
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-15 Issue-6, January 2026

 12

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F370015060126

DOI: 10.35940/ijsce.F3700.15060126

Journal Website: www.ijsce.org

Enhancing GPU-HBM Data Transfer Efficiency

Using Markov Chains and Neural Network-Driven

Predictive Caching with Quantization and Pruning

Samiel Azmaien

Abstract: Background High-bandwidth memory (HBM) systems

face persistent data transfer bottlenecks, particularly when CPUs

are unable to supply data to GPUs at a sufficient rate. This

limitation reduces overall computational efficiency and highlights

the need for improved cache management strategies. Methods:

Markov Chains represented transitions between frequently

accessed memory blocks, enabling predictive sequencing of data

needs. A neural network was then applied to model and optimise

these Markov transitions, improving cache prefetching accuracy

and further optimising data movement techniques. Results &

Conclusions: The combined use of Markov-based memory

modelling, NN optimisation, and supplementary data transfer

techniques demonstrates strong potential to mitigate CPU–GPU

bandwidth limitations. Together, these methods offer more

efficient cache utilization and reduced bottlenecks in high-demand

computational environments.

Keywords: HBM Architecture, Data Transfer, Cache

Prefetching, Markov Chains, Quantization, Pruning

Nomenclature:

HBM: High-Bandwidth Memory

I. INTRODUCTION

Efficient cache management is crucial in mitigating

memory bottlenecks in GPU-based architectures. GPU

caches act as tiny, fast-access memory blocks that store

frequently accessed data, helping minimise latency when

accessing off-chip memory. However, managing these

caches effectively requires advanced strategies due to the

unique nature of GPU workloads. Prefetching is a widely

used technique that predicts memory access patterns and

fetches data into the cache before the processor requires it. A

Markov chain-based prefetcher, for example, “predicts

multiple references from the memory subsystem and

prioritizes their delivery to the processor” [1]. Such

techniques reduce memory stalls and improve bandwidth

utilization by ensuring data is available when needed. Warp

scheduling also plays a significant role in optimizing memory

access. According to a study on GPGPU architectures,

traditional scheduling policies "cause prefetches to be

Manuscript received on 19 November 2025 | First Revised

Manuscript received on 29 November 2025 | Second Revised

Manuscript received on 08 December 2025 | Manuscript

Accepted on 15 January 2026 | Manuscript published on 30

January 2026.

*Correspondence Author(s)

Samiel Azmaien*, Research Assistant, Department of Computer Science,

Georgia Institute of Technology, Atlanta (Georgia), United States of

America (USA). Email ID: shazmaien06@gmail.com, ORCID ID: 0009-

0008-3724-7310

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open-access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

generated too close to the time they are demanded," resulting

in inefficiencies [2]. Prefetch-aware warp scheduling

mitigates this issue by staggering the execution of

consecutive warps, allowing more accurate data predictions

[3]. By combining predictive models such as Markov chains

with effective scheduling policies, cache prefetching can

become more efficient, ultimately reducing latency caused by

memory transfers. In addition to cache optimization, network

compression techniques such as pruning and quantization

further enhance data transfer efficiency in GPU-HBM

architectures. Neural networks are known for their high

computational demands, which can slow down real-time

deployment. However, “compression techniques like pruning

remove redundant computations,” which not only speeds up

execution but also lowers the energy required to run these

models [4]. Static pruning can be performed offline to

remove unneeded connections, while dynamic pruning

occurs during runtime to adapt to varying workloads.

Quantisation, on the other hand, reduces data precision, for

example, by converting weights and activations from 32-bit

floating-point numbers to 8-bit integers. This not only

decreases memory usage but also reduces computational

overhead. “Quantized models often achieve significant

reductions in latency with minimal loss in accuracy,” making

them highly suitable for GPU-heavy applications [5]. When

combined with Markov chain-based prefetching strategies,

these optimisations further streamline data transfer,

addressing the bottleneck caused by the high data demands

of neural networks [6, 7].

II. METHODS

[Fig.1: GPGPU Architecture Diagram on ISA [8]]

The attached diagram illustrates components relevant to

GPU-HBM bottleneck challenges. Specifically, the I-Cache

and Operand Collector represent stages where memory

access and data prefetching occur, directly benefiting from

Markov-based and neural network-

Driven optimizations. This is

where the direct

implementation of the Markov

https://doi.org/10.35940/ijsce.F3700.15060126
https://doi.org/10.35940/ijsce.F3700.15060126
http://www.ijsce.org/
mailto:shazmaien06@gmail.com
https://orcid.org/0009-0008-3724-7310
https://orcid.org/0009-0008-3724-7310
https://www.openaccess.nl/en/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijsce.F3700.15060126&domain=www.ijsce.org

Enhancing GPU-HBM Data Transfer Efficiency Using Markov Chains and Neural Network-Driven Predictive

Caching with Quantization and Pruning

 13

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F370015060126

DOI: 10.35940/ijsce.F3700.15060126

Journal Website: www.ijsce.org

optimisation algorithm will replace the current cache

implementations to measure performance changes.

[Fig.2: Diagram Explaining Methodology]

Before discussing the programming implementation, a brief

overview of the methodology is required. The project uses a

GPGPU simulator for its V100 architecture to obtain

statistics on cache hit and miss rates, the primary variable.

Memory access patterns were modelled using Markov Chains

to predict high-probability access sequences. These

predictions fed into a neural network, which validated and

adjusted predictions. The process of tuning the parameters

was the most time-consuming, as the constant validation

based on results required many runs. The model underwent

multiple iterations and testing cycles. For the initial trials, the

batch size was around 1000 over 100 epochs, as they focused

on validating the accuracy of Markov Chain predictions

against highly reproducible synthetic memory patterns.

However, due to concerns about overfitting, the validation

was quickly shifted to use real-world memory patterns, which

lowered the batch size and therefore required an increase in

the number of epochs.

Uniform quantisation was performed, in which the signal

amplitude range is divided into equal intervals, and each

interval is assigned a quantisation level. Magnitude-based

pruning was integrated with these filter operations by

removing weights with small absolute values, indicating low

significance. This led to a substantial reduction in the

network’s size and computational demand. The predictive

caching mechanism was then implemented within the

memory controller, prefetching data to reduce stalls and

enhance overall efficiency.

III. MODELING EXPLANATION

By inspection, the choice of a Markov Chain to map the

transition states was correct. This is because Markov Chains

are effective for modelling probabilistic sequences of

transitions between a finite set of states. In fact, probabilistic

descriptions of transitions via a stochastic transition matrix

efficiently predict memory-access patterns. The Markov

Chain is a finite set of states in which fixed probabilities,

independent of the time step, govern transitions [9]. This

property is significant for this project because it enables the

creation of a transition matrix P that represents the

probabilities of moving between the memory blocks. This not

only simplifies the representation but also helps analyse the

steady-state behaviour and transition dynamics. For a regular

Markov Chain, the system converges to a unique stationary

distribution vector W, which represents the limiting

probabilities of being in each state as m→∞.

Using eigenvalue methods, W can be evaluated to learn about

the long-term memory access patterns. Because the transition

matrix is regular, all rows of Pm converge to W, which makes

Markov Chains especially helpful in understanding stable

probabilistic behaviour [10].

A. Markov Chain Construction

The memory blocks B = {b1, b2, …, bn} are treated as states

in a Markov Chain. Transitions between states are recorded

in a transition matrix P, where each element Pi, j represents

the transition probability from block bi to block bj.

Mathematically,

𝑃𝑖,𝑗 =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑏𝑖 𝑡𝑜 𝑏𝑗

 ∑𝐾 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑏𝑖𝑡𝑜 𝑏𝑘

B. Statistical Analysis

The Wilcoxon signed-rank test was used to analyze the

paired differences in performance metrics between the

baseline and optimized builds. The test was conducted by

calculating the differences for each metric in the paired

datasets, ranking the absolute values of these differences, and

assigning ranks to their signed values (positive or negative).

This approach helped identify whether the optimizations led

to statistically significant improvements in the performance

metrics. Cohen’s d was computed to quantify the effect size,

measuring the magnitude of improvements in performance

metrics between the baseline and optimised builds. For each

metric, the mean difference between the baseline and

optimized datasets was calculated and divided by the pooled

standard deviation. This analysis provided a standardised

measure of the impact of the Markov Chain caching

algorithm and neural network integration on the system's

overall performance, enabling comparisons across metrics

and the interpretation of the results' practical significance.

IV. RESULTS

[Fig.3: Transition Probabilities Across Memory Blocks

Visualized as a Matrix]

Figure 3 depicts the Markov chain's transition matrix,

where each element (Pi,j) corresponds to the probability of

transitioning from memory block i to block j. The rows

represent the current memory block, while the columns

indicate the following block to be accessed. Some key

observations include the high self-transition probabilities (ex,

P0,0 = 50), which suggest temporal locality in memory

access. The graph also supports

prefetching optimisation

strategies by highlighting high-

probability pathways.

https://doi.org/10.35940/ijsce.F3700.15060126
https://doi.org/10.35940/ijsce.F3700.15060126
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-15 Issue-6, January 2026

 14

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F370015060126

DOI: 10.35940/ijsce.F3700.15060126

Journal Website: www.ijsce.org

[Fig.4: Cache Performance Metrics Broken Down by

Memory Levels]

Figure 4 illustrates the distribution of cache hits and misses

across different memory levels (L1 Cache, L2 Cache, and

DDR Memory). Hits dominate the L1 Cache, indicating it is

essential for rapid data retrieval. Misses are most prominent

in DDR Memory, illustrating latency challenges at deeper

memory levels. This visualisation highlighted the importance

of prioritising neural network enhancements for higher-level

caches and of minimising bottlenecks when accessing critical

data.

[Fig.5: Temporal Variations in L1 And L2 Cache Hit Rates]

Figure 5 tracks the hit rates for L1 and L2 caches over time.

As evidenced by the chart, L1 consistently outperforms L2 in

hit rate percentage, reaching a peak of 85%. The fluctuations

in L2 hit rates, typically between 60% and 70%, suggest areas

for optimization in access prediction accuracy. These

findings support the use of Markov chains with neural

networks to improve prefetching algorithms.

[Fig.6: As the Matrix Multiplication of Transition

Probability Increases, The System Becomes More

Dynamic]

[Fig.7: CTMC, IMM, and DTMC Model Loss Visualization]

[Fig.8: Propagation Error Minimization Visualization]

[Fig.9: Layered Architecture of the Neural Network Used

for Memory Block Predictions]

Figure 9 details the neural network model that was used.

The model has two hidden layers, each with 64 units, and a

dense output layer that predicts the next memory block. By

inputting sequences of memory accesses, the network

identifies patterns and predicts future accesses. This

architecture was used because it balances computational

efficiency and prediction accuracy to minimise the trade-

off between the two, maximising

performance.

https://doi.org/10.35940/ijsce.F3700.15060126
https://doi.org/10.35940/ijsce.F3700.15060126
http://www.ijsce.org/

Enhancing GPU-HBM Data Transfer Efficiency Using Markov Chains and Neural Network-Driven Predictive

Caching with Quantization and Pruning

 15

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F370015060126

DOI: 10.35940/ijsce.F3700.15060126

Journal Website: www.ijsce.org

[Fig.10: Quantitative Overview of the Neural Network

Parameters]

Figure 10 summarizes the neural network's structure,

including the number of parameters per layer. A total of

133,224 parameters indicates a compact yet powerful model.

Techniques such as pruning and quantization reduced

memory usage without compromising performance, aligning

with the multinomial theorem to streamline computations.

[Fig.11: Performance Metrics Comparison: Baseline vs

Optimized Cache Management]

Figure 11 compares performance metrics between the

baseline and optimized caching methods. The graph

illustrates improvements in metrics such as cache hit rate,

bandwidth utilisation, and latency achieved through Markov

Chain-based predictive caching and neural network

optimisations. The transition from baseline to optimised

shows enhancements; however, the significance of these

enhancements must be analysed. This analysis was conducted

using a Wilcoxon Rank Sum test. With a sample size (N) of

8 and a critical value (Wcrit) of 4, the test yielded a Wstat of 3,

leading to the rejection of the null hypothesis. Additionally, a

Cohen’s d test was performed, producing a value of 0.8325.

This indicates a large effect size, signifying substantial

practical applicability of the optimizations.

[Fig.12: Training and Validation Accuracy Trends

Across Epochs]

The graph illustrates the training and validation accuracy

trends for a neural network model over 10 epochs. As

depicted, the training and validation accuracies steadily

improve, indicating effective learning. The close alignment

of training and validation curves suggests that the model

generalizes well, with minimal overfitting. This performance

is critical when integrating quantization and pruning, as these

techniques aim to maintain accuracy while optimizing

memory and computational efficiency.

[Fig.13: Training and Validation Loss Trends Across Epochs]

The graph demonstrates the training and validation loss of

a neural network model over 10 epochs. Both training and

validation loss decrease consistently, reflecting the model's

ability to minimize error during training. The convergence of

the two curves indicates that the model avoids overfitting,

maintaining its performance across unseen validation data.

This trend highlights the efficacy of quantization and pruning

techniques in reducing computational overhead without

compromising model precision.

V. DISCUSSION AND CONCLUSIONS

It can be seen that integrating Markov Chains with neural

network modelling for optimisation can enhance data

prefetching. This reduces memory stalls and improves overall

data transfer efficiency. Additionally, the quantisation and

pruning methodologies further enhance the GPU-HBM

architecture by reducing memory consumption and

computational overhead during data transfer. A solution was

achieved by combining predictive cache management with

data compression, thereby mitigating the memory bottleneck

in GPU-driven applications. The visualisations of transition

matrices revealed temporal locality patterns that drove high-

probability path optimisations for effective memory access.

The cache performance metrics underscored differences in hit

and miss distributions across the memory levels, with L1

Cache dominating in terms of hits, while DDR Memory had

latency issues. Temporal trends in hit rates for L1 and L2

caches further underscored the need for dynamic optimisation

strategies, thereby validating our combined Markov Chain

and neural network methodology. Our neural network

architecture achieved a balance between predictive power and

computational efficiency by leveraging quantisation and

pruning, using 133,224 parameters. In addition to reducing

memory overhead, these enhancements adhered to data

prefetching objectives, which minimizes latency. This

integrated approach delivers a portable, efficient solution for

various GPU workloads, laying the foundation for the next

generation of memory management systems in high-

performance computing.

Further work will extend these methods to larger classes of

workloads and architectures and

address more practical

deployment issues to unleash

https://doi.org/10.35940/ijsce.F3700.15060126
https://doi.org/10.35940/ijsce.F3700.15060126
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-15 Issue-6, January 2026

 16

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F370015060126

DOI: 10.35940/ijsce.F3700.15060126

Journal Website: www.ijsce.org

their Full transformational power.

While our model works well in most scenarios, there are a

few exceptions to cover. It was assumed that memory access

patterns exhibit sufficient temporal locality to be modelled as

a Markov Chain, based on previous observations of

workloads in which access patterns followed predictable

sequences. Not only that, but it is assumed that the transition

probabilities between memory blocks remain stationary over

time, which aligns with the fundamental properties of regular

Markov Chains. While this simplifies the computation behind

the stationary distribution, it may not hold for workloads with

irregular access patterns. This could potentially limit the

model's adaptability. The neural network also assumes that

past sequences of memory accesses sufficiently encode the

necessary context to predict future accesses, which may not

be accurate for workloads with non-linear or long-range

dependencies. While quantisation and pruning techniques

may reduce memory usage and computational complexity,

they can also introduce a trade-off between model accuracy

and efficiency, especially in scenarios where high precision

is critical. Lastly, prefetching strategies derived from graph

representations of Markov Chains tend to focus on high-

probability paths, potentially neglecting rare yet impactful

transitions. This limitation would lead to occasional

mispredictions and underutilization of cache resources.

Overall, these limitations suggest that while our approach

works well for many scenarios, it may require refinements or

different methods to address workloads with non-stationary,

irregular, or highly complex memory access patterns—

International Journal of Soft Computing and Engineering

2025.

DECLARATION STATEMENT

I must verify the accuracy of the following information as

the article's author.

Some of the references cited are outdated, noted explicitly

as [1], [2], [3] and [9]. However, these works remain

significant for the current study, as they are pioneering in

their fields.

▪ Conflicts of Interest/ Competing Interests: Based on

my understanding, this article has no conflicts of interest.

▪ Funding Support: This article has not been funded by

any organizations or agencies. This independence ensures

that the research is conducted objectively and without

external influence.

▪ Ethical Approval and Consent to Participate: The

content of this article does not necessitate ethical approval

or consent to participate with supporting documentation.

▪ Data Access Statement and Material Availability: The

adequate resources of this article are publicly accessible.

▪ Author's Contributions: The authorship of this article is

contributed solely.

REFERENCES

1. Joseph, D., & Grunwald, D. (2002, August 06). Prefetching using

Markov predictors. IEEE Journals & Magazine.
DOI: https://doi.org/10.1109/12.75265, works remain significant, see

the declaration

2. Jog, A., Kayiran, O., Mishra, A. K., Kandemir, M. T., Mutlu, O., Iyer,
R., & Das, C. R. (2013, June 23). Orchestrated scheduling and

prefetching for GPGPUs. Association for Computing Memory.

DOI: https://doi.org/10.1145/2485922.2485951, works remain
significant, see the declaration

3. Bauer, M., Cook, H., & Khailany, B. (2011, November 12).

CUDADMA: Optimizing GPU memory bandwidth via warp
specialization. Association for Computing Machinery.

DOI: https://doi.org/10.1145/2063384.2063400, works remain

significant, see the declaration
4. Liang, T., Glossner, J., Wang, L., Shi, S., & Zhang, X. (2021, January

24). Pruning and quantization for deep neural network acceleration: a

survey. arXiv.org. DOI: https://doi.org/10.48550/arXiv.2101.09671
5. Shi, Z., Huang, X., Jain, A., & Lin, C. (2019, October 12). Applying

deep learning to the cache replacement problem. Proceedings of the

52nd Annual IEEE/ACM International Symposium on
Microarchitecture. DOI: https://doi.org/10.1145/3352460.3358319

6. Chopra, B. (2024, May 7). Enhancing machine learning Performance:

the role of GPU-based AI computer architectures. Journal of Knowledge
Learning and Science Technology ISSN 2959-6386 (Online), 3(3), 20–

32. DOI: https://doi.org/10.60087/jklst.vol3.n3.p20-32

7. Hou, J., Tao, T., Lu, H., & Nayak, A. (2023, June 22). Intelligent
caching with graph neural network-based deep reinforcement learning

on SDN-based ICN. Future Internet, 15(8), 251.

DOI: https://doi.org/10.3390/fi15080251
8. Bakhoda, A., Yuan, G. L., Fung, W. W. L., Wong, H., & Aamodt, T. M.

(2009, April 1). Analyzing CUDA workloads using a detailed GPU

simulator. IEEE Conference Publication.
DOI: https://doi.org/10.1109/ISPASS.2009.4919648

9. Liu, A., & Tucker, A. (1988). Applied Combinatorics.
DOI: https://doi.org/10.1137/1030075, works remain significant, see

the declaration

10. Mittal, S. (2015, January 16). A survey of techniques for managing and
leveraging caches in GPUs. Journal of Circuits, Systems and Computers,

23(08), 1430002. DOI: https://doi.org/10.1142/s0218126614300025,

works remain significant, see the declaration

AUTHOR’S PROFILE

Samiel Azmaien, Research Assistant at Georgia Institute

of Technology, Department of Computer Science. A

college freshman who is an extraordinarily detail-oriented

software developer. Has 4 years of experience in self-

learning computer science and designing applications.

Proficient in multiple programming languages, software development
methodologies, and database management systems. Strong problem-solving

skills and ability to work effectively in a team-based environment through

efficient time management and adaptability to manage any difficulties.

Electronic Supplementary Material, the online version of

this article (https://tinyurl.com/3medmt2j) contains

Supplementary material available to authorised users.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

https://doi.org/10.35940/ijsce.F3700.15060126
https://doi.org/10.35940/ijsce.F3700.15060126
http://www.ijsce.org/
https://doi.org/10.1109/12.75265
https://doi.org/10.1145/2485922.2485951
https://doi.org/10.1145/2063384.2063400
https://doi.org/10.48550/arXiv.2101.09671
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.60087/jklst.vol3.n3.p20-32
https://doi.org/10.3390/fi15080251
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1137/1030075
https://doi.org/10.1142/s0218126614300025
https://tinyurl.com/3medmt2j

