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Abstract: Interpreting three-dimensional structure from two- 

dimensional line drawings remains a fundamental challenge in 

computer vision, cognitive science, and artificial intelligence. 

Classical symbolic approaches based on constraint-driven junction 

labelling provide strong geometric interpretability but are highly 

sensitive to noise, fragmented lines, and missing segments. In 

contrast, modern deep learning methods are effective at detecting 

edges, junctions, and local geometric patterns under real-world 

conditions, yet often lack global consistency, interpretability, 

and enforcement of physically plausible structural relationships. 

These limitations motivate hybrid neuro-symbolic approaches that 

combine learned perception with symbolic reasoning. In this work, 

we present Deep Waltz, a hybrid vision framework that integrates a 

compact CNN-based neural refinement module with a Waltz- style 

constraint satisfaction solver. The proposed pipeline performs end-

to-end processing from raw images to globally consistent symbolic 

interpretations, including edge detection, line segment extraction, 

junction detection, CNN-based patch classification, and 

constraint-based global inference using legal junction-label 

tables. An EM-like iterative training scheme is introduced, in which 

CSP-inferred labels serve as pseudo-labels to refine the neural 

components and progressively improve global coherence. 

Experiments on synthetic polyhedral scenes, hand-drawn sketches, 

and real-image edge maps demonstrate that Deep Waltz 

substantially improves junction classification accuracy, legal 

labelling rates, and structural reconstruction quality compared to 

symbolic-only and neural-only baselines. These results indicate 

that the proposed framework provides a robust, interpretable, and 

reproducible solution for structural scene understanding from line 

drawings. 

Index Terms: Neuro-Symbolic Vision, Waltz Labelling, Line 

Drawing Interpretation, Constraint Satisfaction, Junction 

Detection, Deep Learning. 

Nomenclature: 

CNN: Convolutional Neural Network 

CSP: Constraint Satisfaction Problem 

EM: Expectation–Maximization  

HED: Holistically-Nested Edge Detection 

I. INTRODUCTION

Interpreting line drawings and edge maps into consistent

Structural scene descriptions remain a long-standing 
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in computer vision. Early symbolic approaches introduced 

formal representations based on junction configurations and 

constraint propagation to infer three-dimensional structure 

from two-dimensional line drawings. These methods provide 

strong interpretability and explicit geometric reasoning but 

are highly sensitive to noise, fragmented edges, and missing 

line segments. 

In contrast, modern deep learning techniques have 

significantly improved the robustness of low-level perceptual 

tasks. However, purely neural approaches typically lack 

explicit mechanisms to enforce global geometric consistency, 

physical plausibility, and symbolic interpretability. As a 

result, their predictions may violate fundamental structural 

constraints even when local evidence is substantial [1]. 

Recent advances in neuro-symbolic artificial intelligence 

seek to bridge this gap by combining learned perception with 

symbolic reasoning frameworks. Such hybrid systems aim to 

leverage the robustness of neural models while preserving the 

correctness guarantees and explainability offered by 

constraint-based reasoning [2]. Structural scene 

understanding from line drawings provides a natural testbed 

for this paradigm, as it requires both reliable perceptual input 

and globally consistent geometric interpretation. 

The main contributions of this work are summarized as 

follows: 

A. A complete neuro-symbolic pipeline that integrates

classical image processing, learned junction detection,

and symbolic constraint satisfaction reasoning.

B. A compact CNN-based junction classification module

that produces probabilistic priors used to guide

symbolic inference.

C. An EM-like neuro-symbolic refinement loop in which

CSP-inferred solutions are reused as pseudo-labels to

improve neural perception iteratively.

D. Extensive experimental evaluation on synthetic

polyhedral scenes, hand-drawn sketches, and real-

image edge maps.

II. RELATED WORK

A. Symbolic and Rule-Based Line Drawing 

Interpretation

Early work on line-drawing interpretation introduced 

symbolic formulations based on junction configurations and 

constraint propagation to infer three-dimensional structure 

from two-dimensional drawings. These approaches 

emphasise explicit geometric reasoning and interpretability 

through legal junction-label tables  

and consistency constraints. 

However, purely symbolic 

systems are known to be 
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highly sensitive to noise, fragmented edges, and missing 

line segments [3]. As a result, recent research trends favour 

the combination of symbolic reasoning with data-driven 

perceptual modules. 

B. Learned Low-Level Vision 

Deep convolutional neural networks have significantly 

advanced low-level visual perception tasks such as edge 

detection, junction localisation, and line segment extraction. 

While early deep methods, such as Holistically-Nested Edge 

Detection (HED), introduced multi-scale predictors, recent 

surveys highlight an evolution towards more structured 

representations [1]. 

Interest point and junction detection has further improved 

with self-supervised and learned representations, exemplified 

by methods such as Super Point, which demonstrate strong 

performance in downstream geometric vision tasks [4]. For 

line segment detection, recent approaches move beyond 

classical Hough-based methods by learning structured 

representations that are robust to clutter. Attraction-field-

based models learn vector fields that guide the extraction of 

line segments with improved continuity [5]. More recently, 

Transformer-based architectures have been proposed for end-

to-end line segment detection, demonstrating competitive 

performance without explicit edge preprocessing [6]. 

C. Neuro-Symbolic Integration 

The integration of neural perception with symbolic reasoning 

has emerged as a promising direction in artificial intelligence. 

Recent surveys indicate that incorporating symbolic 

constraints into neural systems improves robustness and 

sample efficiency [2]. In the context of geometric vision, 

neuro-symbolic frameworks leverage probabilistic outputs 

from neural networks as priors while enforcing global 

structural legality through symbolic constraint satisfaction 

[7]. The proposed Deep Waltz framework follows this 

paradigm by combining learned junction perception with a 

Waltz-style CSP. 

III. METHOD OVERVIEW 

Figure 1 illustrates the overall Deep Waltz architecture. The 

pipeline begins with low-level image processing to extract 

candidate line segments and junctions from input edge maps. 

A neural refinement module then analyzes local geometric 

patterns and produces probabilistic priors for edge and 

junction labels. These priors are provided to a constraint 

satisfaction module that enforces global structural 

consistency. 

IV. LOW-LEVEL PROCESSING 

A. Edge Detection and Line Extraction 

The pipeline begins with edge detection, followed by line 

segment extraction. To obtain robust edge maps, we employ 

learned edge detectors for real and sketch-like inputs, and 

Canny edge detection for controlled synthetic scenes. Given 

an edge map E(x, y), line segments are extracted using either 

classical methods or learned line segment detectors [5]. Each 

detected line segment li is represented by its endpoints (x1, y1) 

and (x2, y2), orientation θi, and length ℓi—the allowed 

combinations of edge labels. 

 

[Fig.1: Overview of the Deep Waltz Neuro-Symbolic Pipeline. 

Low-Level Image Processing Extracts Line Segments and 

Junctions, Neural Refinement Provides Probabilistic Labelling 

Priors, Symbolic Constraint Satisfaction Enforces Global 

Consistency, and the Resulting Structure Is Fed Back to Refine 

the Neural Model] 

B. Segment Refinement 

Raw line detection often produces fragmented and redundant 

segments. To address this, short segments are first removed 

using a minimum length threshold ℓmin. Collinear fragments 

are then merged based on geometric consistency. Two-line 

segments li and lj are merged if their orientation difference 

and perpendicular distance satisfy: 

|𝜗𝑖 − 𝜗𝑗| < 𝜀𝜃   …   (1) 

and 

𝑑⊥(𝐼i,𝐼j) < 𝜀𝜃,   …   (2) 

where ϵθ is an angular tolerance and d⊥(li,lj) denotes the 

minimum perpendicular distance between the supporting 

lines of the two segments. 

C. Junction Detection 

Junction candidates are generated by computing pairwise 

intersections between refined line segments. Given two 

segments li and lj, an intersection point pij is detected if their 

supporting lines intersect within the segment extents. To 

improve robustness against noise, nearby intersection points 

are clustered using a spatial radius rj. All intersection points 

within a distance rj are grouped into a single junction Jk. For 

each detected junction, we record the set of incident edges: 

𝐸(𝐽k) = {𝐼i,|  ∥  𝑝ij −  𝐽k ∥ <   𝑟j}  …   (3) 

Along with the ordered set of incident angles {αm} 

measured relative to a fixed reference direction. 

V. SYMBOLIC WALTZ LABELING (CSP) 

A. Label Set and Legal Junction Tables  

Each detected edge e ∈ E is assigned a symbolic label from 

the finite set. 

𝐿 
=  {+ (convex), − (concave), 𝑜 (occluding)}.   …   (4) 

 

For each junction Jk, a junction type (e.g., L, T, Y, or 

Arrow) is determined based on local geometric configuration. 

For each junction type, a predefined set of legal label tuples 

specifies the allowed combinations of edge labels. 

B. CSP Formulation 

The symbolic labelling 

problem is formulated as a 

https://doi.org/10.35940/ijsce.B1038.15060126
https://doi.org/10.35940/ijsce.B1038.15060126
http://www.ijsce.org/


International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307 (Online), Volume-15 Issue-6, January 2026 

                                     19 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijsce.B103806020226 

DOI: 10.35940/ijsce.B1038.15060126 

Journal Website: www.ijsce.org 

constraint satisfaction problem. Each edge e ∈ E corresponds 

to a discrete variable Le with an initial domain De ⊆ L. 

Domains are pruned using probabilistic priors provided by the 

neural module. For each junction Jk with incident edges 

{e1,..., em}, a constraint enforces that the assigned labels 

form a legal tuple: 

 

(𝐿e1,…, 𝐿em) ∈  𝐶Jk′  …   (5) 

 

where 𝐶Jk denotes the set of legal label combinations. 

Given neural priors PNN (Le | e), we seek a globally 

consistent labelling that maximizes the posterior score: 

max ∑ log 𝑝NN (𝐿e| 𝑒)𝑠 . 𝑡. 𝑎𝑙𝑙 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑. {𝐿e}𝑒 ∈ E   …   (6) 

 

C. Solver Design 

The resulting CSP is solved using a depth-first backtracking 

search enhanced with variable ordering (prioritizing high 

entropy), forward checking, Arc Consistency (AC-3), and 

randomized restarts to avoid local optima. 

VI. NEURAL REFINEMENT MODULE 

A. Patch Extraction and CNN Architecture 

For each detected edge and junction, an oriented image 

patch is extracted from the input edge map. Patches are rotated 

to align with the local edge orientation and resized to S × S 

pixels. The neural refinement module uses a lightweight 

convolutional neural network to provide probabilistic priors. 

The network consists of three convolutional blocks followed 

by global average pooling. For edge classification, the CNN 

feature vector is concatenated with geometric attributes to 

produce a softmax distribution over the edge-label set L = {+, 

−, o}. 

B. Training and Loss Functions 

Initial training is performed using synthetic datasets. The 

overall loss is defined as: 

𝐿 = 𝜆
e 𝐿edge + 𝜆

j 𝐿junction′   …   (7) 

where Ledge and Ljunction are cross-entropy losses. For 

unlabeled scenes, the symbolic CSP solver produces globally 

consistent labellings used as pseudo-labels. 

VII. NEURO-SYMBOLIC EM-LIKE REFINEMENT LOOP 

To integrate neural perception with symbolic consistency, 

we employ an iterative refinement strategy. The procedure 

alternates between: 

A. Supervised Training: Train the neural module on 

labelled data. 

B. Symbolic Inference: Compute neural priors and 
run the Waltz CSP solver to obtain globally 
consistent labelling L∗. 

C. Pseudo-Label Refinement: Use L∗ to train further 
the neural module. 

D. Iteration: Repeat for R rounds. 

 

This process leverages symbolic global consistency to 

progressively refine neural perception without sacrificing 

interpretability. 

VIII. DATASETS AND EXPERIMENTAL SETUP 

Experiments are conducted on a set of manually selected 

line-drawing inputs, including synthetic polyhedral scenes 

and hand-drawn sketches. We evaluate the correctness of 

Junction labelling, the Legal labelling rate, and Qualitative 

structural consistency. We compare three configurations: 

Symbolic-only (CSP without neural priors), Neural-only 

(CNN without constraints), and Hybrid (Deep Waltz). 

IX. RESULTS AND DISCUSSION 

A. Comparative Evaluation 

The symbolic-only baseline frequently fails when 

t h e  line. Segments are fragmented. The neural-only model 

produces locally plausible labels but often violates global 

geometric constraints. In contrast, the hybrid Deep Waltz 

framework consistently enforces global legality while 

retaining robustness to perceptual noise. 

B. Qualitative Examples 

Representative examples illustrate that while symbolic-only 

inference struggles with broken lines and neural-only 

predictions mislabel concave/convex ambiguities, the hybrid 

system resolves these by enforcing Waltz-style constraints. 

X. CONCLUSION 

This paper introduced Deep Waltz, a hybrid neuro-symbolic 

framework. The results demonstrate that combining learned 

perception with symbolic constraints enables interpretable 

and legally consistent line-drawing interpretations. By 

emphasizing interpretability, this work contributes a 

principled foundation for future research in neuro-symbolic 

geometric vision. 
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