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Bistability of Cavity Magnonics System with 
Magnon Kerr Effect 

Debabrata Ganthya, Arumay Parai, Paresh Chandra Jana 

Abstract: In this study a comprehensive theory is developed for a 
hybrid cavity magnonics system consisting of a microwave cavity 
strongly coupled to spin excitations or magnons in a single-
crystal yttrium iron garnet (YIG) sample with the magnons 
exhibiting nonlinear Kerr effect caused by magnetocrystalline 
anisotropy in YIG. The system dynamics is analysed in Hamilton 
Langevin formulation and it is shown that the magnon frequency 
shift due to Kerr nonlinearity is bistable with a upper and a lower 
branch of cavity magnon polaritons (CMP). Further by 
analytically and graphically studying different conditions 
imposed on the bistability equation it is demonstrated that the 
bistability is controllable by tuning the system parameters 
involved. 

Keywords: Kerr effect caused by magnetocrystalline anisotropy in 
YIG. 

I. INTRODUCTION 

Hybrid quantum systems have attracted significant 
attraction lately due to their potential application in quantum 
information processing and quantum communication [1,2]. 
Among them, cavity magnonics systems have attracted 
considerable attention which consist of collective spin 
excitations in a singlecrystal yttrium iron garnet (YIG) 
sample coupled to cavity photons [3–10]. The quasiparticles 
arising from such systems are called cavity magnon 
polaritons (CMP) [11,12]. The higher spin density of YIG 
material enables it to be completely polarized under Curie 
Temperature ( 559K) [13]. Also it has been discovered that 
if the coupling between YIG magnons and cavity photons 
sufficiently strong, the hybrid system exhibits a low 
damping rate [3–8]. Many fascinating phenomena have been 
observed in cavity magnonics systems such as magnon Kerr 
effect [14–16], magnon dark modes [17], optical 
manipulation of the system [18], bidirectional microwave-
optical conversion [19], cavity spintronics [20,21], 
synchronized spin-photon coupling [22], cooperative 
polariton dynamics [23] etc. Besides magnons can be 
coupled to myriads of different quantum systems like 
superconducting qubit [24,25], optical whispering gallery 
modes [26–32] to construct hybrid systems with high 
applicative potential. 
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Recently it has been experimentally demonstrated that cavity 
magnonics systems with nonlinear magnon Kerr effect have 
bistability property [14] which can be useful in constructing 
quantum communication and information processing 
devices. In this article we develop a comprehensive 
theoretical model to explain the magnon frequency shift in a 
cavity magnonics system with magnon Kerr non linearity 
and study the bistability property of the system. The paper 
has been organised in the following way: 
• in section 2, we present our system which comprises a 
microwave cavity coupled to magnons in a YIG sample 
magnetized by a static magnetic field with the magnons 
exhibiting nonlinear Kerr effect caused by 
magnetocrystalline anisotropy in YIG [33,34] and formulate 
the system Hamiltonian. 
 • in section 3, we calculate the dynamics of the system in 
Hamilton-Langevin formalism and derive the equation of 
bistability of magnon frquency shift. 
 • in section 4 we present the plots of magnon frquency shift 
as a function of drive power and magnon energy and 
graphically demonstrate the bistability of CMP. 

II. THE SYSTEM HAMILTONIAN 

As shown in the schematic diagram the hybrid system 
comprises a YIG sphere that is coupled to a rectangular 
three dimensiaonal microwave cavity through the magnetic 
field of cavity mode. The corresponding Hamiltonian is 

 

Where ωc is the cavity mode frequency, a and a+ are 
annihilation and Creation operators corresponding to the 
cavity mode, γ is the gyromagnetic ratio of YIG sample, B0 

is the magnetic field inside cavity , Sx,Sy,Sz are Macrospin 
operators and S± is defined as S± = Sx ± Sy. Dj

2j2 are the 
nonlinear terms responsible for Kerr type non linearity (j = 
x,y,z), originating from magnetocrystalline anisotropy in 
YIG [2-44,45]. The non linear coefficients can be derived as 

                                               (2) 

Where µ0 is the permeability of free space, Kan is the first 
order anisotropy constant of YIG, M is the saturation 
magnetization, Vm is the volume of YIG sample and βx,βy,βz 

are 3/2,9/8,1/2 respectively. The YIG sphere is pumped by 
microwave field of Rabi frequency Ωs and frequency ωd.  
The interaction Hamiltonian can be formulated as following. 

Hd = Ωs(S+ + S−)(eiωdt + e−iωdt)                                            (3) 
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Figure 1: Upper section: The schematic diagram of YIG 
sphere coupled with 3D microwave cavity. Lower 

section: Simulated magnetic field distribution of the 
Fundamental cavity mode. 

In addition a probe field of of frquency ωp is applied to the 
input port of the cavity: 
HP = ϵp(a+ + a)(eiωpt + e−iωpt)                                               (4) 

Where ϵp is the coupling strength between probe field and 
the cavity. Therefore the total Hamiltonian H = Hs + Hd + Hp 

will be : 

 

Now using Holstein-Primakoff Transformation 

                                              (6) 

we can transform the macrospin operators to magnon 
operators (b and b+ are the magnon annihilation and creation 
operators). Under the condition of very large Spin i.e, 
⟨b+b⟩/(2S) << 1, we can write 

                                             (7) 

rearrenging equation(4) and putting Dx = Dy = 0we get, 

 
Now substituting equation (6) into equation (7) we derive: 

 

Now applying rotating-wave approximation (RWA) and 
neglecting the fast oscillating terms the above Hamiltonian 
can be written as: 

Where 

                                          (11) 
is the angular frequency of magnon mode, where ρs is the net 
spin density of 

YIG, s is the microspin,is 
the the kerr nonlinear coefficient, √ 

gm = √2Sgs is the collectively enhanced magnon-photon 

coupling strength and Ωd = 2SΩs is the spin normalised Rabi 

frequency. 

Let, 
b+b = ⟨b+b⟩ + δb+b 

 (12) 
a+a = ⟨a+a⟩ + δa+a 

Therefore, 

b+bb+b = (⟨b+b⟩ + δb+b)(⟨b+b⟩ + δb+b) 
(13) 

= (⟨b+b⟩)2 + ⟨b+b⟩δb+b + δb+b⟨b+b⟩ + (δb+b)2 

Now neglectingthe square of the fluctuation part the value of 
b+bb+b will be, 

b+bb+b = (⟨b+b⟩)2 + 2⟨b+b⟩δb+b                                          (14) 

From equation (11) we put δb+b = b+b − ⟨b+b⟩ into equation 
(13) and derive 

b+bb+b = (⟨b+b⟩)2 + 2⟨b+b⟩(b+b − ⟨b+b⟩) 

= (⟨b+b⟩)2 + 2⟨b+b⟩b+b − 2⟨b+b⟩2                                                            (15) 

= −⟨b+b⟩2 + 2⟨b+b⟩b+b 

Applying the mean field approximation to the Hamiltonian 
in equation (9), 

 

Now we consider the approximation 
(⟨b+b⟩/4S) << 1 i.e.(1 − ⟨b+b⟩/4S) = 1 and ⟨b+b⟩2 = 0 and 
rewrite the total Hamiltonian as follows: 
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Where, ∆m = 2K⟨b+b⟩ is the magnon frequency shift. 

III. THEORETICAL DYNAMICS 

To understand the dynamics of the system we apply the 
Hamilton-Langevin formulation [35] and write down the 
quantum Langevin equations, 

 (18) 

Where Kc and γm are the damping rates of the cavity mode 
and the magnon respectively, whereas ain and bin are the 
input noise operators corresponding to cavity and magnon 
modes with their average value ⟨ain⟩ = 0 and ⟨bin⟩ = 0. Now 
Let us consider, 

                                     =⟨a⟩ + δa                                  (19) 
 

a =⟨b⟩ + δb 

Where δa and δb are the fluctuation parts and ⟨a⟩ and ⟨b⟩ are 
the expectation values of operator a and b. Under the above 
assumption, equation (18) will transform as 

 (20) 

The drive field is much stronger than the Probe field i.e, Ωd 

>> ϵp. Therefore we can treat the Probe field as a 
perturbation field. Hence we consider the following ansatz 
                       

 
Differenciating equation (21) we have, 

 (22) 

substituting the values ⟨a⟩ and ⟨b⟩ from equation (21) in 
equation (20) We get, 

 
Now comparing the coefficient e−iωdt in the first two 
equations in equation (22) and (23), We get, 

                     (24) 
or, 

                           (25) 

In the steady state condition,  
Therefore, 

−i(ωc − ωd − iKc)A0 = −gmB0 
or, 

                                              (26) 

Where (ωc − ωd) = δc is the frequency detuning of cavity 
mode. 
Now comparing the co-efficient of e−iωdt in the last two 

equations in equation (22) and (23)we get, 

 (27) 

or, 

 (28) 

In the case of steady state,  

Therefore, 

−i(ωm + ∆m − iγm − ωd)B0 − igmA0 − iωd − iΩd = 0 

or, 

(ωm + ∆m − iγm − ωd)B0 + gmA0 + ωd + Ωd = 0 

Let (ωm − ωd) = δm be the frequency detuning of the 
magnon mode. 

Therefore, 

(δm + ∆m − iγm)B0 + gmA0 + Ωd = 0 

Now putting the value  

 = 0 (29) 
or, 

 = 0 (30) 

Now let , 
Therefore the above equation will be reformed, 

 
Let us define the following: 

 and  

Hence the above equation will transform as 

= 0                                         (32) 

Taking Complex conjugate of equation (31), we get 

                                 (33)  

Multiplying equation (31) and equation (32) 

 = 0                                 (34) 

 

https://www.openaccess.nl/en/open-publications
http://www.ijsce.org/


 
Bistability of Cavity Magnonics System with Magnon Kerr Effect 

4 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijsce.B35520512222 
DOI: 10.35940/ijsce.B3552.0512222 
Journal Website: www.ijsce.org 

Since, the magnon frequency shift ∆m = 2K⟨b+b⟩ and the 
drive field being far greater then the probe field B0e−iωdt >> 
B1e−iωpt we can deduce 

⟨b+b⟩ = |B0|2 and therefore ∆m = 2K|B0|2 

Substituting  in the equation (33) 

 = 0                          (35) 

Let, CPd = 2K|Ωd|2 where Pd is the drive field power and C is 
the coupling strength coefficient between the cavity and the 
magnon mode. 
Hence final equation indicating the bistable behaviour of 
magnon frequency shift of the hybrid system is given by 

= 0                            (36) 

The bistability equation is a cubic equation in magnon 
frequency shift ∆m and consequently under some specific 
values of the parameters ∆m has two turning points which are 
given by the solutions of the quadratic equation obtained by 
taking the derivative of equation (35) with respect to ∆m 

= 0                                   (37) 

Above equation yields two real roots under the following 
condition : 

0                                               (38) 

Hence we can write down the condition for the bistability of 
magnon frequency shift : 

                                               (39) 

Whereas equation (36) yields only one real solution where 
the bistability disappears under the condition: 

= 0                                                 (40) 

The corresponding driving power is the critical power Pc 

given by: 

                                                (41) 

C being positive for K > 0 and negative for K < 0. Equation 
(36) yields no real solutions under the condition 4

 0 and ∆m increases monotonically with 
increasing Pd. 

 

= -14.1,-12.1,-10.1 and -7.5 MHz for black, blue, 
green and red lines respec- 

tively 

 

= 17.1,13.2,9.2 and 7.5 MHz for black, blue, green and 
red lines respectively 

Figure 2: magnon frequwncy shift ∆m vs the driving power 
Pd for different values of effective magnon frquency 

detuning  

IV. RESULTS AND DISCUSSIONS 

In this section we present the graphical interpretation of the 
bistabilty equation derived in the previous section with 
parameter values close to successfully demonstrated 
experiments [36] and discuss their implication. We have 

taken effective magnon damping rate  to be 53.25 MHz in 
all scenarios and rest of the parameters are specified later.In 
the following two subsections we plot the magnon frquency 
shift ∆m against the driving power Pd and against the 

effective magnon frquency detuning  respectively and 
observe that the bistable behaviour of the hybrid system can 
be controlled by the system parameters involved. 

 

(a) Pd=25,23,21 dBm for black, blue, green line respectively 

 

(b) Pd=25,23,21 dBm for black, blue, green line respectively 

Figure 3: Magnon frequwncy shift ∆m vs effective magnon 

frquency detuning  for several different values of driving 
power Pd 
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1.1 Magnon frquency shift against the Driving power 

Fig 2 depicts the dependence of magnon frequwncy shift ∆m 

on the driving power Pd for several different values of 

effective magnon frquency detuning  

with Fig 2a and 2b representing the K > 0 (c/(2π)3 = 3.15) 
and K < 0 

(c/(2π)3 = −3.15) case respectively. It is worth noting that the 
bistable behaviour is controllable by choice of effective 

magnon frquency detuning  value. As shown in figures 2a 
and 2b, the bistable regime is most prominent with two 
distinct turning points and clear hysteresis loop for higher 

values of  (black and blue lines) and gradually disappears 
for lower values (green and red lines). 

1.2 Magnon frquency shift against the Effective Magnon 
frquency detuning 

Fig 3 depicts the dependence of magnon frequwncy shift ∆m 

on effective magnon frquency detuning  for several 
different values of driving power Pd with Fig 3a and 3b 
representing the K > 0 (c/(2π)3=3.15 for black and blue lines 
c/(2π)3 = 3.6 green line) and K < 0 (c/(2π)3=-3.15 for black 
and blue lines c/(2π)3 = −3.6 green line) case respectively.It 
is again worth noting that the bistable behaviour is 
controllable by choice of driving power Pd value. As it can 
be seen from figures 2a and 2b the bistablity is prominent 
for higher driving power (black and blue lines) and 
disapears for lower values of Pd (green lines). 

V. CONCLUSION 

In this article the bistability of cavity magnon polariton 
system is theoretically studied by developing a simple model 
in Hamilton Langevin formulation and the dependence of 
the magnon frequency shift on various system parameters 
are demonstrated. It is observed that we can switch easily 
from upper branch of magnon frquency to lower branch and 
vice versa by tuning driving power and effective magnon 
detuning . We also can get rid of the bistable behaviour 
altogether by controlling the said parameters.. The easily 
tunable bistability of the hybrid cavity magnonics system 
can have potential applications in quantum memories 
[37,38], quantum switches [39,40],dissipative phase 
transition [41,42] and many more related fields . 
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