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Enhancing GPU-HBM Data Transfer Efficiency
Using Markov Chains and Neural Network-Driven

Predictive Caching with Quantization and Pruning

Samiel Azmaien

Abstract: Background High-bandwidth memory (HBM) systems
face persistent data transfer bottlenecks, particularly when CPUs
are unable to supply data to GPUs at a sufficient rate. This
limitation reduces overall computational efficiency and highlights
the need for improved cache management strategies. Methods:
Markov Chains represented transitions between frequently
accessed memory blocks, enabling predictive sequencing of data
needs. A neural network was then applied to model and optimise
these Markov transitions, improving cache prefetching accuracy
and further optimising data movement techniques. Results &
Conclusions: The combined use of Markov-based memory
modelling, NN optimisation, and supplementary data transfer
techniques demonstrates strong potential to mitigate CPU-GPU
bandwidth limitations. Together, these methods offer more
efficient cache utilization and reduced bottlenecks in high-demand
computational environments.
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Nomenclature:
HBM: High-Bandwidth Memory

I. INTRODUCTION

Efﬁcient cache management is crucial in mitigating

memory bottlenecks in GPU-based architectures. GPU
caches act as tiny, fast-access memory blocks that store
frequently accessed data, helping minimise latency when
accessing off-chip memory. However, managing these
caches effectively requires advanced strategies due to the
unique nature of GPU workloads. Prefetching is a widely
used technique that predicts memory access patterns and
fetches data into the cache before the processor requires it. A
Markov chain-based prefetcher, for example, “predicts
multiple references from the memory subsystem and
prioritizes their delivery to the processor” [1]. Such
techniques reduce memory stalls and improve bandwidth
utilization by ensuring data is available when needed. Warp
scheduling also plays a significant role in optimizing memory
access. According to a study on GPGPU architectures,
traditional scheduling policies "cause prefetches to be
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generated too close to the time they are demanded," resulting
in inefficiencies [2]. Prefetch-aware warp scheduling
mitigates this issue by staggering the execution of
consecutive warps, allowing more accurate data predictions
[3]. By combining predictive models such as Markov chains
with effective scheduling policies, cache prefetching can
become more efficient, ultimately reducing latency caused by
memory transfers. In addition to cache optimization, network
compression techniques such as pruning and quantization
further enhance data transfer efficiency in GPU-HBM
architectures. Neural networks are known for their high
computational demands, which can slow down real-time
deployment. However, “compression techniques like pruning
remove redundant computations,” which not only speeds up
execution but also lowers the energy required to run these
models [4]. Static pruning can be performed offline to
remove unneeded connections, while dynamic pruning
occurs during runtime to adapt to varying workloads.
Quantisation, on the other hand, reduces data precision, for
example, by converting weights and activations from 32-bit
floating-point numbers to 8-bit integers. This not only
decreases memory usage but also reduces computational
overhead. “Quantized models often achieve significant
reductions in latency with minimal loss in accuracy,” making
them highly suitable for GPU-heavy applications [5]. When
combined with Markov chain-based prefetching strategies,
these optimisations further streamline data transfer,
addressing the bottleneck caused by the high data demands
of neural networks [6, 7].

II. METHODS
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[Fig.1: GPGPU Architecture Diagram on ISA [8]]

The attached diagram illustrates components relevant to
GPU-HBM bottleneck challenges. Specifically, the I-Cache
and Operand Collector represent stages where memory
access and data prefetching occur, directly benefiting from
Markov-based and neural network-

Driven optimizations. This is
where the direct
implementation of the Markov
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optimisation algorithm will replace the current cache
implementations to measure performance changes.
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[Fig.2: Diagram Explaining Methodology]

Before discussing the programming implementation, a brief
overview of the methodology is required. The project uses a
GPGPU simulator for its V100 architecture to obtain
statistics on cache hit and miss rates, the primary variable.
Memory access patterns were modelled using Markov Chains
to predict high-probability access sequences. These
predictions fed into a neural network, which validated and
adjusted predictions. The process of tuning the parameters
was the most time-consuming, as the constant validation
based on results required many runs. The model underwent
multiple iterations and testing cycles. For the initial trials, the
batch size was around 1000 over 100 epochs, as they focused
on validating the accuracy of Markov Chain predictions
against highly reproducible synthetic memory patterns.
However, due to concerns about overfitting, the validation
was quickly shifted to use real-world memory patterns, which
lowered the batch size and therefore required an increase in
the number of epochs.

Uniform quantisation was performed, in which the signal
amplitude range is divided into equal intervals, and each
interval is assigned a quantisation level. Magnitude-based
pruning was integrated with these filter operations by
removing weights with small absolute values, indicating low
significance. This led to a substantial reduction in the
network’s size and computational demand. The predictive
caching mechanism was then implemented within the
memory controller, prefetching data to reduce stalls and
enhance overall efficiency.

III. MODELING EXPLANATION

By inspection, the choice of a Markov Chain to map the
transition states was correct. This is because Markov Chains
are effective for modelling probabilistic sequences of
transitions between a finite set of states. In fact, probabilistic
descriptions of transitions via a stochastic transition matrix
efficiently predict memory-access patterns. The Markov
Chain is a finite set of states in which fixed probabilities,
independent of the time step, govern transitions [9]. This
property is significant for this project because it enables the
creation of a transition matrix P that represents the
probabilities of moving between the memory blocks. This not
only simplifies the representation but also helps analyse the
steady-state behaviour and transition dynamics. For a regular
Markov Chain, the system converges to a unique stationary
distribution vector W, which represents the limiting
probabilities of being in each state as m—oo.

Using eigenvalue methods, W can be evaluated to learn about prefetching
the long-term memory access patterns. Because the transition strategies by highlighting high-
matrix is regular, all rows of Pm converge to W, which makes probability pathways.
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Markov Chains especially helpful in understanding stable
probabilistic behaviour [10].

A. Markov Chain Construction

The memory blocks B = {b1, b, ..., bn} are treated as states
in a Markov Chain. Transitions between states are recorded
in a transition matrix P, where each element Pj, j represents
the transition probability from block bi to block b;.
Mathematically,

count of transitions from b; to b;

P .=
b S count of transitions from b;to by,

B. Statistical Analysis

The Wilcoxon signed-rank test was used to analyze the
paired differences in performance metrics between the
baseline and optimized builds. The test was conducted by
calculating the differences for each metric in the paired
datasets, ranking the absolute values of these differences, and
assigning ranks to their signed values (positive or negative).
This approach helped identify whether the optimizations led
to statistically significant improvements in the performance
metrics. Cohen’s d was computed to quantify the effect size,
measuring the magnitude of improvements in performance
metrics between the baseline and optimised builds. For each
metric, the mean difference between the baseline and
optimized datasets was calculated and divided by the pooled
standard deviation. This analysis provided a standardised
measure of the impact of the Markov Chain caching
algorithm and neural network integration on the system's
overall performance, enabling comparisons across metrics
and the interpretation of the results' practical significance.

IV. RESULTS

Memory Block Transition Matrix
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[Fig.3: Transition Probabilities Across Memory Blocks
Visualized as a Matrix]

Figure 3 depicts the Markov chain's transition matrix,
where each element (Pi;) corresponds to the probability of
transitioning from memory block i to block j. The rows
represent the current memory block, while the columns
indicate the following block to be accessed. Some key
observations include the high self-transition probabilities (ex,
P0,0 = 50), which suggest temporal locality in memory
access. The graph also supports
optimisation

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Exploring Innovation


https://doi.org/10.35940/ijsce.F3700.15060126
https://doi.org/10.35940/ijsce.F3700.15060126
http://www.ijsce.org/

OPENaACCESS

Cache Hits and Misses Heatmap
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[Fig.4: Cache Performance Metrics Broken Down by
Memory Levels]

DDR Memory
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Figure 4 illustrates the distribution of cache hits and misses
across different memory levels (L1 Cache, L2 Cache, and
DDR Memory). Hits dominate the L1 Cache, indicating it is
essential for rapid data retrieval. Misses are most prominent
in DDR Memory, illustrating latency challenges at deeper
memory levels. This visualisation highlighted the importance
of prioritising neural network enhancements for higher-level
caches and of minimising bottlenecks when accessing critical
data.

Cache Hit Rates Over Time
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[Fig.5: Temporal Variations in L1 And L2 Cache Hit Rates]

Figure 5 tracks the hit rates for L1 and L2 caches over time.
As evidenced by the chart, L1 consistently outperforms L2 in
hit rate percentage, reaching a peak of 85%. The fluctuations
in L2 hit rates, typically between 60% and 70%, suggest areas
for optimization in access prediction accuracy. These
findings support the use of Markov chains with neural
networks to improve prefetching algorithms.
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[Fig.6: As the Matrix Multiplication of Transition
Probability Increases, The System Becomes More
Dynamic]
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Error Tuning of Final Markov Model Over Time
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[Fig.7: CTMC, IMM, and DTMC Model Loss Visualization]
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[Fig.8: Propagation Error Minimization Visualization]
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[Fig.9: Layered Architecture of the Neural Network Used
for Memory Block Predictions]

Figure 9 details the neural network model that was used.
The model has two hidden layers, each with 64 units, and a
dense output layer that predicts the next memory block. By
inputting sequences of memory accesses, the network
identifies patterns and predicts future accesses. This
architecture was used because it balances computational
efficiency and prediction accuracy to minimise the trade-
off between the two, maximising
performance.
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[Fig.10: Quantitative Overview of the Neural Network
Parameters]

Figure 10 summarizes the neural network's structure,
including the number of parameters per layer. A total of
133,224 parameters indicates a compact yet powerful model.
Techniques such as pruning and quantization reduced
memory usage without compromising performance, aligning
with the multinomial theorem to streamline computations.
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[Fig.11: Performance Metrics Comparison: Baseline vs
Optimized Cache Management]

Figure 11 compares performance metrics between the
baseline and optimized caching methods. The graph
illustrates improvements in metrics such as cache hit rate,
bandwidth utilisation, and latency achieved through Markov
Chain-based predictive caching and neural network
optimisations. The transition from baseline to optimised
shows enhancements; however, the significance of these
enhancements must be analysed. This analysis was conducted
using a Wilcoxon Rank Sum test. With a sample size (N) of
8 and a critical value (Werit) of 4, the test yielded a Witat of 3,
leading to the rejection of the null hypothesis. Additionally, a
Cohen’s d test was performed, producing a value of 0.8325.
This indicates a large effect size, signifying substantial
practical applicability of the optimizations.

Training and Validation Accuracy
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[Fig.12: Training and Validation Accuracy Trends
Across Epochs]

The graph illustrates the training and validation accuracy
trends for a neural network model over 10 epochs. As
depicted, the training and validation accuracies steadily
improve, indicating effective learning. The close alignment
of training and validation curves suggests that the model
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generalizes well, with minimal overfitting. This performance
is critical when integrating quantization and pruning, as these
techniques aim to maintain accuracy while optimizing
memory and computational efficiency.

Training and Validation Loss
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[Fig.13: Training and Validation Loss Trends Across Epochs]

The graph demonstrates the training and validation loss of
a neural network model over 10 epochs. Both training and
validation loss decrease consistently, reflecting the model's
ability to minimize error during training. The convergence of
the two curves indicates that the model avoids overfitting,
maintaining its performance across unseen validation data.
This trend highlights the efficacy of quantization and pruning
techniques in reducing computational overhead without
compromising model precision.

V. DISCUSSION AND CONCLUSIONS

It can be seen that integrating Markov Chains with neural
network modelling for optimisation can enhance data
prefetching. This reduces memory stalls and improves overall
data transfer efficiency. Additionally, the quantisation and
pruning methodologies further enhance the GPU-HBM
architecture by reducing memory consumption and
computational overhead during data transfer. A solution was
achieved by combining predictive cache management with
data compression, thereby mitigating the memory bottleneck
in GPU-driven applications. The visualisations of transition
matrices revealed temporal locality patterns that drove high-
probability path optimisations for effective memory access.
The cache performance metrics underscored differences in hit
and miss distributions across the memory levels, with L1
Cache dominating in terms of hits, while DDR Memory had
latency issues. Temporal trends in hit rates for L1 and L2
caches further underscored the need for dynamic optimisation
strategies, thereby validating our combined Markov Chain
and neural network methodology. Our neural network
architecture achieved a balance between predictive power and
computational efficiency by leveraging quantisation and
pruning, using 133,224 parameters. In addition to reducing
memory overhead, these enhancements adhered to data
prefetching objectives, which minimizes latency. This
integrated approach delivers a portable, efficient solution for
various GPU workloads, laying the foundation for the next
generation of memory management systems in high-
performance computing.

Further work will extend these methods to larger classes of
workloads and architectures and
address more practical
deployment issues to unleash
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their Full transformational power.

While our model works well in most scenarios, there are a
few exceptions to cover. It was assumed that memory access
patterns exhibit sufficient temporal locality to be modelled as
a Markov Chain, based on previous observations of
workloads in which access patterns followed predictable
sequences. Not only that, but it is assumed that the transition
probabilities between memory blocks remain stationary over
time, which aligns with the fundamental properties of regular
Markov Chains. While this simplifies the computation behind
the stationary distribution, it may not hold for workloads with
irregular access patterns. This could potentially limit the
model's adaptability. The neural network also assumes that
past sequences of memory accesses sufficiently encode the
necessary context to predict future accesses, which may not
be accurate for workloads with non-linear or long-range
dependencies. While quantisation and pruning techniques
may reduce memory usage and computational complexity,
they can also introduce a trade-off between model accuracy
and efficiency, especially in scenarios where high precision
is critical. Lastly, prefetching strategies derived from graph
representations of Markov Chains tend to focus on high-
probability paths, potentially neglecting rare yet impactful
transitions. This limitation would lead to occasional
mispredictions and underutilization of cache resources.
Overall, these limitations suggest that while our approach
works well for many scenarios, it may require refinements or
different methods to address workloads with non-stationary,
irregular, or highly complex memory access patterns—
International Journal of Soft Computing and Engineering
2025.
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