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Abstract: Interpreting three-dimensional structure from two-
dimensional line drawings remains a fundamental challenge in
computer vision, cognitive science, and artificial intelligence.
Classical symbolic approaches based on constraint-driven junction
labelling provide strong geometric interpretability but are highly
sensitive to noise, fragmented lines, and missing segments. In
contrast, modern deep learning methods are effective at detecting
edges, junctions, and local geometric patterns under real-world
conditions, yet often lack global consistency, interpretability,
and enforcement of physically plausible structural relationships.
These limitations motivate hybrid neuro-symbolic approaches that
combine learned perception with symbolic reasoning. In this work,
we present Deep Waltz, a hybrid vision framework that integrates a
compact CNN-based neural refinement module with a Waltz- style
constraint satisfaction solver. The proposed pipeline performs end-
to-end processing from raw images to globally consistent symbolic
interpretations, including edge detection, line segment extraction,
junction detection, CNN-based patch classification, and
constraint-based global inference using legal junction-label
tables. An EM-like iterative training scheme is introduced, in which
CSP-inferred labels serve as pseudo-labels to refine the neural
components and progressively improve global coherence.
Experiments on synthetic polyhedral scenes, hand-drawn sketches,
and real-image edge maps demonstrate that Deep Walts
substantially improves junction classification accuracy, legal
labelling rates, and structural reconstruction quality compared to
symbolic-only and neural-only baselines. These results indicate
that the proposed framework provides a robust, interpretable, and
reproducible solution for structural scene understanding from line
drawings.

Index Terms: Neuro-Symbolic Vision, Waltz Labelling, Line
Drawing Interpretation, Constraint Satisfaction, Junction
Detection, Deep Learning.

Nomenclature:

CNN: Convolutional Neural Network
CSP: Constraint Satisfaction Problem
EM: Expectation—Maximization

HED: Holistically-Nested Edge Detection

L. INTRODUCTION

Interpreting line drawings and edge maps into consistent
Structural scene descriptions remain a long-standing
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in computer vision. Early symbolic approaches introduced
formal representations based on junction configurations and
constraint propagation to infer three-dimensional structure
from two-dimensional line drawings. These methods provide
strong interpretability and explicit geometric reasoning but
are highly sensitive to noise, fragmented edges, and missing
line segments.

In contrast, modern deep learning techniques have
significantly improved the robustness of low-level perceptual
tasks. However, purely neural approaches typically lack
explicit mechanisms to enforce global geometric consistency,
physical plausibility, and symbolic interpretability. As a
result, their predictions may violate fundamental structural
constraints even when local evidence is substantial [1].

Recent advances in neuro-symbolic artificial intelligence
seek to bridge this gap by combining learned perception with
symbolic reasoning frameworks. Such hybrid systems aim to
leverage the robustness of neural models while preserving the
correctness guarantees and explainability offered by
constraint-based  reasoning  [2].  Structural  scene
understanding from line drawings provides a natural testbed
for this paradigm, as it requires both reliable perceptual input
and globally consistent geometric interpretation.

The main contributions of this work are summarized as
follows:

A. A complete neuro-symbolic pipeline that integrates
classical image processing, learned junction detection,
and symbolic constraint satisfaction reasoning.

B. A compact CNN-based junction classification module
that produces probabilistic priors used to guide
symbolic inference.

C. An EM-like neuro-symbolic refinement loop in which
CSP-inferred solutions are reused as pseudo-labels to
improve neural perception iteratively.

D. Extensive experimental evaluation on synthetic
polyhedral scenes, hand-drawn sketches, and real-
image edge maps.

II. RELATED WORK

A. Symbolic and  Rule-Based Line

Interpretation

Drawing

Early work on line-drawing interpretation introduced
symbolic formulations based on junction configurations and
constraint propagation to infer three-dimensional structure
from two-dimensional drawings. These approaches
emphasise explicit geometric reasoning and interpretability
through legal junction-label tables
and consistency constraints.
However, purely symbolic
systems are known to be
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highly sensitive to noise, fragmented edges, and missing
line segments [3]. As a result, recent research trends favour
the combination of symbolic reasoning with data-driven
perceptual modules.

B. Learned Low-Level Vision

Deep convolutional neural networks have significantly
advanced low-level visual perception tasks such as edge
detection, junction localisation, and line segment extraction.
While early deep methods, such as Holistically-Nested Edge
Detection (HED), introduced multi-scale predictors, recent
surveys highlight an evolution towards more structured
representations [1].

Interest point and junction detection has further improved
with self-supervised and learned representations, exemplified
by methods such as Super Point, which demonstrate strong
performance in downstream geometric vision tasks [4]. For
line segment detection, recent approaches move beyond
classical Hough-based methods by learning structured
representations that are robust to clutter. Attraction-field-
based models learn vector fields that guide the extraction of
line segments with improved continuity [5]. More recently,
Transformer-based architectures have been proposed for end-
to-end line segment detection, demonstrating competitive
performance without explicit edge preprocessing [6].

C. Neuro-Symbolic Integration

The integration of neural perception with symbolic reasoning
has emerged as a promising direction in artificial intelligence.
Recent surveys indicate that incorporating symbolic
constraints into neural systems improves robustness and
sample efficiency [2]. In the context of geometric vision,
neuro-symbolic frameworks leverage probabilistic outputs
from neural networks as priors while enforcing global
structural legality through symbolic constraint satisfaction
[7]. The proposed Deep Waltz framework follows this
paradigm by combining learned junction perception with a
Waltz-style CSP.

III. METHOD OVERVIEW

Figure 1 illustrates the overall Deep Waltz architecture. The
pipeline begins with low-level image processing to extract
candidate line segments and junctions from input edge maps.
A neural refinement module then analyzes local geometric
patterns and produces probabilistic priors for edge and
junction labels. These priors are provided to a constraint
satisfaction module that enforces global structural
consistency.

IV.LOW-LEVEL PROCESSING

A. Edge Detection and Line Extraction

The pipeline begins with edge detection, followed by line
segment extraction. To obtain robust edge maps, we employ
learned edge detectors for real and sketch-like inputs, and
Canny edge detection for controlled synthetic scenes. Given
an edge map E(x, y), line segments are extracted using either
classical methods or learned line segment detectors [5]. Each
detected line segment /; is represented by its endpoints (x!, ')
and (x% »?), orientation 6;, and length £—the allowed
combinations of edge labels.
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Figure 1: Architecture of the Deep Waltz Neuro-Symbolic Pipeline.

[Fig.1: Overview of the Deep Waltz Neuro-Symbolic Pipeline.
Low-Level Image Processing Extracts Line Segments and
Junctions, Neural Refinement Provides Probabilistic Labelling
Priors, Symbolic Constraint Satisfaction Enforces Global
Consistency, and the Resulting Structure Is Fed Back to Refine
the Neural Model]

B. Segment Refinement

Raw line detection often produces fragmented and redundant
segments. To address this, short segments are first removed
using a minimum length threshold min. Collinear fragments
are then merged based on geometric consistency. Two-line
segments /; and /; are merged if their orientation difference
and perpendicular distance satisfy:

[9; — 9] < &g (1)

and
d, (I 1;) < &, (2)
where €0 is an angular tolerance and d_L(li,lj) denotes the
minimum perpendicular distance between the supporting
lines of the two segments.

C. Junction Detection

Junction candidates are generated by computing pairwise
intersections between refined line segments. Given two
segments li and 1j, an intersection point pij is detected if their
supporting lines intersect within the segment extents. To
improve robustness against noise, nearby intersection points
are clustered using a spatial radius rj. All intersection points
within a distance 1j are grouped into a single junction Jk. For
each detected junction, we record the set of incident edges:

EGw) ={L| I pij — Jx 1< 73} (€))

Along with the ordered set of incident angles {a.}
measured relative to a fixed reference direction.

V.SYMBOLIC WALTZ LABELING (CSP)

A. Label Set and Legal Junction Tables

Each detected edge e € E is assigned a symbolic label from
the finite set.
L
= {+ (convex), — (concave), o (occluding)}. 1)
For each junction Jk, a junction type (e.g., L, T, Y, or
Arrow) is determined based on local geometric configuration.
For each junction type, a predefined set of legal label tuples
specifies the allowed combinations of edge labels.

B. CSP Formulation

The symbolic labelling
problem is formulated as a
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constraint satisfaction problem. Each edge e € E corresponds
to a discrete variable Le with an initial domain De € L.
Domains are pruned using probabilistic priors provided by the
neural module. For each junction Jk with incident edges
{el,..., em}, a constraint enforces that the assigned labels
form a legal tuple:
(Lel,..., Lem) € C]kl (5)
where Cji denotes the set of legal label combinations.

Given neural priors PNN (Le | e), we seek a globally
consistent labelling that maximizes the posterior score:

maxz log pnn (Lel €)s. t.all junction constraints
satisfied.{L.}e € E (6)

C. Solver Design

The resulting CSP is solved using a depth-first backtracking
search enhanced with variable ordering (prioritizing high
entropy), forward checking, Arc Consistency (AC-3), and
randomized restarts to avoid local optima.

VI.NEURAL REFINEMENT MODULE
A. Patch Extraction and CNN Architecture

For each detected edge and junction, an oriented image
patch is extracted from the input edge map. Patches are rotated
to align with the local edge orientation and resized to S x S
pixels. The neural refinement module uses a lightweight
convolutional neural network to provide probabilistic priors.
The network consists of three convolutional blocks followed
by global average pooling. For edge classification, the CNN
feature vector is concatenated with geometric attributes to
produce a softmax distribution over the edge-label set L = {+,
-, 0}.

B. Training and Loss Functions

Initial training is performed using synthetic datasets. The
overall loss is defined as:

junctions

(7

where Ledge and Ljunction are cross-entropy losses. For
unlabeled scenes, the symbolic CSP solver produces globally
consistent labellings used as pseudo-labels.

edge

VII. NEURO-SYMBOLIC EM-LIKE REFINEMENT LOOP

To integrate neural perception with symbolic consistency,
we employ an iterative refinement strategy. The procedure
alternates between:

A. Supervised Training: Train the neural module on
labelled data.

B. Symbolic Inference: Compute neural priors and
run the Waltz CSP solver to obtain globally
consistent labelling L*.

C. Pseudo-Label Refinement: Use L* to train further
the neural module.

D. Iteration: Repeat for R rounds.

This process leverages symbolic global consistency to
progressively refine neural perception without sacrificing
interpretability.
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VIII. DATASETS AND EXPERIMENTAL SETUP

Experiments are conducted on a set of manually selected
line-drawing inputs, including synthetic polyhedral scenes
and hand-drawn sketches. We evaluate the correctness of
Junction labelling, the Legal labelling rate, and Qualitative
structural consistency. We compare three configurations:
Symbolic-only (CSP without neural priors), Neural-only
(CNN without constraints), and Hybrid (Deep Waltz).

IX. RESULTS AND DISCUSSION

A. Comparative Evaluation

The symbolic-only baseline frequently fails when
t h e line. Segments are fragmented. The neural-only model
produces locally plausible labels but often violates global
geometric constraints. In contrast, the hybrid Deep Waltz
framework consistently enforces global legality while
retaining robustness to perceptual noise.

B. Qualitative Examples

Representative examples illustrate that while symbolic-only
inference struggles with broken lines and neural-only
predictions mislabel concave/convex ambiguities, the hybrid
system resolves these by enforcing Waltz-style constraints.

X. CONCLUSION

This paper introduced Deep Waltz, a hybrid neuro-symbolic
framework. The results demonstrate that combining learned
perception with symbolic constraints enables interpretable
and legally consistent line-drawing interpretations. By
emphasizing interpretability, this work contributes a
principled foundation for future research in neuro-symbolic
geometric vision.
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