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Abstract: This paper presents a Vision Transformer designed for 

classifying brain tumors (ViT-BT), offering a novel methodology 

to enhance the classification of brain tumor MRI scans through 

transfer learning with Vision Transformers. Although traditional 

Convolutional Neural Networks (CNNs) have demonstrated 

significant capabilities in medical imaging, they often need help to 

grasp the global contextual information within images. To address 

this limitation, we utilize Vision Transformers, which excel at 

capturing long-range dependencies due to their self-attention 

mechanism. In the case of ViT-BT, the Vision Transformer model 

undergoes pre-training followed by fine-tuning on specific MRI 

brain tumor datasets, thereby improving its capability to classify 

various brain tumor types. Experimental results indicate that ViT-

BT outperforms other CNN-based methods, delivering superior 

accuracy and resilience. Evaluations were performed using the 

BraTS 2023 dataset, comprising multi-modal MRI images of brain 

tumors, including T1-weighted, T2-weighted, T1CE, and Flair 

sequences. The ViT-BT model showcased remarkable 

performance, achieving precision, recall, F1-score, and accuracy 

rates of 97%, 99%, 99.41%, and 98.17%, respectively. This 

advancement is anticipated to significantly enhance diagnostic 

accuracy in clinical settings, ultimately leading to improved 

patient outcomes. The research underscores the potential of 

transfer learning with Vision Transformers in medical imaging as 

a promising avenue for future exploration across various medical 

domains. 

 Keywords: Deep learning, Vision Transformer (ViT), VGG16, 

EfficientNet-B7, Transfer Learning. 

I. INTRODUCTION

Notably, the condition of brain tumors is among the most

frequent and severe diseases that people suffer from in the 

present day. MRI is a common technique used to diagnose 

brain tumors [1-3]. Even though brain tumors may manifest 

in people of any age, it is highly identified the nature of an 

illness in offspring and older adults [4]. General malaise, 

sensitive development, and sickness are essentially the most 

frequent troubles that are brain tumors and headaches. Of all 

the symptoms, headaches are the most persistent, and they are 

mostly reported to be painless or sharp. Sickness is defined as 

disease, forgetting, and fascicular gyrations. 
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Other psychological changes that are found in patients with 

brain tumors include memory, confederation, and analysis 

difficulty. Two other symptoms associated with brain tumors 

include vision and hearing impairment, limb agnosia, and 

speech disorders [5]. Experts utilize several aspects to 

categorize and, in turn, diagnose brain tumors. Such factors 

as location, size, and certain characteristics that may be seen 

on imaging play this role [6]. Meningioma is one of the 

varieties of brain tumors that originate from the brain’s 

meninges, which are described as bleary tissues. Gliomas 

tumors develop from glial cells, and glioblastomas develop 

from the brain. Gliomas and glioblastomas are the same 

because both are cancerous tumors that grow in the brain [7]. 

Another tumor category is the pituitary, located in one of the 

essential glands in the head. To the pituitary gland, other 

glands in the body can be explored conveniently. Research 

has also shown that specialists can effectively identify and 

manage any disease associated with brain tumors [8] 

concerning the mentioned characteristics of these diseases. 

Chemotherapy, surgery, and radiation therapy are considered 

the ordinary means of treating brain tumors: ultra-violet light, 

chemical agents, and operative. The occurrence of brain 

tumors affects both the patients and their families. 

Consequently, it is only logical that early diagnosis of the 

diseases will lead to a better prognosis [9]. The following are 

some of the imaging methods useful in the diagnosis of brain 

tumors: Of all these models, MRI is the most popular, and it 

is an abbreviation for magnetic resonance imaging. MRI 

helps identify and detect Brain tumors. Employing magnetic 

fields and radio waves [10]. Another modal is computed 

tomography, also referred to as the CT scan. This particular 

model uses images made with the help of X-rays to detect and 

identify the presence of any brain tumors. Brain tumors could 

also be diagnosed with PET, commonly known as Positron 

Emission Tomography. In this case, imaging is done by 

injecting the body with a radioactive substance that circulates 

in the blood. Among the proposed models of surgical 

procedures, the request mechanism is the most suitable when 

it comes to the detection of brain tumors. Histological 

confirmation is made by a biopsy whereby a small portion of 

the tumor is subjected to a microscope to help define the 

description of the brain tumor. All these imaging models are 

helpful for the detection of brain tumors [11]. However, as to 

the above-mentioned classical forecasting methods, they also 

have their shortcomings. Such imaging models are expensive 

and time-consuming. The factor that makes them functional 

can pose a challenge to patients who often need to leave the 

wards for check-out scans [12].  
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Also, the precision of these imaging models can be 

impressive due to the tumor's amount and area and the 

presence of surrounding materials. This classification model 

has other assets of false results symbolized by the confusion 

matrix. This is because correctly identifying the disorder is a 

capital exercise, leading to either misdiagnosis or delayed 

diagnosis [13]. Furthermore, it has been found that large 

tumor sizes and locations influence the reliability of these 

imaging models, as well as the existence of the surrounding 

tissues. There are probabilities of false results, as depicted in 

the confusion matrix of the developed model. This can result 

in wrong conclusions and causative treatment being given at 

a bad time. Some machines and deep learning models 

developed to find and diagnose brain tumors have also been 

exploited to eliminate the issues above. Data is fed to the 

model from the patient's MRI scans/ images, and the model 

is trained using algorithms. The model then uses this input 

image, or another, to predict the presence or appearance of 

brain tumors [14]. In classification and segmentation, SVM 

can identify and detect Brain tumors efficiently. Random 

forest (RF) is the ensemble learning algorithm that can 

include categorical analysis, known as classification, and the 

analysis of prediction, known as regression, for detecting 

tumors. CNN again refers to the convolutional neural network 

utilized in detecting brain tumors and is categorized under 

deep learning. CNN is under the category of image 

classification. This algorithm can extract the features from the 

brain images without necessary intervention from a human 

expert, and it sorts the images depending on these specific 

features and the ability to detect the presence of brain tumors 

[15]. In [16], the paper used a pre-menu transfer learning, the 

VGG-16 model, as a medium to detect several kinds of brain 

tumors. For this paper, the dataset that has been considered is 

the CE-MRI dataset, which contains MRI images of brain 

tumors belonging to four special categories. The dataset used 

in the research is 233 patients’ MRI scans and images, a total 

of 3,064, which were utilized initially for training the model 

and validating the output predetermined from the model. 

Hypothesis H 1 was supported by the study findings, thus 

showing that the proposed methodology was sufficient, as 

seen by the 94% accuracy in sorting the brain tumor images 

into four categories. In [17], the authors learned a CNN 

method with one special group's data. They validated it on 

data collected from two other groups to check whether 

different data capturing and analysis modes from the research 

institution would impact the algorithm’s performance. The 

authors employed the dataset from the TCIA data 

The results revealed that CNN's performance was 

comparatively better at the initial stage when trained on 

image data or scans of similar groupings or institutions than 

when trained on data from one institution and tested on 

another clinic. In particular, an empirical analysis of the 

research hypothesis was carried out based on the null 

hypothesis that the DSC score for the clinic equals 0. 76 ± 0. 

12. The paper [18] introduces a deep learning framework to 

diagnose tumors using MRI information. The authors 

presented a deep 3D CNN architecture named BraTS-Net, 

which includes the organization of 2D and 3D convolutions 

and a contention of modules to enhance p achievement. The 

dataset employed in this work was the BraTS 2013 dataset, 

which contained MRI images and scan data and recorded 

patients with necrosis, edema, and LGG. In the proposed 

work, compared with the SVM models, RFs defined that the 

BraTS Net gets a significantly better score than the models, 

and the gross DSC score is 0. 88. However, the paper does 

not comment on the applicability of CNN to other datasets to 

the best of the author’s knowledge. The authors of [19, 20] 

employed a CNN architecture containing three filtered layers 

and two dense layers for the segmentation of MRI of tumor-

diagnosed patients with the help of the BAT algorithm. The 

authors' datasets were MRI image data of glioma patients 

obtained from BraTS 2015. The model's specificity and 

sensitivity were acceptable, rated at 87% and 90%, 

respectively, and accuracy was 92%. Nevertheless, the 

authors fail to compare the described model with professional 

advisors, which can shed light on some of the model's 

potential shortcomings. The authors developed a deep neural 

network framework called DeepSeg [21], designed to 

segment brain tumors into four categories: edema, non-

enhancing tumor, enhancing tumor, and necrosis.  

After evaluating the performance results, it was observed 

that the performance of CNN was relatively better at the 

initial steps when trained on either image data or scans of 

similar grouping or institution than when trained on one 

institution’s data and tested on data from another clinic. In 

particular, an empirical examination of the research 

hypothesis was done concerning the null hypothesis posited 

that the clinic's DSC is equal to zero. 76 ± 0. 12. The paper 

proposes A deep learning architecture for tumor diagnosis 

from MRI information [18]. The authors proposed a novel 

abysmal 3D CNN architecture named BraTS-Net, which 

contains the structuring of 2D and 3D convolutions and the 

existence of the set of modules to raise p achievement. The 

data set used in this work was BraTS 2013, comprised of MRI 

images and scan data that annotated the patients with 

necrosis, edema, and LGG. Finally, in the proposed work, 

RFs compared that BraTS Net achieved much better 

performance than the models, where the gross DSC score of 

the models is 0. 88. To the best of the authors’ knowledge, 

the paper does not express an opinion on the generalization 

of the CNN to other datasets. [19] used a CNN architecture 

consisting of 3-filtered layers and two dense layers for the 

segmentation of MRI of tumor-diagnosed patients and used 

the BAT algorithm for the same. The dataset used by the 

authors was MRI image data of glioma patients, which the 

authors retrieved from BraTS 2015. The specificity and 

sensitivity of this model can be considered sufficient and 

amounted to 87 % and 90% respectively, accuracy of this 

model was 92 %. However, the authors do not proceed with 

the implementation of the comparison of the described model 

with professional advisors to emphasize some of the possible 

drawbacks of the model. The authors developed a deep neural 

network framework called DeepSeg [21, 22], designed to 

segment brain tumors into four categories. Secondly, the 

categorization used is edema, non-enhancing tumors, 

enhancing tumors, and necrosis. The authors in another paper 

[27] described the challenges in multimodal brain tumor 

detection and segmentation issues in MRI, including the 

problems of variability and versatility of the tumor tissue 

through a Transformer network capable of capturing the 

complexities between the modality.  
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The introduced method is called Transbts and includes two 

steps. This is done in the preprocessing part, where input MRI 

images are computed to get one multi-scale feature map. The 

Transformer network is also adopted to split the feature maps 

and send them to the segmentation part. The authors apply 

several ML models to analyze the model they proposed. The 

results revealed that when using the whole tumor, the mean 

Dice coefficient achieved was 90% (BraTS 2019) 90. Three 

weeks for the ISNT MT and 09% for the cancer (BRATS 

2020). Another strength of this paper is that the authors used 

two rich yet easily accessible datasets, enhancing the results' 

dependability and generalization. However, the authors shall 

explain the time taken in computational resources in training 

and reasoning, which could be a significant limitation in 

applying and implementing the model in its use as a reliable 

medicine model. These machine and deep learning 

mechanisms are beneficial for identifying brain tumors. 

However, they have these drawbacks. These models' output 

comes up on the clean, quality data and amount and size of 

the data. It is equally important to note that these models may 

not detect other more complicated types of tumors that are a 

special and relatively rare classification of brain tumors. 

Different parameters can include the feature selection, and 

other parameters can also influence the accuracy of these 

algorithms [24, 25]. 

With this shortcoming in mind, this weakness publicized 

the need for a better, more accurate technique for diagnosing 

brain tumors. Vision Transformer can affect present 

restrictions, a deep-learning model for promising prospects. 

Vision Transformer using a neural network framework is a 

distinct strategy for computer vision tasks [32-34]. Through 

self-attention techniques, the ViT model pushes and detects 

complex tumors by forming and recognizing splits from the 

input image. This model learns the normal healthy tissue and 

the abnormal malignant cancerous tissue during training by 

reducing a specifically identified loss of function. It is 

obtained at the testing phase as a probability map indicating 

information about areas of the brain with tumors [25, 26]. 

This paper addresses the problem statement: Can a vision 

transformer model label and locate brain tumors in medical 

images efficiently? The assumption is that vision transformer 

models trained and learned on MRI scans can conclude high 

efficiency in identifying and detecting brain tumors and that 

the current models for brain tumors can be exceeded. In 

contrast, in the classical models, based on the convolutional 

neural network for quantitative assessment of 3D relations 

between the pixels in the brain tumor images, the ViT extracts 

the global relation between the pixels using a self-attention 

mechanism. Vision Transformer learns the features of the 

MRI scans of brain tumors and can determine the tumors. 

Some of the developed datasets of brain tumors are huge 

medical images and other clinical data that can be applied to 

machines and deep learning algorithms. By using these 

datasets, clinicians and researchers can identify, outline, and 

analyze the presence of brain tumors. A few of these brain 

tumor datasets are the datasets of MRI images of the most 

frequent yet invasive kind of tumor referred to as BraTS (The 

Brain Tumor Segmentation Challenge Dataset). The 

collected data contains MRI scans and associated scientific 

data of over two hundred patient cases. BraTS is widely 

utilized concerning the identification, detection, 

classification, and segmentation problems of brain tumors 

[27] 

Low-grade glioma (LGG) has better progress than other 

brain tumors because it grows slowly. Other datasets are 

available with glioblastoma MRI scans with certain 

transformations (T1 image, T2 image, T1CE image, and Flair 

image) [28]. Another dataset benchmark is TCGA-GBM, 

which includes MRI and genomics data on glioblastoma. In 

addition to the genomic data, MRI scans, and other patient 

clinical details, the CPTACGBM also contains proteomics of 

tumor patients [29,30]. All the necessitated datasets described 

above are used to train various machine and deep learning 

models. They then use these models to evaluate input images 

to detect, classify, and segment brain tumors. The paper 

contributions are: 

▪ Estimate a correct model of performance for diagnosing 

brain tumors from image. 

▪ In this case, the Vision Transformer (ViT) model is a 

technique that will be applied to conclude that it offers 

higher accuracy and shorter times in terms of reasoning 

for tumor identification. 

▪ Discuss how to encourage the outcome's performance 

using transfer learning such as VGG16, Efficient-NetB7, 

and data augmentation. 

▪  Supply a dependable and autonomous apparatus for 

primary identification and analysis of the brain tumors, 

thus decreasing the high false positives and enhancing the 

medical system 

   Nonetheless, the classification of the actual brain tumor 

MRI images that are accurate, authentic, and active is a big 

problem due to the significant presence and area of variability 

of tumors. The early techniques for classifying brain tumor 

MRI images were the conventional techniques that involved 

hand-engineered features and machine learning algorithms 

that were defined by their capacity to learn high-order 

features and variations in the data set. Recent progress in deep 

learning models has provided promising performance in the 

medical image classification problem, including brain tumor 

classification. Specifically, the structure of the transformer 

has gained significant attention in computer vision tasks 

because of its ability to capture global contexts and collect 

spatial relations between the image’s features. Nonetheless, 

the use of transformers in medical image classification is still 

a somewhat active research area today [31]. The general 

transfer learning approach has been implemented in the 

various classification of MRI images. In [4], the paper gives 

general information about CNN concerning brain image 

analyses and mentions different architecture and techniques 

for feature extraction. Still, it does not account for specific 

issues related to deep learning for MRI image classification.  

In [48], the paper examines the use of transfer learning 

through pre-trained CNNs such as VGG16 & ResNet for 

feature extraction and fine-tuning for MRI datasets. The 

paper can fail to explain some shortcomings, including 

domain shift or data bias.  
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In the context of transfer learning for ultrasound image 

classification, the paper’s focus is somewhat narrower, 

mainly because it is already established that results derived 

from one imaging modality may not be directly portable to 

another modality. In contrast, the paper does not dwell on the 

complex forms of transfer learning or other complex 

architectures that could be useful for improving the 

classification of MRI images; there is certainly much more 

research work on that subject beyond the scope.  

In [3], the paper discusses deep residual connections 

through which Res-net enables the training of intense 

networks. As opposed to work considering the peculiarities 

of MI images, including image resolution, noise, or 

anatomical variations in the part dedicated to the proposed 

solution, the paper is oriented towards ResNet architecture 

and its performance on benchmark datasets, except for the 

parts concentrated on segmentation and survival prediction. 

The proposed work in this paper is a vision transformer-

based approach given the acronym ViT-BT for breast tumor 

MRI image classification. The specific technique is a fine-

tuning approach applied to a pre-trained vision transformer 

model, with outstanding results in computer vision tasks. The 

approach builds on vision transformers’ capability to capture 

relatives between elements in images and understand the 

images globally. The rest of the paper is organized as follows: 

Section 2 describes the materials and methodology used for 

the proposed method, Section 3 describes the detailed results, 

and then the paper is concluded in Section 4. 

II. MATERIALS AND METHODS 

A. Dataset  

In this work, we utilized the BraTS-2023 dataset [23], 

which is a retrospective database of glioma MP-MRI 

acquired at different sites under clinical protocols using 

different scanners and different imaging sequences, so this 

cohort represents massive variability in terms of image 

quality as it imitates the variability of the current clinical 

practice. Every tumor sub-region was confirmed by two 

independent neuroradiologists who concluded with expert 

ground truth annotations. Each MRI scan in the dataset 

contains four different modalities: T1 MRI, T2 MRI, T1 MRI 

with contrast enhancement, and FLAIR MRI. The dataset is 

divided into three parts: the ratio of training, validating, and 

testing as 80:10:10 correspondingly. The described MRI scan 

dataset contains ground-truth labels for segmentation and 

classification tasks regarding each MRI scan. The ground-

truth labels against which to compare the TTLES algorithm 

are the tumor core, the enhancing tumor, and the whole 

tumor. The necrotic and non-enhancing tumor core area 

consists of the necrotic region in the tumor mass, the 

enhancing tumor area consists of the part of the tumor that 

enhances after the injection of contrast medium, and the 

whole tumor area is the union of the tumor core area and the 

enhancing tumor area as depicted in fig 1. 

 

Fig. 1: Sample of Bra TS Dataset 

The BraTS 2023 dataset also includes information such as 

patient age, sex, tumor location, and histology. This 

information can be used to explore the relationship between 

these factors and the characteristics of brain tumors. The 

BraTS dataset is widely used for developing and evaluating 

brain tumor segmentation and classification algorithms. The 

dataset has been used in numerous studies and competitions 

and has contributed to significant advances in medical image 

analysis. 

B. Deep Learning- Transfer Learning 

i. VGG16  

VGG is an architecture of deep convolutional neural 

network formed by the Visual Geometry Group (VGG) of the 

University of Oxford in 2014. It was designed to compete in 

the ILSVRC and was very successful; the network won the 

localization and classification of the ImageNet dataset [48]. 

The VGG16 network comprises 16 layers of conducting 

convolution and complete connection. The 1st and 13th layers 

are the convolutional layers, and the 14th and 16th layers are 

the fully connected layers. The convolutional layers use small 

3x3 filters and are arranged so that multiple of them are 

connected, and therefore, it has a deep structure. By the time 

the information has passed through the first couple of 

convolutional layers, several filters in the convolutional 

layers process input images and detect edges, corners, or even 

textures. There are fully connected layers at the end of the 

network responsible for classifying the output of the 

convolutional layers to the class in the ImageNet database. 

VGG-16 has more than 138 million parameters; thus, it is a 

robust architecture to work with images for classification, as 

in Fig. 2. 

 

Fig. 2: VGG Architecture 

 

 

 

 

http://doi.org/10.35940/ijsce.D3644.14040924
http://www.ijsce.org/


International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307 (Online), Volume-14 Issue-4, September 2024 

20 

 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijsce.D364414040924 

DOI: 10.35940/ijsce.D3644.14040924 

Journal Website: www.ijsce.org 
 

ii. EfficientNet-B7 

The model scaling also depends on the baseline network; 

that influence was described similarly. Therefore, to fine-tune 

the results even more, The preceding creates the usage of the 

MBConv, the mobile inverted bottleneck convolution [8]. 

Technically, there is no such model as EfficientNet-B7. The 

EfficientNet-B7 architecture comprises multiple models, 

EfficientNet-B0 to EfficientNet-B7, which differ in the depth 

of the model. EfficientNet-B7 can be defined as an array of 

deep neural networks that Google View proposed to research 

in 2019. The architecture is meant to deliver high competence 

on image classification tasks using considerably fewer 

parameters and computational power than other well-known 

architectures like ResNet and Inception [40]. From the 

EfficientNetB-7 models, the compound scaling approach 

scales depth, width, and the network’s resolution uniformly. 

This enables the model to achieve the desired aims of solving 

the trade-off where more parameters could mean better 

accuracy. Still, it could take a long time to compute, resulting 

in fewer parameters. As stated earlier, B0 is the leanest and 

most efficient family variant, but B7 is the biggest and most 

powerful. EfficientNet-B7, as in Fig. 3, which has over 66 

million parameters, shows the state-of-art on various image 

classification datasets. Nevertheless, the training and 

deployment of such a big model entails considerable 

computational power and skills. In conclusion, Efficient-Net 

is one of the best architectures that you can use for image 

classification problems, and its several models are 

implemented in many practical applications. 

 

Fig. 3: Architecture of EfficientNet-B7 

C. Methodology of Vision Transformers 

  In this section, we discuss the experimental setup for our 

study, the metrics we have used to evaluate the implemented 

models, and the implemented models themselves. 

i. Experimental Setup 

The literature for our study is centered on comparing two 

deep-learning models for image classification. In this study, 

we have implemented and trained the models using the same 

approach. 

ii. Data Preparation 

Obtain the tumor brain MRI dataset and then perform the 

data augmentation, normalization, and resizing processes. 

Divide some of the obtained data into the training data set, the 

validation data set, and the testing data set. 

1. In the feature extraction stage, a given input image is 

divided into small, non-overlapping, fixed-sized regions. 

Each region takes a section of the image as a local area where 

processing occurs. Then, each patch is linearly embedded into 

a vector space of a lower dimension than the original data. 

This step maps the patch's pixel values into a smaller vector 

space. 

2. Positional Encoding: Include the positional encoding for 

the patch embedding sequences to carry information about 

the positions of patches in image parts. 

3. Transformer Encoder: Several transformer encoder layers 

are used for the patch sequences to gather the context 

between the image parts. 

4. Classification Head: Feed the transformer encoder to 

include a classification head to give an output for the yes/no 

presence of a brain tumor in the MRI data. 

5. Training and Evaluation: Train the Vision Transformer 

model on the training set and then assess the experiment’s 

success based on the chosen evaluation measures, including 

accuracy, precision, recall, F1 score, AUC-ROC, and AUC-

PR in the validation and testing sets. 

6. Hyper Parameter Tuning: Hyperparameters of the Vision 

Transformer model include the learning rate and the number 

of layers for the Vision Transformer, image patch size, 

dropout rate, the number of attention heads, and more. 

Table 2 evaluates the Vision Transformer model results 

against other models as a case study of tumor brain MRI data. 

It compares deep learning models such as CNNs and hybrid 

models that combine CNNs with RNNs or attention 

mechanisms. 

 

Fig. 4: ViT-BT Architecture for MRI Images 

The algorithm of the ViT-BT is as follows:  
Algorithm of Proposed ViT-BT 

1- Combine VGG-16 and EfficientNet-B7 with Vision Transformer: Integrate the features extracted from the transfer learning with the 

Vision Transformer. This can involve concatenating the features or using them as additional inputs to the ViT model. 

2- Fine-tune the Combined Model: Fine-tune the combined model on the MRI image classification task.  

3- Divide the brain tumor MRI image into patches and flatten it as a vector 

4- A sequence of patches is mapped with a trainable linear projection 

5- A learnable class embedding Zclass is before the sequence of embedded image patches 

6- The patch embedding is finally followed with 1-D positional embedding Epos. 

7- The sequence of embedding vectors is: 

   𝑍𝑜 =  [𝑋𝑐𝑙𝑎𝑠𝑠;  𝑥𝑝
1; 𝑥𝑝

2; … … ; 𝑥𝑝
𝑁] + 𝐸𝑝𝑜𝑠        

8- Compute classification by feeding Zo at the encoder  

9- Take Zclass at the layer Lth of the encoder output and feed it to a classification head.  
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As of algorithm and architecture in Fig. 4, in the first step, 

an input image of shape (height, width, channels) is embedded 

into a feature in a single vector of shape (n+1, d), following an 

arrangement of transformations. This corresponds to Equation 

(1): 

𝑧𝑜

=  [𝑋𝑐𝑙𝑎𝑠𝑠;  𝑥𝑝
1;  𝑥𝑝

2; … … ; 𝑥𝑝
𝑁

+ 𝐸𝑝𝑜𝑠                                                                       . . . . (1) 

1. The image is partitioned or segmented into n equal small 

squares of size predetermined as p, and each segment is 

of the shape (p, p, c). 

2. The patches are flattened, which means that the number 

of vectors representing the n line is n, which has the shape 

(1, p²*c). 

3. The flattened patches are then multiplied by a trainable 

embedding tensor of size p²*cxd. Here, x is a 

hyperparameter of the architecture and is adapted for 

different components, and d is the fixed dimension of 

most parts of the architecture. The upshot is N embedded 

patches of shape (1,d). 

4. A learnable token of shape (1, d) is concatenated to the 

sequence of patch embeddings, where d is the dimension 

of patch embedding. This token is from the BERT paper, 

and only the last representation, the output of the 

transformer L, is passed through the classification layers. 

This is a total of the representations of the patches, which 

is quite intuitive. 

5. A trainable positional embedding tensor, Eₚₒₛ, with the 

same shape (n+1, d), is added to the concatenation of the 

above projection sequence. Getting back into the flow of 

this tensor, this tensor learns 1D positional information 

for each patch to add a spatial representation of each patch 

in the sequence. The final output fed to the stacked 

transformer encoders is represented by z₀. The L-stacked 

encoders constitute the second part of the mentioned 

architecture. Every transformer receives features in the 

form of an (n+1, d) tensor and outputs a similar tensor. In 

the second step, the network learns higher-level features 

from the embedded patches with the help of the stack of 

L transformer encoders. 

 MHA and a 2-layer MLP are in the encoder component; it 

includes layer normalization and residual connections for 

added benefit. Layer normalization helps make the hidden 

state more stable and accelerates the number of training steps. 

It is computed by scaling with the mean and std of the training 

example (as opposed to the batch norm, where this is done 

across features). The resultant features are then scaled by a 

factor and shifted by another factor learned during the 

training phase. Residual connections provide the gradients 

with an alternative route, thus addressing gradients vanishing 

in networks with deep architectures. In this component, the 

trainable weights would be restricted only to the inside of the 

MHA mechanism and the MLP weights. Since the MLP has 

two layers (hidden and output), there will be two weight 

matrices: The Weight matrix Wₕ has a shape of (d, dₘₗₚ) while 

the output Weight matrix Wₒ has a shape of (dₘₗₚ, d). It should 

be noted that the MHA step included in each of the L-stacked 

transformers is analogous to Equations (2). (3), (4) and (5). 

[q, k, v] =zUqkv                                                      …..  (2) 

A= softmax (qkT /√𝐷ℎ)                                             ..… (3) 

SA(z)= Av                                                                 ...... (4) 

MSA(z) = [SA1(z); SA2(z); ……….SAk(z) ] Umsa   ........(5) 

Subsequently, Qi, Ki, and Vi denote the input projection in 3  

sub-spaces of the FA3 module. Every line in Q is a learned 

projection of the patch, and lines in K are other patches to 

compare with Q. V and K are learned to quantify the 

importance, or weights, of features in V to compute the final 

“attention.” The self-attention is the product between A and 

v, which has the shape of (n+1, dₕ). The element on row i and 

column j is the weighted average of the feature j by the pdf 

on line i in A. The self-attention matrices are stacked on the 

second dimension to build an (n + 1, d) tensor, passed to a 

single-layer preprocessing, multiplying it by a trainable (d x 

d) tensor. This linear layer is crucial because it enables 

features to be learned from all the heads as an aggregate. 

III. RESULTS AND COMPARISON  

The main idea of this paper was to propose the method of 

Brain Tumors, Vision Transformers classification and 

detection (BT-ViT). The motivation was viewing the urgent 

necessity for the precise and non-hazardous identification of 

brain tumor types to facilitate the decision in medical 

diagnosis and medicine planning. Expressing the potential of 

Vision Transformers, it was work directed at obtaining high 

accuracy in forecasting and classifying various forms of brain 

tumors: T1, T2, T1CE, and Flair. The work aimed to test the 

effectiveness of the identified ViT-BT model by comparing 

it with the existing models while searching for the most 

effective solution in the field of brain tumor detection in the 

given field of medical imaging. The dataset used in this study 

comprised 2040 MRI scans, each belonging to one of four 

classes: T1, T2, T1CE, and Flair. The given dataset was 

divided into 80:20 fashions for training and validation. The 

quantity of the first collection was 1632 images, and the 

amount of the second one was about 408 images. The ViT-

BT model was used, and the input images and preprocessing 

steps were performed using various methods such as cleaning 

and enhancement images. The ViT model was evaluated with 

the help of accuracy, precision, recall, and F1 score to assess 

the efficiency of the proposed approach for classifying brain 

tumor images. The model attained great accuracy in 

validation, which was a significant representation of 98 

percent. Among respondents, 17% affirmed their ability to 

correctly distinguish brain tumors, and 27% of the company’s 

patch size was valued, as shown in Table 1. 

Table 1. Values of Patch Size 

Model 

Architecture 

Patch 

size 

No. 

layers 

Hidden 

size 

MLP 

size 

Learning 

Rate 

Parameters 

ViT 18 14 788 5072 0.0001 88M 
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The initialization weights come from transfer learning using 

supervised Image Net pre-trained weights. Learning Rate 

(LR) starts with 1e – 4 and is then divided by two each time 

the model iterates 100, resulting in better accuracy. The 

optimizers used were Adaptive moment estimates (ADAM) 

[9]. The type of activation function used is the Rectified 

Linear Unit (ReLU) [7]. Evaluation of a classification model 

in classification tasks is based on specific evaluation metrics 

to measure the ability or efficiency of a given machine 

learning model to predict class labels of input instances. Here 

are some commonly used evaluation metrics for classification 

tasks [35- 38]: Here are some widely used evaluation metrics 

for classification tasks: 

1. Accuracy: The percentage of correctly classified cases out 

of the total cases. Formula: The Accuracy Formula is given 

by TP + TN / TP + TN + FP + FN where TP is the True 

Positives, and TN is the Total Instances. 

2. Precision: The extent to which the number of instances is 

definitively positive out of the total number of cases predicted 

as positive. 

 Formula: TP, where TP is several true positives, ought to be 

equal to TP / (TP + FP). 

3. Recall: The percentage of specific positives to the overall 

sum of particular positives and negatives. 

 Formula: True Positive /(True Positive + False Negative) 

4. F1 Score: Precision divided by the recall.” 

 Formula: 2 * (P * R) / (P + R) The AUC-ROC score is 

between 0 and 1 and indicates that it has the highest accuracy 

of all the negative/positive cases identified and studied by the 

classifier. 5 denotes chances being taken, while 1 denotes 

perfect classification. 

5. Area Under the Precision-Recall Curve (AUC-PR): An 

evaluation metric for binary classifiers that computes the area 

of the precision-recall curve. The precision-recall curve is a 

graph that plots precision on the Y-axis concerning recall that 

we get while using different thresholds. Therefore, the correct 

evaluation metrics must be selected depending on the task and 

the specific circumstances of the problem. Some of the 

evaluation measures might be more appropriate for assessing 

the models considered in an imbalanced data context, while 

others can be more appropriate for Multi-classification 

problems. Here is an overview of the steps to implement a 

Vision Transformer model on tumor brain MRI data: For the 

smooth procedure of the organization’s implementation, it is 

necessary to select the right metric, preprocess the data, and 

fine-tune the model's hyperparameters. Further, we have to 

compare the results of Vision Transformer with other state-

of-the-art deep learning models and analyze them to detect 

the most efficient model for this particular task. In 

conclusion, using a Vision Transformer in tumor brain MRI 

data provides an excellent opportunity for the development of 

medical imaging and the improvement of patients’ outcomes. 

Despite several resumes and occurrences, the optimum 

achievable fine in the ViT models was noted evidently in 

Table 2, which presents the result of VGG16, EfficientNet- 

B7, and ViT- 

Table 2. Evaluation Metrics 

Model Architecture Recall Precision F1-score 

VGG16 0.95 0.94 0.95 

Efficient B7 0.97 0.95 0.96 

Proposed ViT-BT 0.98 0.97 0.98 

 

 

Fig. 5: Output Images of Proposed Model 

In Fig. 5, representative results of the vision transformer for 

brain tumor classification of ‘ViT-BT’ on the image from 

the BraTS 2023 dataset. Moreover, it can be concluded that 

the model works properly with training and testing data and 

can classify each region in the image correctly. In this paper, 

it is evident that the self-supervised ViT-BT could obtain the 

total best achievement. As per the effort and time spent on 

technician annotation by experts, one cannot get hold of a 

large set of labeled medical images; however, it may be easy 

to acquire many unlabeled photos. 

 

Fig. 6: Confusion Matrix 

 

Fig. 7: Correct Prediction Result of Proposed ViT-BT 

The confusion matrix discussed in Fig. 6 was employed to 

gain more insight into the model’s performance by showing 

the correctly classified and misclassified instances. For the 

408 images in the validation set, the model accurately 

classified 393 and misclassified 15. In addition, the prediction 

accuracy of the proposed model is illustrated in Fig. 7, which 

shows that the four classes of brain tumors are 98%. An 

accuracy equal to 17% was obtained for each class. Cohort 

analysis of the results presents high predictive accuracy; 

hence, the above confusion matrix highlights the model’s 

suitability in diagnosing all four tumor types.  
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In the case of <aspects to target from the list>, it 

demonstrates how using the vision transformer model offers 

reliability in identifying the correct labels for images of MRI 

scans. 

 

Fig. 8: AUC (Area Under Curve) 

In the case of the classification models, the Area Under 

Curve (AUC) is used, illustrated in Fig. 8. It is utilized in 

instances where the sensitivity and specificity of the model, 

which are expressed through actual positive rate and false 

positive rate correspondingly, matter. When the AUC has 

high accuracy, it shows that the model performs well in 

categorizing the tumor instances into different classes as it is 

highly efficient in ranking them [44- 47]. This infers that a 

higher value of AUC will mean that the model has a high 

actual positive rate and, at the same time, it has a low positive 

rate. In other words, the model effectively captures the 

relevant group of positives and the tumor instances and has a 

low false positive rate. It also proves to be specific in the 

ability to distinguish between various classes of the tumor. It 

has been shown that machine learning algorithms can make a 

rather precise prognosis of an individual’s prognosis and 

lethal outcome while retaining a high clinical relevance 

overall accuracy and true-positive rate [39-43]. 

Table 3. Evaluating Model in Tumor Classification 

Table 3: Evaluating Model 

 Precision Recall F1-Score Support 

T1-Weighted 0.99 0.99 0.99 109 

T2-Weighted 0.95 1.00 0.97 82 

T1CE 0.99 0.95 0.97 104 

Flair 1.00 0.99 0.99 113 

Accuracy   0.98 408 

 The results of the classification analysis presented more 

specific information about the model's effectiveness in each 

tumor class, which is given in Table 3. Finally, the precision 

for the Flair tumor class was 1. 00, with a recall of 0. 99 and 

an F1 score of 0. 99, supported by 113 images. Regarding the 

T2 class, the model has the following classification 

performance: precision of 0. 95, recall of 1. 00, recall of .88, 

and F1 score of 0. 33 with the help of 45 pictures, and group 

C scored 97 with 82 pictures. The model’s performance in 

classifying the T1CE tumor class yielded a precision of 0. 99, 

recall of 0. 95, precision of 0.95, and F1 score of 0. 97% of 

the participants supported the findings with the help of 104 

images. Finally, for the T1 tumor class, the model got a 

precision of 0. 99, recall of 0. 99, and accuracy of 0%, 

precision of 0, and recall of 0, and the F1 score is 0. 99. The 

substantiation of the presented findings of 109 illustrations. 

These results prove the suitability of the ViT-BT when 

applied to differentiate the various kinds of brain tumors. Due 

to factors such as cost, time, and accuracy of the ViT-BT, it 

can positively impact the processes of medical diagnosis. 

Lastly, Table 4 compares the results obtained from ViT-BT 

with those of other pertinent studies, and it can be seen that 

our method has achieved better accuracy and efficiency. In 

another related work [43][52][53][54], the GAN (generative 

adversarial networks) model was trained on a 60% training 

dataset and was given an accuracy of 96. 25%. Another model 

derived from GAN [44-48] obtained 96% valid outcomes in 

the identification of tumors. Another is the BW-VGG19 in 

paper [49-51]. The CNN-based architecture was applied, and 

it performed an accuracy of 97% on the 70% training dataset. 

To achieve 97% accuracy, the MANet approach [42] was 

used. Machines were tested to have the ability to detect 

tumors in the brains at 71% accuracy. Model [49] 

experienced an accuracy of 98% for the participation. Our 

ViT-BT computed relatively faster than all the above papers 

and recognized 98. Of the complex types of brain tumors, the 

input correctly and reliably identified 13%. Applying more 

precise findings to the objectives would assist in improving 

tumor diagnosis and detection in the medical imaging sector. 

Table 4. Comparison Results of different Methods 

Paper Method Accuracy 

[1] Transformer + CNN 96.75% 

[49] Deep CNN 96% 

[50] SMO+SVM 93.9% 

[51] CNN+ SVM + kNN 97% 

[43] GAN 96.25% 

[42] MANet 97.7% 

[49] BW-VGG 19 98% 

[20] FN-ViT 98.13% 

[46] Encoder-skip connection-decoder (U-net) 98% 

Our Method ViT-BT 98.17% 
             

As a result of this paper, the Vision Transformer model 

distinguished itself with the highest accuracy of 98. % in 

classifying tumor MRI images, this indicates that the self-

attention mechanism used by Vision Transformers was 

influential in capturing outstanding features of images. 

However, it can be noted that its performance might be 

affected by the dataset type, the complexity of the task it is 

assigned to, and other parameters. When evaluating the 

models from the two datasets using multiple indexes and 

employing all the models, the latter would give a better 

picture of the model’s ability 

A. Computational Resources and Time Requirements 

i. Computational Resources: 

   - Hardware Specifications: The effectiveness of deep 

learning models, including Vision Transformers, heavily 

relies on the underlying hardware. High-performance GPUs 

(Graphics Processing Units) or TPUs (Tensor Processing 

Units) are typically required to handle the large-scale 

computations involved in training these models. The type of 

GPUs used is NVIDIA Tesla V100, and the number of GPUs 

employed during training. 
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Memory Requirements: Vision Transformers often require 

substantial memory resources, especially when dealing with 

high-resolution MRI images and large batch sizes. The GPU 

has 16 GB of RAM.  

ii. Training Time: 

Duration of Training: The time to train the ViT-BT model 

can vary significantly based on several factors, including the 

dataset size, model complexity, and the chosen 

hyperparameters (e.g., learning rate, batch size). The training 

process took 7 hours, and 50 epochs were used.  

   Optimization Techniques: Techniques such as transfer 

learning can reduce training time by starting with a pre-

trained model. Mixed precision training can also speed up the 

training process and reduce memory usage. 

iii. Inference Time: 

   - Speed of Predictions: The inference time (the time taken 

to make predictions on new MRI scans) is crucial for practical 

applications. The  

   - **Batch Processing**: The ability to process multiple 

images simultaneously (batch inference) can also be 

important. The inference time potentially ranges from 10-50 

ms per image.  

iv. Practical Implications: 

- Integration into Clinical Workflows: Understanding the 

computational and time requirements is vital for integrating 

the ViT-BT model into clinical workflows.  The model does 

not require excessive resources or time, so it is feasible for 

routine use in hospitals or clinics.  

IV. DISCUSSION 

As for the solution, the findings of this work tackled the 

efficiency of the proposed model that employs the Vision 

Transformer (ViT-BT) for the detection of the brain tumor, 

given its MRI images. The model resulted in a very high 

accuracy of 98. 17% on the dataset, accurately identifying the 

four types of brain tumors: T1 weight, T2 weight, T1 cerebral 

blood volume, and Flair. The confusion matrix is usually 

separated into four rows that define the tumors in the 

specified manner. 

A. Limitations of the Proposed ViT-BT Model 

i.Outcome of Rare Tumor Types 

- Limited Training Data: The architecture of the ViT-BT 

model implies that its performance will depend on the 

training dataset, its quality, and its diversity. The model, in 

particular, performs relatively poorly when it is tested on 

standard cases that are rare or atypical, which have yet to be 

spotted or included in the benchmark data. One of the 

implications of such a limitation is that clinicians may fail 

to diagnose such rare diseases accurately or not diagnose 

them at all, only to find out much later that the symptoms 

were characteristic of the condition. 

Generalization Challenges: In this connection, it is worth 

admitting that the self-attention mechanism inherent in 

Vision Transformers is somewhat effective yet may only be 

suitable for some types of tumors, especially when they 

present themselves or their imaging features in a particular 

manner. Yet, owing to the low frequency of these rare types 

of tumors, the model may need to learn the distinguishing 

features that help in classification. 

ii.Generalizability to Other Medical Imaging Tasks: 

Generalizability to Other Medical Imaging Tasks: 

- Specificity of the Model: The ViT-BT model is created to 

enhance the classification of brain tumors only in MRI 

images. Its architecture and training method cannot be 

applied to other relevant medical image analysis tasks, 

including, yet not restricted to, the classification of lung 

nodules in CT or the detection of lesions in X-ray images. 

There are general trends in the information characteristics 

of each imaging modality and disease so that specific 

features may exist. Domain Adaptation: This means that the 

model's accuracy may depend on the specific medical 

imaging dataset or imaging institution, depending on 

factors such as the imaging protocol used, the type of 

scanner, and the cohort of patients included. This variability 

can pose problems when the model has to be used in similar 

contexts involving other patients without being retrained or 

fine-tuned, which is often impractical in clinical practice. 

iii.Limited Training Data: This confirms that the performance 

of the ViT-BT model in an analogous manner profoundly 

depends on the training set’s quality and richness. The 

clinician integrating the model into the operating room may 

end up found wanting when the tumor is rare and does not 

resemble the frequently used glioblastomas or 

meningiomas on which the model was trained. As a result, 

the performance of these machines may be low when 

diagnosing these rare conditions, which may imply that 

their diagnosis is missed or done inappropriately. 

iv.Generalization Challenges: It is also important to notice that 

the self-attention mechanism of Vision Transformers can be 

quite strong but may not be as versatile foro all kinds of 

tumor presentations, most of which have rather distinct 

imagery and radiographic features. There might be a danger 

that during the training, the model will never see enough of 

these rare tumors to pick up all the features necessary for 

classification. 

B. Statistical Analysis 

Applying confidence intervals and p-values enhanced the 

validity of the results provided for the ViT-BT model. 

Confidence intervals give a range that the true value of a 

measure, such as accuracy, precision, and recall, is likely to 

be. This information provides reliable and stable model 

performance on differing datasets. 

We report a 95% accuracy interval, which means that if the 

model is tested on different samples from the same 

population, a range of accurate values may be obtained. 

1. Enhancing the Validity of Results: Enhancing the 

Validity of Results:- Explaining the specifics of the 

experiments and the results achieved for the ViT-BT model, 

one should have incorporated the presented results' statistical 

confidence intervals and p-values. Confidence intervals give 

a range in which the actual value of a measure (e.g., accuracy, 

precision, recall) is likely to be a result and an idea about the 

stability of the model for different datasets. 
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When we read a statement that the model reported a 95% 

accuracy, this tells us the likely accuracy values one would 

get if the process is repeated on other samples from the same 

population. 

2. Statistical Significance of Findings: 

The significance of the results can be established by the P-

values obtained after the computation. Supplementary 

material from successful runs is provided to facilitate the 

comparison of ViT-BT with baselines or other more current 

algorithms for the given datasets, and p-values can be used to 

determine whether the observed differences were statistically 

significant or could practically be due to variance. 

V. CONCLUSION  

In conclusion, Vision Transformer is a solid deep-learning 

model proven to solve multiple tasks related to computer 

vision. Due to its long-range dependence and global property, 

it is more effective for image structures with complex features 

and small components, such as medical images. Thus, by 

performing Vision Transformer on the tumor brain MRI data 

(ViT-BT), one can develop rich advantages to detect or 

exclude the presence of brain tumors in medical images 

compared to other deep learning methods, including VGG16 

and EfficientNet-B7. This will assist the clinicians and 

researchers in implementing accurate and early diagnosis of 

diseases, disease progression, and formation of appropriate 

treatments. 
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