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Abstract:  Background High-bandwidth memory (HBM) systems 

face persistent data transfer bottlenecks, particularly when CPUs 

are unable to supply data to GPUs at a sufficient rate. This 

limitation reduces overall computational efficiency and highlights 

the need for improved cache management strategies. Methods: 

Markov Chains represented transitions between frequently 

accessed memory blocks, enabling predictive sequencing of data 

needs. A neural network was then applied to model and optimise 

these Markov transitions, improving cache prefetching accuracy 

and further optimising data movement techniques. Results & 

Conclusions: The combined use of Markov-based memory 

modelling, NN optimisation, and supplementary data transfer 

techniques demonstrates strong potential to mitigate CPU–GPU 

bandwidth limitations. Together, these methods offer more 

efficient cache utilization and reduced bottlenecks in high-demand 

computational environments.  

Keywords: HBM Architecture, Data Transfer, Cache 

Prefetching, Markov Chains, Quantization, Pruning 

Nomenclature:  

HBM: High-Bandwidth Memory 

I. INTRODUCTION

Efficient cache management is crucial in mitigating

memory bottlenecks in GPU-based architectures. GPU 

caches act as tiny, fast-access memory blocks that store 

frequently accessed data, helping minimise latency when 

accessing off-chip memory. However, managing these 

caches effectively requires advanced strategies due to the 

unique nature of GPU workloads. Prefetching is a widely 

used technique that predicts memory access patterns and 

fetches data into the cache before the processor requires it. A 

Markov chain-based prefetcher, for example, “predicts 

multiple references from the memory subsystem and 

prioritizes their delivery to the processor” [1]. Such 

techniques reduce memory stalls and improve bandwidth 

utilization by ensuring data is available when needed. Warp 

scheduling also plays a significant role in optimizing memory 

access. According to a study on GPGPU architectures, 

traditional scheduling policies "cause prefetches to be  
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generated too close to the time they are demanded," resulting 

in inefficiencies [2]. Prefetch-aware warp scheduling 

mitigates this issue by staggering the execution of 

consecutive warps, allowing more accurate data predictions 

[3]. By combining predictive models such as Markov chains 

with effective scheduling policies, cache prefetching can 

become more efficient, ultimately reducing latency caused by 

memory transfers. In addition to cache optimization, network 

compression techniques such as pruning and quantization 

further enhance data transfer efficiency in GPU-HBM 

architectures. Neural networks are known for their high 

computational demands, which can slow down real-time 

deployment. However, “compression techniques like pruning 

remove redundant computations,” which not only speeds up 

execution but also lowers the energy required to run these 

models [4]. Static pruning can be performed offline to 

remove unneeded connections, while dynamic pruning 

occurs during runtime to adapt to varying workloads. 

Quantisation, on the other hand, reduces data precision, for 

example, by converting weights and activations from 32-bit 

floating-point numbers to 8-bit integers. This not only 

decreases memory usage but also reduces computational 

overhead. “Quantized models often achieve significant 

reductions in latency with minimal loss in accuracy,” making 

them highly suitable for GPU-heavy applications [5]. When 

combined with Markov chain-based prefetching strategies, 

these optimisations further streamline data transfer, 

addressing the bottleneck caused by the high data demands 

of neural networks [6, 7]. 

II. METHODS

[Fig.1: GPGPU Architecture Diagram on ISA [8]] 

The attached diagram illustrates components relevant to 

GPU-HBM bottleneck challenges. Specifically, the I-Cache 

and Operand Collector represent stages where memory 

access and data prefetching occur, directly benefiting from 

Markov-based and neural network- 

Driven optimizations. This is 

where the direct 

implementation of the Markov 
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optimisation algorithm will replace the current cache 

implementations to measure performance changes. 
 

 

[Fig.2: Diagram Explaining Methodology] 

Before discussing the programming implementation, a brief 

overview of the methodology is required. The project uses a 

GPGPU simulator for its V100 architecture to obtain 

statistics on cache hit and miss rates, the primary variable. 

Memory access patterns were modelled using Markov Chains 

to predict high-probability access sequences. These 

predictions fed into a neural network, which validated and 

adjusted predictions. The process of tuning the parameters 

was the most time-consuming, as the constant validation 

based on results required many runs. The model underwent 

multiple iterations and testing cycles. For the initial trials, the 

batch size was around 1000 over 100 epochs, as they focused 

on validating the accuracy of Markov Chain predictions 

against highly reproducible synthetic memory patterns. 

However, due to concerns about overfitting, the validation 

was quickly shifted to use real-world memory patterns, which 

lowered the batch size and therefore required an increase in 

the number of epochs.  

Uniform quantisation was performed, in which the signal 

amplitude range is divided into equal intervals, and each 

interval is assigned a quantisation level. Magnitude-based 

pruning was integrated with these filter operations by 

removing weights with small absolute values, indicating low 

significance. This led to a substantial reduction in the 

network’s size and computational demand. The predictive 

caching mechanism was then implemented within the 

memory controller, prefetching data to reduce stalls and 

enhance overall efficiency. 

III. MODELING EXPLANATION 

By inspection, the choice of a Markov Chain to map the 

transition states was correct. This is because Markov Chains 

are effective for modelling probabilistic sequences of 

transitions between a finite set of states. In fact, probabilistic 

descriptions of transitions via a stochastic transition matrix 

efficiently predict memory-access patterns. The Markov 

Chain is a finite set of states in which fixed probabilities, 

independent of the time step, govern transitions [9]. This 

property is significant for this project because it enables the 

creation of a transition matrix P that represents the 

probabilities of moving between the memory blocks. This not 

only simplifies the representation but also helps analyse the 

steady-state behaviour and transition dynamics. For a regular 

Markov Chain, the system converges to a unique stationary 

distribution vector W, which represents the limiting 

probabilities of being in each state as m→∞. 

Using eigenvalue methods, W can be evaluated to learn about 

the long-term memory access patterns. Because the transition 

matrix is regular, all rows of Pm converge to W, which makes 

Markov Chains especially helpful in understanding stable 

probabilistic behaviour [10]. 

A. Markov Chain Construction 

The memory blocks B = {b1, b2, …, bn} are treated as states 

in a Markov Chain. Transitions between states are recorded 

in a transition matrix P, where each element Pi, j represents 

the transition probability from block bi to block bj. 

Mathematically, 

𝑃𝑖,𝑗 =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑏𝑖  𝑡𝑜 𝑏𝑗

 ∑𝐾  𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑏𝑖𝑡𝑜 𝑏𝑘

 

B. Statistical Analysis 

The Wilcoxon signed-rank test was used to analyze the 

paired differences in performance metrics between the 

baseline and optimized builds. The test was conducted by 

calculating the differences for each metric in the paired 

datasets, ranking the absolute values of these differences, and 

assigning ranks to their signed values (positive or negative). 

This approach helped identify whether the optimizations led 

to statistically significant improvements in the performance 

metrics. Cohen’s d was computed to quantify the effect size, 

measuring the magnitude of improvements in performance 

metrics between the baseline and optimised builds. For each 

metric, the mean difference between the baseline and 

optimized datasets was calculated and divided by the pooled 

standard deviation. This analysis provided a standardised 

measure of the impact of the Markov Chain caching 

algorithm and neural network integration on the system's 

overall performance, enabling comparisons across metrics 

and the interpretation of the results' practical significance. 

IV. RESULTS 

 

[Fig.3: Transition Probabilities Across Memory Blocks 

Visualized as a Matrix] 

Figure 3 depicts the Markov chain's transition matrix, 

where each element (Pi,j) corresponds to the probability of 

transitioning from memory block i to block j. The rows 

represent the current memory block, while the columns 

indicate the following block to be accessed. Some key 

observations include the high self-transition probabilities (ex, 

P0,0 = 50), which suggest temporal locality in memory 

access. The graph also supports 

prefetching optimisation 

strategies by highlighting high-

probability pathways. 
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[Fig.4: Cache Performance Metrics Broken Down by 

Memory Levels] 

Figure 4 illustrates the distribution of cache hits and misses 

across different memory levels (L1 Cache, L2 Cache, and 

DDR Memory). Hits dominate the L1 Cache, indicating it is 

essential for rapid data retrieval. Misses are most prominent 

in DDR Memory, illustrating latency challenges at deeper 

memory levels. This visualisation highlighted the importance 

of prioritising neural network enhancements for higher-level 

caches and of minimising bottlenecks when accessing critical 

data. 

 

[Fig.5: Temporal Variations in L1 And L2 Cache Hit Rates] 

Figure 5 tracks the hit rates for L1 and L2 caches over time. 

As evidenced by the chart, L1 consistently outperforms L2 in 

hit rate percentage, reaching a peak of 85%. The fluctuations 

in L2 hit rates, typically between 60% and 70%, suggest areas 

for optimization in access prediction accuracy. These 

findings support the use of Markov chains with neural 

networks to improve prefetching algorithms. 

 

[Fig.6: As the Matrix Multiplication of Transition 

Probability Increases, The System Becomes More 

Dynamic] 

 

[Fig.7: CTMC, IMM, and DTMC Model Loss Visualization] 

 

[Fig.8:  Propagation Error Minimization Visualization] 

 

[Fig.9: Layered Architecture of the Neural Network Used 

for Memory Block Predictions] 
 

Figure 9 details the neural network model that was used. 

The model has two hidden layers, each with 64 units, and a 

dense output layer that predicts the next memory block. By 

inputting sequences of memory accesses, the network 

identifies patterns and predicts future accesses. This 

architecture was used because it balances computational 

efficiency and prediction accuracy to minimise the trade-

off between the two, maximising 

performance.  
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[Fig.10: Quantitative Overview of the Neural Network 

Parameters] 

Figure 10 summarizes the neural network's structure, 

including the number of parameters per layer. A total of 

133,224 parameters indicates a compact yet powerful model. 

Techniques such as pruning and quantization reduced 

memory usage without compromising performance, aligning 

with the multinomial theorem to streamline computations. 

 

[Fig.11: Performance Metrics Comparison: Baseline vs 

Optimized Cache Management] 

Figure 11 compares performance metrics between the 

baseline and optimized caching methods. The graph 

illustrates improvements in metrics such as cache hit rate, 

bandwidth utilisation, and latency achieved through Markov 

Chain-based predictive caching and neural network 

optimisations. The transition from baseline to optimised 

shows enhancements; however, the significance of these 

enhancements must be analysed. This analysis was conducted 

using a Wilcoxon Rank Sum test. With a sample size (N) of 

8 and a critical value (Wcrit) of 4, the test yielded a Wstat of 3, 

leading to the rejection of the null hypothesis. Additionally, a 

Cohen’s d test was performed, producing a value of 0.8325. 

This indicates a large effect size, signifying substantial 

practical applicability of the optimizations. 

 

[Fig.12: Training and Validation Accuracy Trends 

Across Epochs] 

The graph illustrates the training and validation accuracy 

trends for a neural network model over 10 epochs. As 

depicted, the training and validation accuracies steadily 

improve, indicating effective learning. The close alignment 

of training and validation curves suggests that the model 

generalizes well, with minimal overfitting. This performance 

is critical when integrating quantization and pruning, as these 

techniques aim to maintain accuracy while optimizing 

memory and computational efficiency. 

 

[Fig.13: Training and Validation Loss Trends Across Epochs] 

The graph demonstrates the training and validation loss of 

a neural network model over 10 epochs. Both training and 

validation loss decrease consistently, reflecting the model's 

ability to minimize error during training. The convergence of 

the two curves indicates that the model avoids overfitting, 

maintaining its performance across unseen validation data. 

This trend highlights the efficacy of quantization and pruning 

techniques in reducing computational overhead without 

compromising model precision. 

V. DISCUSSION AND CONCLUSIONS 

It can be seen that integrating Markov Chains with neural 

network modelling for optimisation can enhance data 

prefetching. This reduces memory stalls and improves overall 

data transfer efficiency. Additionally, the quantisation and 

pruning methodologies further enhance the GPU-HBM 

architecture by reducing memory consumption and 

computational overhead during data transfer. A solution was 

achieved by combining predictive cache management with 

data compression, thereby mitigating the memory bottleneck 

in GPU-driven applications. The visualisations of transition 

matrices revealed temporal locality patterns that drove high-

probability path optimisations for effective memory access. 

The cache performance metrics underscored differences in hit 

and miss distributions across the memory levels, with L1 

Cache dominating in terms of hits, while DDR Memory had 

latency issues. Temporal trends in hit rates for L1 and L2 

caches further underscored the need for dynamic optimisation 

strategies, thereby validating our combined Markov Chain 

and neural network methodology. Our neural network 

architecture achieved a balance between predictive power and 

computational efficiency by leveraging quantisation and 

pruning, using 133,224 parameters. In addition to reducing 

memory overhead, these enhancements adhered to data 

prefetching objectives, which minimizes latency. This 

integrated approach delivers a portable, efficient solution for 

various GPU workloads, laying the foundation for the next 

generation of memory management systems in high-

performance computing.  

Further work will extend these methods to larger classes of 

workloads and architectures and 

address more practical 

deployment issues to unleash 
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their Full transformational power.  

While our model works well in most scenarios, there are a 

few exceptions to cover. It was assumed that memory access 

patterns exhibit sufficient temporal locality to be modelled as 

a Markov Chain, based on previous observations of 

workloads in which access patterns followed predictable 

sequences. Not only that, but it is assumed that the transition 

probabilities between memory blocks remain stationary over 

time, which aligns with the fundamental properties of regular 

Markov Chains. While this simplifies the computation behind 

the stationary distribution, it may not hold for workloads with 

irregular access patterns. This could potentially limit the 

model's adaptability. The neural network also assumes that 

past sequences of memory accesses sufficiently encode the 

necessary context to predict future accesses, which may not 

be accurate for workloads with non-linear or long-range 

dependencies. While quantisation and pruning techniques 

may reduce memory usage and computational complexity, 

they can also introduce a trade-off between model accuracy 

and efficiency, especially in scenarios where high precision 

is critical. Lastly, prefetching strategies derived from graph 

representations of Markov Chains tend to focus on high-

probability paths, potentially neglecting rare yet impactful 

transitions. This limitation would lead to occasional 

mispredictions and underutilization of cache resources. 

Overall, these limitations suggest that while our approach 

works well for many scenarios, it may require refinements or 

different methods to address workloads with non-stationary, 

irregular, or highly complex memory access patterns—
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