
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-13 Issue-3, July 2023

 1

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.C36130713323

DOI: 10.35940/ijsce.C3613.0713323

Journal Website: www.ijsce.org

Implications of Deep Compression with Complex

Neural Networks

Lily Young, James Richardson York, Byeong Kil Lee

Abstract: Deep learning and neural networks have become

increasingly popular in the area of artificial intelligence. These

models have the capability to solve complex problems, such as

image recognition or language processing. However, the memory

utilization and power consumption of these networks can be very

large for many applications. This has led to research into

techniques to compress the size of these models while retaining

accuracy and performance. One of the compression techniques is

the deep compression three-stage pipeline, including pruning,

trained quantization, and Huffman coding. In this paper, we apply

the principles of deep compression to multiple complex networks

in order to compare the effectiveness of deep compression in terms

of compression ratio and the quality of the compressed network.

While the deep compression pipeline is effectively working for

CNN and RNN models to reduce the network size with small

performance degradation, it is not properly working for more

complicated networks such as GAN. In our GAN experiments,

performance degradation is too much from the compression. For

complex neural networks, careful analysis should be done for

discovering which parameters allow a GAN to be compressed

without loss in output quality.

Keywords: Neural Network, Network Compression, Pruning,

Quantization, CNN, RNN, GAN.

I. INTRODUCTION

In recent years, deep learning and neural networks have

become increasingly popular in the field of artificial

intelligence. These models have the ability to solve complex

problems, such as image recognition or language processing.

However, the memory utilization and power usage of these

networks can be prohibitively large for many applications.

This has led to research into techniques to compress the size

of these models while retaining accuracy and performance

[1][2][3]. While many pruning or compression techniques

have been created, they often require specialized tools to

achieve their full effect. One of these techniques is the deep

compression three-stage pipeline, including pruning, trained

quantization, and Huffman coding, which can be

implemented through the use of widely available tools [1].

Manuscript received on 12 May 2023 | Revised Manuscript

received on 22 May 2023 | Manuscript Accepted on 15 July 2023

| Manuscript published on 30 July 2023.
*Correspondence Author(s)

Lily Young, Department of Electrical and Computer Engineering,

University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway,

Colorado Springs, CO 80918, USA. Email: ayoung4@uccs.edu
James Richrdson York, Department of Electrical and Computer

Engineering, University of Colorado Colorado Springs, 1420 Austin Bluffs

Parkway, Colorado Springs, CO 80918, USA. Email: jyork2@uccs.edu
Byeong Kil Lee*, Department of Electrical and Computer Engineering,

University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway,
Colorado Springs, CO 80918, USA. Email: blee@uccs.edu, ORCID ID:

https://orcid.org/0000-0002-0260-2238.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the CC-

BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

 In this paper, we apply the principles of deep compression

to multiple complex networks using Keras with Tensorflow 2

in order to make the models more suitable for deployment on

embedded devices and other devices with limited resources.

We use deep compression to three complex neural networks,

CNN (Convolutional Neural Network), RNN (Recurrent

Neural Network), and GAN (Generative Adversarial

Network). Based on the experimental results, we compare the

effectiveness of deep compression in terms of compression

ratio and the quality of the compressed network. While the

deep compression pipeline is effectively working for CNN

and RNN models to reduce the network size with small

performance degradation, it is not properly working for more

complicated networks such as GAN. In our GAN

experiments, performance degradation is too much from the

compression. For complex neural networks, we need to come

up with different compression methodologies.

The rest of the paper is organized as follows. In Section II,

we describe related work. The deep compression pipeline and

implementation for this research are presented in Section III.

In Section IV, we describe the modeling of complex neural

networks. Experimental results are presented in Section V,

and we conclude with Section VI. Section VII includes future

work.

II. DEEP COMPRESSION PIPELINE

A deep compression pipeline is a powerful tool for

reducing the size of large deep learning models while

retaining their accuracy. It consists of three steps: pruning,

trained quantization, and Huffman coding as shown in Figure

1 below.

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijsce.C3613.0713323
http://www.ijsce.org/
mailto:ayoung4@uccs.edu
mailto:jyork2@uccs.edu
mailto:blee@uccs.edu
https://orcid.org/0000-0002-0260-2238
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijsce.C3613.0713323&domain=www.ijsce.org

Implications of Deep Compression with Complex Neural Networks

 2

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.C36130713323

DOI: 10.35940/ijsce.C3613.0713323

Journal Website: www.ijsce.org

Fig. 1. Deep Compression Pipeline Steps [1]

A. Implementation of Pruning

Pruning is the first step in the deep compression pipeline

and involves removing redundant or unnecessary parameters

from the model to reduce its size without losing any important

nodes and weights. In general, pruning can either be done

through weight pruning, which removes connection weights

between nodes, or through neuron pruning which removes

entire nodes from layers of the network. When pruning a

network, weights near 0 are selected to be removed because

they have little effect on the output of a network. Once

weights or neurons are pruned, the network can be retrained

to compensate for the changes caused when the selected

weights were removed. Keras contains a compression

interface that allows trained pruning on most layer types. The

code for pruning used in our experiment is shown in Figure 2

[5].

Fig. 2. Keras code for pruning

B. Implementation of Trained Quantization

The second step in the compression pipeline is called

trained quantization [6]. In this step, n centroids are uniformly

selected between the min and max network weights, and a

lookup table is created for the values. For each weight, if the

nearest value entry in the lookup table is found, the weight is

replaced by a reference to the table. Because the quantization

lookup table space is much smaller than the real numbers, the

bit width of each weight not including lookup table overhead

can be reduced to ceil (logbase(2, num_centroids)) bits. Once

the initial quantization step is complete, the centroids can

then be trained in the same way as normal weight values. An

example of quantized weights is shown in Table 1.

C. Implementation of Huffman Coding

 The final step in the deep compression pipeline is Huffman

coding. In this step, a model is losslessly compressed using

variable length codes and a prefix-free binary tree. When the

frequency of each byte of the saved model is found, the high-

frequency values are then converted into shorter values that

can then be referenced back to a code tree to reconstruct the

original model. Huffman coding is used in many common file

compression algorithms such as deflate.

 Keras also includes an interface to allow a model to be

quantized and trained. The code for quantization in Keras is

included in Figure 3.

Table I. Quantization Example

Weights
32-bit floating-point

value

Quantized

(2 bits)

weight 1 1.127 0
weight 2 5.133 1

weight 3 2.769 0

weight 4 6.953 2
weight 5 13.444 3

… … …
weight N 12.763 3

Lookup Table
Centroid value (32-bit floating-

point number)

0 1.872

1 5.102
2 7.003

3 13.120

Fig. 3. Keras code for trained quantization

http://doi.org/10.35940/ijsce.C3613.0713323
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-13 Issue-3, July 2023

 3

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.C36130713323

DOI: 10.35940/ijsce.C3613.0713323

Journal Website: www.ijsce.org

When evaluating the effectiveness of pruning and

quantization in Tensorflow 2, compressing the model using

Huffman coding is necessary. This is because TensorFlow

saves all parameters of a model including those which are 0

due to pruning. To evaluate each model, the gzip compression

algorithm was used in our experiment and the size of the

compressed model was used for evaluating in size. The code

for compressing a model is shown in Figure 4.

Fig. 4. Model compression using gzip

III. MODELING OF COMPLEX NETWORKS

A. Convolutional Neural Network

Convolutional Neural Networks are designed to use a

stack of convolutional filters to pick out features in images.

For the experiment of deep compression, we choose a non-

sequential CNN which used residual blocks [4]. These blocks

combine the input data to a convolutional layer with its

convolved output, essentially passing the input forward to the

next layer. The structure of a residual layer is shown in Figure

5. This allows the network to be trained more efficiently and

results in lower training errors for very deep networks. The

reason why we choose this type of network is that it creates

better performance than a standard convolutional neural

network. It is also a good test for the compression pipeline

because of its increased complexity.

Fig. 5. Residual layer structure

 The final network used is a 12-layer network with 15,634,994 parameters. It accepts RGB-color, 227x227 pixel images.

These images are first passed through 2 standard convolutional layers. The outputs are then passed through 5 residual

convolutional layers. The output from these layers is finally passed through 4 dense layers that classify the images into 10

different categories of the CIFAR-10 image data.

B. Recurrent Neural Network

We applied deep compression to investigate its effectiveness in Recurrent Neural Networks (RNNs). RNNs are a type of

neural network that is particularly well-suited for processing sequential data, making them useful in a wide range of

applications such as natural language processing, speech recognition, machine translation, and image captioning. By

compressing the size of RNNs, we hoped to improve their portability and performance. For the evaluation of the deep

compression pipeline to RNN, we use a Long Short-Term Memory (LSTM) model to perform sentiment analysis on a dataset

of movie reviews. LSTM networks are a type of RNN that is well-suited for this task [7]. Due to the memory cells in LSTM

models, they can better analyze the overall sentiment of a longer piece of text as the sentiment of text may not be immediately

apparent from individual words or short phrases. Additionally, LSTM networks can effectively handle input data of varying

lengths rather than RNN networks which are limited to fixed-sized input. LSTMs have more logics to remember or forget

some information, which means LSTMs have more complexity. The movie review dataset we used is a built-in Keras dataset

of 50,000 movie reviews classified with positive or negative sentiment from the website IMDb. The words from the review

were filtered to include the first 20,000 most frequent words but eliminate the 10 most frequent words. The reviews were then

padded to a max length of 500 words, which means that any review less than 500 was padded with empty values, and any

review over 500 was truncated. The RNN platform has three layers: Embedding, LSTM, and a Dense layer. In total, there were

2,690,433 parameters. The embedding layer hosts 2,560,000 parameters, the LSTM layer holds 131,584 layers, and the dense

layer holds 129 parameters. The embedding layer is massive due to the 20,000-long library each with 128 nodes.

C. Generative Adversarial Network

 The third type of network evaluated is a Generative Adversarial Network (GAN) [8]. This model is designed for generating

images that are similar to an input dataset. To do this, it utilizes two separate models. The first of these models is called the

discriminator. This model is designed to determine if an input image is real or fake. The second model is called the generator.

The generator is creating images that are indistinguishable from real images. An example of the GAN architecture is shown in

Figure 6.

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijsce.C3613.0713323
http://www.ijsce.org/

Implications of Deep Compression with Complex Neural Networks

 4

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.C36130713323

DOI: 10.35940/ijsce.C3613.0713323

Journal Website: www.ijsce.org

Fig. 6. Generative Adversarial Network Architecture

 This type of network is very complicated to train because

it must be done in two passes. In the first pass, the

discriminator network is trained to determine if an image is

real or fake. In the second pass, the generator is trained to

create images that the discriminator believes are real. Because

two networks are trained against each other, the loss for each

can change dramatically during each training step. This can

make it difficult to determine network convergence. Once the

network is trained, the discriminator can be discarded and just

the generator is used. This network is chosen to evaluate the

compression pipeline because of its training behavior. Since

it trains two networks simultaneously, we expect that the

result of trained pruning and quantization might be worse

than expected. Due to the complexity of the desired output,

we observe that the small changes caused by the pruning

might result in an unrecognizable output. Unfortunately,

while this network type provides good performance from its

adversarial structure, it is very difficult to quantitatively

evaluate due to its structure. The GAN we applied is a

convolutional generative adversarial neural network. For the

generator, a 6-layer network was used. The input layer

accepted 100 randomly generated values. It then passes the

values through a dense layer of size 4x4x256. This initial

image is then upscaled through 4 sets of conv2d transpose

layers to create the final 32x32x3 image. For the

discriminator, another 6-layer network is used. The input to

this network is a 32x32x3 color image. This is then passed

through 4 layers of convolutional filters. Finally, a single

dense layer is used to output if the input was generated or real.

The initial parameter count for this network is 1,988,612.

IV. EXPERIMENTAL RESULTS

 We investigate the effectiveness of deep compression,

including network size after compression along with the

performance afterward.

A. Convolutional Neural Network

 The CNN Model is able to be compressed successfully

over multiple stages of deep compression. Table 2 shows the

size of the network on each step, along with the total

compression up to that point and the compression from that

specific step. Quantization shows the greatest compression

ratio, followed by pruning, and then the gzip Huffman coding.

The network started at 125.25 MB and is reduced from 62.66

MB after pruning. Quantization was then applied, which

further reduced the size of the network to 25.68 MB. Finally,

Huffman coding is used to compress the network to 13.05

MB, achieving a total compression of 9.6x saving 112.20 MB

of memory as shown in Figure 7. This significant size

reduction allows the network model to be more easily

deployed on resource-constrained devices, improving its

usability and accessibility. The compression of the network

barely affected accuracy. The accuracy drop of the network

after all compression steps is 2.6% which is not negligible but

is a small amount.

Table II. CNN Compression Results

Compression

Stage
Size (MB)

Stage

Compression

Total

Compression

(accumulated)

Original 125.252 1.000 1.000

Pruning 62.665 1.998 1.998

Quantization 15.678 3.996 7.988
Huffman coding 13.047 1.201 9.599

Fig. 7. Comparison Ratio for CNN

B. Recurrent Neural Network

 The LSTM model was able to be compressed very well

by the deep compression pipeline. In total, the deep

compression framework compressed the LSTM network by

21.69x. This is due largely to Quantization which decreased

the size by the largest amount of all stages. As shown in Table

3, Pruning compressed the file from 32.32 MB to 10.78 MB

(2.99x compression). Quantization compressed the file

further to 2.7 MB, with 3.98x compression from the Pruning

step. Finally, Huffman coding compressed it to the final 1.49

MB with 1.81x compression from the Quantization step and

give the final 21.69x compression rate as shown in Figure 8.

Additionally, the compression affected the accuracy, going

from 87.49% to 85.38% for a loss of 2.11% accuracy.

Similarly to the CNN network this is not negligible but is a

small amount that can be ignored for most applications.

http://doi.org/10.35940/ijsce.C3613.0713323
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-13 Issue-3, July 2023

 5

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.C36130713323

DOI: 10.35940/ijsce.C3613.0713323

Journal Website: www.ijsce.org

Table III. RNN Compression Results

Compression

Stage
Size (MB)

Stage

Compression

Total

Compression

(accumulated)

Original 32.319 1.000 1.000

Pruning 10.781 2.997 2.997
Quantization 2.704 3.985 11.948

Huffman coding 1.490 1.815 21.690

Fig. 8. Comparison Ratio for RNN

C. Generative Adversarial Network

 Since the GAN network creates new images from random

values, it is difficult to quantitatively analyze. In order to

analyze the performance of the network, 5 images were

selected from the best outputs. The GAN was initially trained

on the CIFAR-10. This dataset is made up of color images of

animals, cars, and planes. Some example images are shown

in Figure 9.

Fig. 9. CIFAR-10 dataset sample

 When trained on this dataset, the GAN is able to create

images that are somewhat similar. Note that because of the

way GAN functions the generated images will not be of real

animals or objects. The generated images contain shapes that

look like animals and vehicles. The images also had

colorations that were close to the input dataset and were

detailed. A set of the 5 best-generated images are shown in

Figure 10.

Fig. 10. GAN-generated images

 The performance of the network diminished significantly

after pruning. Because a GAN is made up of two networks

and only the generator is used after training. Only the

generator is pruned in our experiment. After pruning to .6

sparsity, the output images show much lower quality. Even in

the best output cases, the objects in the image are less detailed

and even look blocky. The output image color is also

degraded and most images contained more blue and green

than expected. Examples of these images are shown in Figure

11.

Fig. 11. Pruned GAN-generated images

 The model was also negatively affected by quantization.

In this step, only the generator was quantized for the same

reason as in the pruning step. After quantization, the images

lost even more detail and color depth. Many of the images

after quantization also became extremely noisy. Examples of

the generated images are shown in Figure 12.

 Fig. 12. Pruned + Quantized GAN generated images

 The compression rate for the network after pruning and

quantization is also lower than expected. During the pruning

step, the network could not be reduced beyond .6 sparsity or

its error would increase towards infinity during the fine-

tuning step. While quantization worked correctly, it also

negatively affected the quality of the output. After pruning,

quantization, and Huffman coding, a total compression of

only 4.941 times smaller than the base model could be

achieved.

V. CONCLUSION

Because of limitations within Keras and Tensorflow 2, the

pruning and quantization steps could not be finely controlled

to create the smallest possible networks. One problem that

occurred with using network compression in Tensorflow 2 is

that saved networks include all parameters including those

removed by pruning and quantization. Because of this, no

benefits from compression could be seen until the saved

output file is compressed using Huffman coding. The

frameworks used also cause problems with compression

because no quantization beyond 32 to 8-bit is supported by

the software. These problems cause our best results to have

about 4x less compression than the theoretical max

compression found in the Deep Compression paper [1].

Compressing the CNN network provides decent overall

results. It was compressible down to 9.6x its original size.

Additionally, accuracy only suffered a 1.6% decrease. This

makes the pipeline a vital tool for resource-constrained

devices. While this is a great result, if the Keras tools were

expanded for n-bit quantization, the results could have been

even greater. Compressing the RNN network yields the most

impressive results of all the networks. Through the deep

compression pipeline, the network, which was originally

32.32 MB in size, is reduced to just 1.49 MB; demonstrating

the effectiveness of the pipeline. Furthermore, the experiment

shows that the compressed LSTM is able to achieve

comparable accuracy on sentiment analysis tasks to the

original only losing 2.11% accuracy.

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijsce.C3613.0713323
http://www.ijsce.org/

Implications of Deep Compression with Complex Neural Networks

 6

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.C36130713323

DOI: 10.35940/ijsce.C3613.0713323

Journal Website: www.ijsce.org

This is significant enough for many networks to be

implemented in memory-scarce infrastructure which would

not be able to handle the large size of the networks.

Compressing the GAN network generates poor overall

results. It was only compressible to about 5x smaller than the

original model. Throughout the compression process, a

significant amount of quality is also lost. Some of these

problems may have been due to the non-symmetrical

compression done to the network. Because only the generator

is compressed into a more simple network, it is possible that

the discriminator network is able to fit itself to the generator

more quickly. The poor compression could also have been

due to the overall complexity of producing convincing fake

images. This complexity may have allowed small changes to

the internal weights to cascade into large problems with the

output data.

While the deep compression pipeline is effectively

working for CNN and RNN models to reduce the network

size with small performance degradation, it is not working for

more complicated networks such as GAN. In our GAN

experiments, performance degradation is too much from the

compression. For complex neural networks, we need to come

up with different compression methodologies.

VI. FUTURE WORK

 To improve network compression performance, the

Tensorflow 2 and Keras APIs can be modified. Within these

libraries, the code for quantization support can be updated to

allow n-bit quantization. In order to do this, the Tensorflow

light-embedded kernel would also need to be updated to

support the same levels of quantization. Saved model support

can also be improved to save weight matrices in a sparse row

or sparse column format instead of including every variable

as a floating point value. Because of the poor performance

of the compression pipeline on the GAN network, there is a

significant amount of work that can be performed. More

analysis and work should be done for discovering what

parameters allow a GAN to be compressed without loss in

output quality. Testing should also be done to determine if

compressing both the generator and discriminator networks

improves the output quality. For the CNN and RNN networks,

the future work would be to fine-tune each stage of the

compression pipeline more and create more specialized tools

to be able to do so.

DECLARATION

Funding/ Grants/

Financial Support
No, I did not receive.

Conflicts of Interest/

Competing Interests
No conflicts of interest to the

best of our knowledge.

Ethical Approval and

Consent to Participate

No, the article does not

require ethical approval and

consent to participate with

evidence.
Availability of Data

and Material/ Data

Access Statement
Not relevant.

Authors Contributions
All authors have equal

participation in this article.

REFERENCES

1. S. Han, H, Mao, and W J. Dally, “Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization, and Huffman

Coding”, (ICLR) 2016

2. J.Luo, et al., “ThiNet: A Filter Level Pruning Method for Deep Neural

Network Compression”, IEEE International Conference on Computer
Vision, 2017. [CrossRef]

3. H.Li, et al., “Pruning Filter for Efficient ConvNets”, International

Conference in Learning Represenations (ICLR), 2017.

4. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 770-778

5. “Trim insignificant weights | TensorFlow Model Optimization,”

https://www.tensorflow.org/model_optimization/guide/pruning

(accessed Dec. 12, 2022).

6. “Quantization aware training in Keras example | TensorFlow Model

Optimization,”
https://www.tensorflow.org/model_optimization/guide/quantization/trai

ning_example (accessed Dec. 12, 2022).

7. “RNN, LSTM & GRU,” dProgrammer lopez, Apr. 06, 2019.

http://dprogrammer.org/rnn-lstm-gru

8. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020.

Generative adversarial networks. Commun. ACM 63, 11 (November
2020), 139–144. [CrossRef]

AUTHOR PROFILE

Lily Young received her Bachelor of Science in
computer engineering from the University of Colorado

Colorado Springs in May 2023. She will be joining

Lockheed Martin. She is interested in applied machine
learning, deep learning, FPGA design, microcontroller

firmware design, operating system kernel and driver

development, and cryptography. She intends to pursue
an M.S. in computer engineering at the University of

Denver

James Richardson York earned his Bachelor of

Science in Computer Engineering from the University

of Colorado, Colorado Springs, in May 2023. He will
be joining Northrop Grumman as an Associate

Software Engineer before entering the US Air Force as

a Pilot. During his studies, James completed a Senior
Design Project with Semtech, optimizing their

semiconductor silicon wafer processing using machine

vision.

Byeong Kil Lee received a Ph.D. degree in computer

engineering from the University of Texas at Austin,
Austin, in 2005. He is currently an assistant professor

in the Department of Electrical and Computer

Engineering at the University of Colorado, Colorado
Springs. His current research interests include

computer architecture, workload characterization of

emerging applications, deep learning, low-power
mobile processors, application-specific embedded

systems, and cybersecurity.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

http://doi.org/10.35940/ijsce.C3613.0713323
http://www.ijsce.org/
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1145/3422622

