC value from all simulation points with weight 

information shows 12.1% error rate to full simulation. 

Performance evaluation with standard single simulation point 

is closed to the result with multiple simulation points, but it is 

not the best choice for all metrics. Also, some phase of 

simulation points in dynamic simulation constraint overall 

performance. We want to extract this critical information 

through the performance-sensitivity-based workload pruning. 

The proposed mechanism can also apply to investigate 

fine-grained similarity in inter-application level. This 

information can be useful for multi-threading and multi-core 

simulation. 

Basic motivation of this research is started from how 

design exploration is actually performed. Designers will 

observe the performance impact from resource variations or 

configuration changes. If a simulation point shows low 

sensitivity to resource variations, designers would eliminate 

those simulation points from the simulation setup procedure. 

This research is a follow-up study of Yi’s research [1], 

Simpoints methodology [10] and Raghunath’s approach [23].  

The rest of the paper is organized as follows. In Section II, 

we describe statistical approaches such as Simpoints, 

Plackett and Burman designs and resource boundaries for 

hardware components. The proposed research is described in 

Section III which gives details about PB design matrix with 

simulation points, ranking and performance-sensitivity-based 

grouping methodology, and discusses the degree of 

performance sensitivity, the degree of performance similarity 

and validity check of the proposed pruning scheme. In 

Section IV, we describe the related work, and we conclude 

with section V. 

II. STATISTICAL APPROACH 

1.1. Simulation Points 

The full simulation of SPEC 2006 benchmarks takes long 

time because of large number of instructions and large 

number of data access footprints [8]. Hence, it is very 

difficult to conduct the performance and power estimation of 

such application benchmarks at each stage of the design. It 

will be getting worse as the complexity of microprocessors 

keeps increasing. Simpoint methodology [10] is proposed to 

extract sets of simulation points for the general-purpose 

benchmark suite [8]. Simpoint method is used for capturing 

and separating unique phase behavior that exists in many 

programs. In our experiment, first, we extract the basicblock 

vectors with an interval of 100,000,000 instructions, and then 

the clustering algorithm is applied. The maximum value of k 

(maxK) is taken as 30. Simplescalar’s [19] fastfwd 

functionality is used to simulate each simpoints, and the 

various metric values are obtained for each simpoint. With 

maxK value of 1, we extract a standard single simulation 

point. 

1.2. Plackett and Burman Designs 

The Plackett and Burman (PB) design has been applied in 

Yi’s research [1] to investigate statistical similarity among 

SPEC 2000 benchmarks with the reduced input sets [13]. PB 

design was chosen due to its relatively fewer simulations 

required, compared to other methods [3]. The PB design with 

N parameters requires (N+1) simulations which is minimal 

number of simulations required to estimate the effect of each 

of the N parameters. There is an improvement on the original 

PB design call “foldover” PB design [5]. It requires 

approximately 2N simulations. Because PB design exist only 

in sizes that are multiples of 4, the base PB design requires X 

simulation combination cases, where X is the next multiple of 

4 that is larger than N, and the foldover PB design requires 

2X simulations.  

In our study, we applied the PB design to investigate how 

resource parameters impact on the processor’s performance 

from fine-grained simulation point level rather than 

application level. We picked similar hardware parameters and 

PB values used in Yi’s paper [1], but we use 31 PB design 

parameters which end up with 64 distinct configurations. As 

PB design does not simulate every possible combination of 

cases, it should be noted that it cannot quantify the effects of 

all of the interactions. However, fortunately, the results in [4] 

show that if an interaction between parameters is critical, the 

result will be meaningful only because each of the constituent 

parameters are equally important to the result. Hence, 

applying foldover to PB design does not compromise the 

results.  

The parameter’s evaluation for each simulation is given by 

PB matrix. The matrix size of foldover PB design will be 

2X*(X-1). When N < (X-1), extra columns are redundant 

which have no effect on simulation results. The value of the 

matrix’s first row is given by [2], and the next X-2 rows are 

formed by doing a circular right shift on the preceding row. 

The last row is a row of minus ones. The foldover part is 

exactly the invert values of the upper part [1]. 
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Table1. Plackett-Burman Design in 12 Runs for up to 11 Factors 

 
Pattern N1 N2 N3 N4 N5 N6 N7 N8 N9 

N N 

10 11 

1 ++-+++---+- 1 1 -1 1 1 1 -1 -1 -1 1 -1 

2 -++-+++---+ -1 1 1 -1 1 1 1 -1 -1 -1 1 

3 +-++-+++--- 1 -1 1 1 -1 1 1 1 -1 -1 -1 

4 -+-++-+++-- -1 1 -1 1 1 -1 1 1 1 -1 -1 

5 --+-++-+++- -1 -1 1 -1 1 1 -1 1 1 1 -1 

6 ---+-++-+++ -1 -1 -1 1 -1 1 1 -1 1 1 1 

7 +---+-++-++ 1 -1 -1 -1 1 -1 1 1 -1 1 1 

8 ++---+-++-+ 1 1 -1 -1 -1 1 -1 1 1 -1 1 

9 +++---+-++- 1 1 1 -1 -1 -1 1 -1 1 1 -1 

10 -+++---+-++ -1 1 1 1 -1 -1 -1 1 -1 1 1 

11 +-+++---+-+ 1 -1 1 1 1 -1 -1 -1 1 -1 1 

12 ----------- -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 

Table 1 shows a sample PB matrix. For each pattern of 

configuration, specific performance metrics will be evaluated. 

The impact to the performance of each parameter can be 

measured by performance impact values and PB design 

parameters. Its calculation formula is shown as below.  

( 1) ( )k i i

i

Perf_Impact Perf_metric    

where k is N1, N2, N3, …, N11; i is number of rows.  

The value “+1” and “-1” describe the hardware 

configuration for a simulation. Only two values were chosen 

to represent two extreme cases: “+1” means the parameter’s 

configuration is higher than normal cases, while “-1” means 

lower than normal situation. In the case of memory 

configuration, if we set the normal value range for il1 

(instruction level-1) cache size is 4KB~128KB, then we can 

set “+1” =128KB and “-1”=4KB. To conclude, “+1” 

represents a configuration that guarantee a higher 

performance, while “-1” means a lower one. This value does 

not represent numerical value only; it is also used in other 

parameters such as branch prediction. We can set “+1” = 

“perfect” and “-1” = “taken (or nottaken )”.  

Using the Perf_Impact formula, we can calculate the 

intensity that a hardware parameter impacts on the 

processor’s performance. By examining the magnitude of the 

impact value, performance-sensitivity (PS) and PS-based 

similarity can be identified. The sign of the Perf_Impact 

value has no meaning. In the case of Table 1, final PB matrix 

size will be 24x11 by applying the “foldover” concept [5].  

1.3. Resource Boundaries for Hardware Components 

In our experiments, we choose 31 variables for hardware 

components to avoid “dummy parameters”. In other words, 

PB matrix (X=32) is saturated with 31 variables. Table 2 

shows 31 elements, but final matrix size will be 64x31 

including the foldover. Eventually, 64 independent hardware 

configurations will be used for simulations for similarity 

analysis and sensitivity analysis.      

We used similar PB boundary values with Yi’s research [1]. 

In order to choose parameters which can well represent the 

processor’s performance, all aspects of the processor should 

be taking into account, including processor core parameters, 

functional unit parameters and memory related parameters. 

We also need to notice that the setting of the normal value 

range will also greatly influence the simulation result. Too 

wide range will inflate the importance of the parameter, while 

too narrow range has opposite effect. We deliberately choose 

parameter values to be slightly lower and slightly higher than 

normal values. Besides, some parameters interact with each 

other, thus their values cannot be chosen totally 

independently of other parameters. For example, the inter 

memory access latency must be much smaller than the first 

memory access latency. Also, to make the number of 

parameters to 31 (32 minus 1), we exclude D-TLB page size 

and latency in the parameters. If we include those two 

parameters, the number of parameters should be 35 (36 minus 

1) – four multiple number, including 2 dummy parameters. 

Table 2 shows the selections of parameters and their 

configuration of low value and high value, and Table 3 

includes the fixed parameters with default value. 

III. PS (PERFORMANCE SENSITIVITY) 

SIMILARITY-BASED WORKLOAD PRUNING 

3.1. PB Design Matrix with Simulation Points 

With the designed PB matrix (64x31), we choose six 

SPEC CPU 2006 benchmarks, soplex, hmmer, astar, 

perlbench, namd, bwaves which have 11, 9, 15, 16, 24 and 16 

simulation points respectively. Each simulation points have 

been measured with all 64 configurations. In our experiments, 

we ran 5824 (704+576+960+1024+1536+1024) simulations 

with Simplescalar toolsets. We use the CPI (cycle per 

instruction) as an overall performance metric to make 

rankings on impact among hardware components and 

simulation points. If the designers want to focus on a specific 

hardware module (e.g., cache memory, branch prediction 

module, etc.) for their design exploration, they can choose an 

individual performance metric to represent each component 

such as cache miss rate or branch prediction miss rate.  
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In Yi’s paper [1], they use the execution time to 

represent overall performance, but measuring execution time 

might cause a lot of possible errors due to other factors such 

as system time and other machine activity factors by other 

users. Particularly, we use multiple machines to simulate 

which will make it worse. Therefore, we choose the CPI as an 

overall performance metric which can be a pure reference 

only for the simulation itself. 

Table 2. Processor parameters (31) and their PB values 

Parameter Low Value High Value 

Branch predictor taken perfect 

BTB Entries 16 512 

BTB Assoc 2-way Fully-Assoc 

Fetch Queue Entries 4 32 

RUU Size 8 64 

LSQ Entries 0.25*RUU = 2 1.0*RUU = 64 

Memory Ports 1 4 

Int ALUs 1 4 

Int Mult/Div Units 1 4 

FP ALUs 1 4 

FP Mult/Div Units 1 4 

L1 I-Cache Size 4 KB 128 KB 

L1 I-Cache Block 

Size 
16 Bytes 64 Bytes 

L1 I-Cache Assoc 1-way 8-way 

L1 I-Cache Latency 4 Cycles 1 Cycles 

L1 D-Cache Size 4 KB 128 KB 

L1 D-Cache Block 

Size 
16 Bytes 64 Bytes 

L1 D-Cache Assoc 1-way 8-way 

L1 D-Cache Latency 4 Cycles 1 Cycles 

L2 Cache Size 256 KB 8192 KB 

L2 Cache Block Size 64 Bytes 256 Bytes 

L2 Cache Assoc 1-way 8-way 

L2 Cache Latency 20 Cycles 5 Cycles 

Memory Latency, 

First 
200 Cycles 50 Cycles 

Memory Bandwidth 4 Bytes 32 Bytes 

I-TLB Entries 32 128 

I-TLB Page Size 8 KB 4096 KB 

I-TLB Assoc 2-way Fully-Assoc 

I-TLB Latency 80 Cycles 30 Cycles 

D-TLB Entries 32 128 

D-TLB Page Size Same as I-TLB Page Size 

D-TLB Assoc 2-way Fully-Assoc 

D-TLB Latency Same as I-TLB Latency 

Table 3.Fixed parameters with default value 

Parameters Default Value 

Fetch Mis-prediction 

Latency 3 

Fetch Speed 1 

RAS Entries 8 

Decode Width 4 

Issue Width 4 

Commit Width 4 

L2 I-Cache Latency 6 

Spec Branch Update  Non-spec 

Issue:inorder False 

Issue:wrongpath True 

Cache:flush False 

Table 4. PB Design Results for all Processor Parameters (ASTAR) 

Param

eter 

si

m0 

si

m1 

si

m2 

si

m3 

si

m4 

si

m5 

si

m6 

si

m7 

si

m8 

si

m9 

sim

10 

sim

11 

sim

12 

sim

13 

sim

14 

Su

m 

I-TLB 

Page 

Size 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 

I-TLB 

Latency 
2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 31 

I-TLB 

Size 
3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 44 

RUU 

Size 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 60 

D-TLB 

Assoc 
7 7 5 8 5 6 7 6 6 5 5 7 7 5 5 91 

Mem 

Latency

, First 

6 12 6 10 10 8 31 8 9 9 9 6 6 13 6 
14

9 
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Branch 

predict

or 

5 31 7 7 12 20 14 5 16 11 16 5 5 8 7 
16

9 

L2 

Cache 

Size 

9 15 11 9 24 14 13 9 8 16 6 9 9 27 16 
19

5 

LSQ 

Entries 
10 21 23 16 8 9 17 10 11 8 18 10 10 7 25 

20

3 

L2 

Cache 

Block 

Size 

8 6 25 5 27 21 9 7 5 26 8 8 8 22 22 
20

7 

L1 

D-Cach

e Size 

14 8 10 15 15 12 29 15 18 12 13 14 14 12 10 
21

1 

Memor

y 

Bandwi

dth 

30 5 8 13 6 5 5 30 13 6 21 31 30 6 8 
21

7 

Fetch 

Queue 

Entries 

25 17 12 24 7 7 8 21 21 7 7 25 25 9 11 
22

6 

L2 

Cache 

Assoc 

22 11 20 20 9 11 6 19 10 13 11 22 22 11 23 
23

0 

FP 

Mult/Di

v Units 

19 9 9 21 13 13 20 22 7 21 26 16 17 30 9 
25

2 

BTB 

Assoc 
16 27 16 19 22 16 12 16 12 17 10 17 16 21 17 

25

4 

L1 

D-Cach

e Block 

Size 

13 29 21 23 11 10 23 13 20 10 27 13 12 10 21 
25

6 

I-TLB 

Assoc 
20 13 29 11 14 15 19 17 19 15 12 21 20 15 31 

27

1 

L1 

D-Cach

e Assoc 

17 14 13 27 25 22 10 23 14 24 29 18 19 24 13 
29

2 

Int 

Mult/Di

v Units 

11 18 19 17 26 30 25 12 15 27 31 12 11 23 19 
29

6 

FP 

ALUs 
21 16 22 22 16 17 26 20 25 14 23 20 21 14 20 

29

7 

Memor

y Ports 
12 24 14 31 23 23 24 11 24 25 24 11 13 26 14 

29

9 

L1 

I-Cache 

Assoc 

15 25 27 12 21 26 22 14 22 22 25 15 15 17 28 
30

6 

L1 

I-Cache 

Size 

18 26 26 14 20 19 18 18 23 18 28 19 18 16 26 
30

7 

L2 

cache 

latency 

23 19 30 18 17 18 30 24 28 19 15 23 23 18 29 
33

4 

Int 

ALUs 
24 20 28 25 18 25 11 25 29 23 19 24 24 20 24 

33

9 

BTB 

Entries 
28 23 18 28 19 24 21 29 30 20 17 28 28 19 18 

35

0 



 

Workload Pruning for Effective Architecture Exploration 

12 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  Retrieval Number: E3182018519/19©BEIESP 

L1 

I-Cache 

Block 

Size 

29 10 15 30 31 29 15 28 27 29 14 29 29 28 12 
35

5 

L1 

I-Cache 

Latency 

31 22 24 6 29 27 27 31 17 28 22 30 31 29 30 
38

4 

D-TLB 

Size 
26 28 17 29 28 31 16 26 31 30 30 26 27 31 15 

39

1 

L1 

D-Cach

e 

Latency 

27 30 31 26 30 28 28 27 26 31 20 27 26 25 27 
40

9 

 

Table 4 shows PB design results (X=32) for all 31 

processor parameters which are based on all simulations and 

ranking by performance impact, where all individual ranks 

are added for each hardware component (right-most column). 

The results are based on 64 (=2X) simulations with different 

hardware configurations for each simulation point. The 

smaller value means the hardware component is more 

significant in overall performance (CPI in this experiment). 

From the result of Table 4, we observe that only the first 7 

parameters are significant across all simulation points. This is 

drawn by examining the difference of the result between the 

seventh parameter (Branch predictor) and the eighth one (L2 

cache size). Based on the PB design results, memory related 

components such as I-TLB page size/latency/size, D-TLB 

assoc are potential enhancement factors that can be made to 

greatly improve the system’s performance. The performance 

impact of each parameter can be clearly seen in this result. It 

can be really useful for design exploration to observe the 

influence of certain simulation point or certain parameter. 

3.2. Degree of Performance Sensitivity 

Microprocessor designers need sets of workloads for their 

design exploration to decide optimal configuration. The 

choice of workloads is very critical for their design 

optimization. Due to long simulation time, designers tend to 

choose a sample of simulation points or they can use 

simulation points from Simpoint mechanism [10]. If the 

selected simulation points are not sensitive to hardware 

configuration and resource variation, it might be waste of 

time in design exploration. Therefore, the sensitivity of each 

simulation point is one of the important factors to choose a 

benchmark and it needs to be identified for effective design 

exploration. Based on our experiments with PB design matrix, 

we can also extract performance sensitivity of each 

simulation point against 64 different configurations which 

have sets of resource variations. Figure 2 shows the 

performance sensitivity for each simulation points. We use 

the performance sensitivity equation as shown below, for 

which standard deviation and mean value of the CPI are used 

to evaluate for each simulation point. 

.
(%) 100%

std Dev
performance sensitivity

mean
   

 

The standard deviation is based on its mean value, but the 

mean values for each simulation points are widely spread. In 

this equation, standard deviation value is divided by each 

mean value observe each simulation point’s performance 

sensitivity. As shown in Figure 2 (a), the soplex simulation 

points 0, 3 and 9 are identified as high-sensitive simulation 

points for overall performance. These higher sensitivity 

groups (0, 3 and 9) should be independently simulated and 

should not be categorized into any similarity group. We can 

observe that all other groups have similar performance 

sensitivity within 10~15% boundary. The hmmer simulation 

results show very similar sensitivity among simulation points 

as shown in Figure 2 (b). The simulation point 0 and 3 are 

distinct (relatively less sensitive), and all other simulation 

points are very similar. The hmmer can be categorized as very 

high performance-sensitivity group in both simulation point 

level and application level, but it doesn’t need to simulate all 

simulation points due to similar performance sensitivity 

among them.
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(a) soplex 

 

(b) hmmer 

 
(C) astar 

 

(D) perlbench 

 
(E) namd 

 
(E) bewaves 

Fig. 2. Degree of performance sensitivity for simulation points 

3.3. Workload Pruning with K-mean Clustering 

In this research, we choose K-mean technique to cluster 

simulation points based on their performance sensitivity. 

K-mean is one of most widely used clustering algorithms, 

which typically applied to objects in a continuous 

n-dimensional [25]. We use R language and software 

environment [26], a professional tool for statistical 

computing and graphics, to achieve K-mean algorithm. Each 

simulation points is a 31-dimensinal vector, all simulation 

points in a certain benchmark can form K clusters/groups by 

select K points as initial centroids based on their similarity of 

performance impact. In fact, design exploration should be 

based on performance variations on different resources or 

different configurations. If designers need smaller number of 

simulation points, first thing they need to consider is 

performance sensitivity to resource variations. The concept, 

degree of performance-sensitivity, proposed in this paper can 

be applied. Secondly, they should consider the degree of 

performance-similarity to reduce the number of simulation 

points. In this case, weighting factors from the SimPoint 

needs to be added within the group. One representative 

simulation point in a group, which has the highest sensitivity 

within that group, is used to calculate the performance 

metric with combined weighting values. Table 5-10 show 

workload pruning based on K-mean clustering. 

In the case of astar (Table 7), the first column K represents 

the selected number of K (1 ≤ K ≤ No. of simulation points - 

1) points, and also equals to the new number of simulations 

points after pruning. The second and third columns are 

grouped simulation points and the representative simulation 

point with highest performance sensitivity in this group. For 

example, its 15 simulation points can be clustered as 12 

groups by selecting K equal to 12. Simulation points (s0, s11 

and s12) can be in same PS (performance-sensitivity) group 

and simulation points (s4 and s9) can be in same PS group. 

All the other simulation points (s1, s2, s3, s5, s6, s7, s8, s10, 

s13 and s14) need to be independently evaluated. In the first 

PS group, the sensitivity of s0 (160.79%) is higher than s11 

(157.95%) and s12 (158.44%), so s0 is the representative 

simulation point in this group. We calculate the percentage 

of pruned workload over the original workload; the result is 

workload reduction which means simulation time reduction. 

The error rate of CPI is reference to the original entire 

simulation points based on 64 configurations. More 

workload reduction, higher error rate can be produced. The 

results from all other benchmarks are shown in Table 5, 6, 8, 

9 and 10. 
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Table 5. Workload Pruning Results (SOPLEX) 

K 
Grouped 

Simpoints 

Representative 

Simpoints 

Workload 

Reduction 
Error 

10 s1, s7 s7 17.18% 0.59% 

9 
s1, s7 s7 

23.59% 0.78% 
s8, s10 s8 

8 

s1, s7 s7 

29.14% 0.85% s2, s4 s2 

s8, s10 s8 

7 

s1, s7 s7 

49.71% 0.84% s2, s4, s5 s2 

s8, s10 s8 

Table 6. Workload Pruning Results (HMMER) 

K 
Grouped 

Simpoints 

Representative 

Simpoints 

Workload 

Reduction 
Error 

8 s4, s7 s7 12.64% 0.04% 

7 
s1, s5 s5 

22.95% 0.11% 
s4, s7 s7 

6 

s1, s5 s5 

31.53% 0.17% s4, s7 s7 

s6, s8 s6 

5 

s1, s4, s5, 

s7 
s5 

52.48% 0.21% 

s6, s8 s6 

Table 7. Workload Pruning Results (ASTAR) 

K 
Grouped 

Simpoints 

Representative 

Simpoints 

Workload 

Reduction 
Error 

14 s0, s12 s0 9.81% 0.11% 

13 
s0, s11, 

s12 
s0 19.24% 0.16% 

12 

s0, s11, 

s12 
s0 

24.33% 1.33% 

s4, s9 s9 

11 

s0, s11, 

s12 
s0 

26.81% 1.26% 
s2, s14 s14 

s4, s9 s9 

10 

s0, s7, s11, 

12 
s0 

29.78% 1.57% 
s2, s14 s14 

s4, s9 s9 

9 

s0, s7, 

s11,s12 
s0 

36.97% 2.95% 
s2, s14 s14 

s4, s5, s9 s5 

8 

s0, s7, s11, 

12 
s0 

38.98% 3.01% s2, s14 s14 

s3, s8 s3 

s4, s5, s9 s5 

7 

s0, s7, s11, 

12 
s0 

46.33% 3.49% 
s2, s14 s14 

s3, s8 s3 

s4, s5, s9, 

s13 
s5 

6 
s0, s7, s11, 

12 
s0 48.23% 3.48% 

s1, s10 s10 

s2, s14 s14 

s3, s8 s3 

s4, s5, s9, 

s13 
s5 

 

Table 8. Workload Pruning Results (PERLBENCH) 

 

K 
Grouped 

Simpoints 

Repre

sentati

ve 

Simpo

ints 

Workload 

Reduction 
Error 

1

5 s1, s9 s1 3.73% 0.06% 

1

4 

s1, s9 s1 
8.74% 0.33% 

s2, s13 s2 

1

3 

s1, s9 s1 
17.08% 1.43% 

s2, s3, s13 s3 

1

2 

s1, s9 s1 

26.66% 1.67% s2, s3, s13 s3 

s5, s14 s14 

11 

s1, s9 s1 

30.46% 1.74% 
s2, s3, s13 s3 

s5, s14 s14 

s10, s11 s11 

1

0 

s0, s12 s12 

38.83% 1.65% 

s1, s9 s1 

s2, s3, s13 s3 

s5, s14 s14 

s10, s11 s11 

9 

s0, s12 s12 

47.85% 3.82% 

s1, s9 s1 

s2, s3, s5,s13, 

s14 s3 

s10, s11 s11 

8 

s0, s8, s12 s12 

54.66% 3.55% 

s1, s9 s1 

s2, s3, s5,s13, 

s14 s3 

s10, s11 s11 

Table 9. Workload Pruning Results (NAMD) 

K 
Grouped 

Simpoints 

Representa

tive 

Simpoints 

Workloa

d 

Reductio

n 

Error 

2

3 s0, s5 s5 1.99% 0.08% 

2

2 

s0, s5 s5 
5.46% 0.17% 

s6, s19 s6 

2

1 

s0, s5 s5 

14.11% 0.19% s3, s22 s22 

s6, s19 s6 

 

2

0 

s0, s5 s5 

23.00% 0.25% 
s2, s13 s13 

s3, s22 s22 

s6, s19 s6 
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1

9 

s0, s5 s5 

22.44% 0.33% 

s2, s13 s13 

s3, s22 s22 

s6, s19 s6 

s16, s20 s20 

 

1

8 

s0, s5 s5 

33.20% 0.71% 
s2, s13 s13 

s3, s22,s16,s20 s20 

s6, s19 s6 

 

1

7 

s0, s5 s5 

34.73% 0.65% 

s1, s4 s4 

s2, s13 s13 

s3, s22 s22 

s6, s19 s6 

s7, s11 s11 

s16, s20 s20 

1

6 

s0, s5 s5 

44.93% 1.03% 

s1, s4 s4 

s2, s13 s13 

s3, s22,s16,s20 s20 

s6, s19 s6 

s7, s11 s11 

 

1

5 

s0, s5 s5 

47.91% 1.53% 

s1, s9 s9 

s2, s13 s13 

s3, s22,s16,s20 s20 

s6, s19 s6 

s7, s11 s11 

s10, s17 sin17 

1

4 

s0, s5 s5 

55.98% 1.51% 

s1, s4, s9 s9 

s2, s13 s13 

s3, s22, s14 s14 

s6, s19 s6 

s7, s11 s11 

s10, s17 s17 

s16, s20 s20 

Table 10. Workload Pruning Results (BEWAVES) 

 

K 
Grouped 

Simpoints 

Representative 

Simpoints 

Workload 

Reduction 
Error 

15 s0, s3 s3 3.32% 0.13% 

14 
s0, s3 s3 

11.75% 0.69% 
s11, s14 s14 

13 
s0, s1, s3 s3 

15.19% 0.88% 
s11, s14 s14 

12 

s0, s1, s3, 

s5 s3 21.95% 1.08% 

s11, s14 s14 

11 

s0, s1, 

s3,s5 s3 
30.63% 1.09% 

s8, s15 s8 

s11, s14 s14 

10 

s0, s1, 

s3,s5 s3 

32.06% 1.44% s2, s13 s2 

s8, s15 s8 

s11, s14 s14 

9 

s0, s1, 

s3,s5, s14 s3 36.01% 1.09% 

s2, s13 s2 

s8, s15 s8 

s11, s12 s11 

8 

s0, s1, 

s3,s5, s14 s3 

42.75% 1.44% s2, s13 s2 

s8, s10, s15 s8 

s11, s12 s11 

7 

s0, s1, 

s3,s5, s14 s3 

50.09% 1.57% s2, s13 s2 

s7, s11, s12 s11 

s8, s10, s15 s8 

3.4. Validity Check of the PS-based Workload 

Pruning 

In order to check the validity of performance-sensitivity 

based workload pruning, we compared CPI values between the 

proposed scheme and Simpoint methods. Figure 3 shows the 

analysis results for soplex and hmmer. One representative 

simulation point in a group, which has the highest sensitivity 

within a group, is used to calculate the performance metric 

with combined weighting values. The soplex shows 5.15% 

error rate on average with 36% pruned workload compared to 

all simulation points with weight, while hmmer shows 0.22% 

error rate on average with 44% pruned workload. 

IV. RELATED WORKS 

There are several researches that are related to our studies, 

but we could not find any of that focused on the simulation 

points classifying for individual benchmark. Most of 

researches focused on finding the representative of simulation 

points or classifying of benchmarks. This paper is built upon 

previous work by using PB design method on simulation 

points, analyzing and classifying based on performance 

sensitivity. 

Plackett and Burman [2] invented the PB design method to 

measure the effect of component, it provides the logically 

minimal number of simulations required to estimate the 

impact of each selected component with accuracy guarantee.  

Yi et al. [1] described a method for analyzing and 

classifying benchmarks which based on the PB design method. 

Their result shows PB design can significantly reduce the 

number of simulation. Then, they divide the benchmarks from 

SPEC2000 benchmarks suit into several groups via the 

similarity threshold defined by user.  

There have also been extensive works to reduce the 

simulation time in microprocessor design 

[12][13][14][15][22]. KleinOsowski et al. [13] proposed a 

method to reduce the simulation time of the SPEC CPU 2000 

benchmark suite by using the reduced input data sets. They 

propose to use small input data sets called MinneSPEC that 

reflect the behavior of the full input data sets instead of using 

the reference input data sets provided by SPEC. Eeckhout et 

al.  
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12][18] present their analysis results on the impact of input 

data sets on program behavior using PCA (principal 

components analysis) and cluster analysis. Phansalkat et al. [8] 

studied the redundancy of SPEC CPU 2006 benchmark suite 

based on principal component analysis. Main idea is that 

SPEC CPU 2006 is biased to some of the applications and 

simulation time can be reduced by taking benchmarks that are 

specific to an application. Wunderlich et al. [16] explains 

about SMARTS, a trace sampling technique for reducing 

runtimes in simulators but executions still need to handle tens 

of millions of instructions. Simpoint [7][10] tools are proposed 

to cluster the simulation points using phase information in 

dynamic execution, and the PIN tool [9][17][21] is also used 

for solving the problem of long simulation time. 

 
(a) soplex (error rate: 5.15% on average with 36% pruned workload) 

 
(b) hmmer (error rate: 0.22% on average with 44% pruned workload) 

Fig.3.Validity Check of PS-based workload Pruning 

V. CONCLUSION 

Basic motivation of this research is started from how 

design exploration is actually performed. Designers will 

observe the performance impact from resource variations or 

configuration changes. If a simulation point shows less 

sensitive to resource variations, designers would eliminate 

those simulation points from the simulation setup procedure. 

In this paper, we focus on identifying those simulation points 

which are more sensitive or less sensitive, by which overall 

simulation methodology can be improved. We also 

performed the performance-sensitivity-based similarity 

analysis (grouping) among simulation points on specific 

performance metric which can be overall performance metric 

or component-level metric. The proposed pruning methods 

are checked its validity with the analysis on the degree of 

sensitivity. The error rate on average is 0.22%~5.15% with 

36%~44% pruned workload compared to all simulation 

points with weight. Our experiments also show that the 

proposed methodologies can be applied to simulation points 

of multiple applications for multi-threaded processors or 

multi-core environments.  

 As future works, the proposed schemes will be applied to 

simulation points of multiple applications for multi-threaded 

or multi-core simulation workload pruning. 
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