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Abstract: Food security has become threatened owing to
climate change being a negative influence on agricultural growth
and its subsequent role in pressuring the availability of such
essentials as water and soil nutrients, and, finally, in its role in
pressuring crop productivity. Meeting this need requires building
a precise model of the interaction between climate variability and
crop production for practical, sustainable agricultural planning.
So, this study has proposed a comprehensive deep-learning
framework for analysing and predicting the impacts of climate
change on crop production, using three architectures: Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and
Convolutional Neural Network (CNN) [5]. These historical
climate datasets-temperature, rainfall quantity, humidity, and
solar radiation-are combined with crop yield data for training
and evaluating the models. To model long-term temporal
dependencies within climate sequences and capture meaningful
patterns of variability over time, LSTM and GRU architectures
are implemented. CNN serves as a complementary model for
extracting meaningful spatial and multidimensional features
related to crop production. Thus, the integration of these
architectures yields a stronger, more reliable prediction system
that can balance between sequential learning and pattern
recognition.
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I. INTRODUCTION

VV eather conditions significantly affect human life, and

the industries most affected include agriculture,
transportation, and public safety. The ability to accurately
and on time predict the weather remains a must for the
aforementioned activities, such as disaster and resource
management, as well as decision-making. Satellite imaging,
numerical model computation, and data analysis of
meteorological variables are traditional forecasting methods
that have been pillars of weather prediction for decades. At
the same time, however, they still struggle to provide the
information at the right time and often disregard small-scale
differences in weather conditions. The rapid development of
digital technology has, in a way, contributed to the problem
of weather-forecasting accuracy. The coupling of Deep
Learning (DL) techniques with the Internet of Things (IoT)
has, in fact, almost completely opened the door to the
development of intelligent, automated, and, to some extent,

real-time weather forecasting systems.

II. EASE OF USE

The setup has been designed with the spirit of
conciseness and user-friendliness in mind. It can be broadly
divided into three components: data acquisition, cloud
storage, and the ML model for prediction. Each unit is
well-separated and can be easily custom-made or updated.
Each unit is well-separated and can be easily custom-made
or updated. The IoT sensors collect data on environmental
metrics such as temperature, humidity, and pressure. The
parameters are transmitted to a central location via Wi-Fi or
GSM. Upon storage, these data are fed into the ML model to
predict future weather conditions. There will be an
interactive web-based dashboard that end-users can use to
visualise and view the prediction outputs. Also, the system
requires very little maintenance and can run independently
with minimal human intervention. The graphical user
interface permits even those without technological
experience to use the system
intuitively.
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[Fig.1: Different Climate Changes]

III. HOTSPOTS IN GLOBAL CLIMATE CHANGE

A. Arctic and Sub-Arctic Regions

It is evident in the Arctic and Sub-Arctic regions. These
two areas are experiencing rapid warming that eventually
leads to the melting of sea ice, the thawing of permafrost,
and significant ecosystem disturbances.

B. Small Island States

Such small island states are highly vulnerable to sea
level rise and storm surges, endangering freshwater
availability, food security, and infrastructure.

C. Sub-Saharan Africa

Sub-Saharan Africa is experiencing an increasing
incidence of droughts and declining agricultural
productivity, coupled with water shortages, leading to
deteriorating food security and livelihoods.

D. South and Southeast Asia

Intensified cyclones, increased flooding, rising sea levels,
and heat waves severely affect densely populated areas and
agriculture in both South and Southeast Asia.

E. Coral Reefs

Sensitive to rising ocean temperatures and acidification,
leading to bleaching events in areas such as the Great
Barrier Reef and the Coral Triangle.
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[Fig.2: Impact of Climate Change on Crop Production]

IV. REGIONAL IMPACTS OVERVIEW

A. North America

i. Western US: Increasing aridity heightens drought and
wildfire risks.
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ii.

il

Eastern US: It becomes wetter, with increasingly
intense precipitation events, leading to flooding.
Alaska: Rising temperatures thaw permafrost, affecting
local ecosystems.

B. Africa

i

il

East Africa: Extreme droughts cause food insecurity
and displacements; conversely, extreme floods occur.
Sub-Saharan Africa: Dwindling agricultural production
and water scarcity increase poverty levels and health
hazards.

C. Asia

i

ii.

South Asia: Long heatwaves and floods severely affect
both health and agriculture.

Himalayan Region: Glacial melting threatens water
supplies for millions downstream, with flooding and
drought viewed as further possibilities in the far future.

D. Europe

L

il.

Southern Europe: Increasing heatwaves and droughts
affect agriculture and, simultaneously, water resources.

Northern Europe: Increasing rains cause flooding that
affects the infrastructure and ecosystems

E. Oceania

i

Australia: An extended drought and extremely fierce
bushfires put pressure on the water supplies and
ecosystems.

From the perspective of the Pacific Islands, rising sea
levels and extreme weather pose a risk of destroying habitats
and livelihoods.

F. Latin America

i

il

Amazon Basin: Deforestation and drought may
transform the region from rainforest to savanna, with
climate change affecting the rest of the globe.

Andean Regions: The impact glacier retreat has on the
water supply for agriculture and human consumption.
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Lobell et al. (2011) pointed out that heat and precipitation
irregularity reduce yields of staple crops in the tropics most.
Correspondingly, Wheeler and von Braun (2013) concluded
that the same climate shocks are the primary drivers of the
global threat of food insecurity, as they both yield
reductions and price fluctuations [1].

New studies are adopting data-driven techniques to
improve outcome prediction. Jeong et al. (2016) applied
Random Forest algorithms, and the resulting rice yield
estimates were more accurate than those from the traditional
approach. In contrast, Liakos et al. (2018) discussed the vast
potential of Machine Learning (ML) in smart farming and
decision support [2].

The Internet of Things (IoT) is a big step forward in real-
time monitoring. Jayaraman et al. (2016) demonstrated an
IoT-enabled crop-monitoring system that can also be
integrated with Deep Learning (DL) for accurate and
reliable weather forecasting. But there has been little
research that combines real-time IoT data with ML models,
such as SVMs and Random Forests, for weather-based crop
prediction. This research fills the gap by proposing an IoT-
ML system for precise weather forecasting and climate-
smart agricultural planning [3].

VI. METHODOLOGIES

The impact of climate change on crop productivity was
analysed wusing a Deep Learning (DL) framework
designed to learn complex nonlinear relationships from
environmental data [4]. The following subsections describe
the methodological workflow adopted in this study.

A. Data Collection and Understanding

The “climate change dataset.csv” dataset consisted of
temporal data on environmental factors and solar power
generation, which were used as surrogates to analyse the
adverse effects of climate change on agricultural
productivity [5]. The dataset covered a period of 34 days,
for which the following variables were recorded:

i.  Ambient Temperature

ii. Module Temperature

iii. Irradiation

iv. DC Power

v. AC Power

vi. Daily Yield

vii. Total Yield

All the parameters mentioned above are collectively
interpreted as environmental factors (temperature,
irradiation) and the corresponding outputs (energy
generation), analogous to agricultural yield responses to
climatic variations [6].

B. Data Preprocessing

Preprocessing steps were taken to ensure data quality and

model readiness:

i.  Datetime Conversion: The DATE TIME column was
converted to Python datetime objects to enable
accurate temporal indexing and resampling [7].

ii.  Missing Data Handling: Interpolation or removal
methods were applied to address null values,
primarily in the IRRADIATION and POWER fields.

iii. ~ Normalization: Min-Max normalization with a range
from 0 to 1 was used to scale numeric features to
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stabilize model training [8].

iv.  Feature Engineering: Among the temporal attributes
extracted were the hour of the day and the day of the
week. Furthermore, rolling averages (3-hour, 6-hour)
and lag variables were used to capture short-term
temporal dependencies [9].

C. Architectural Deep Learning Model

A Long Short-Term Memory (LSTM) network, a
modern type of Recurrent Neural Network (RNN), was used
as the predictor for time-series data [10]. Hence, changes in
power output were representative of the inputs given to the
model, and thus, the effect of climate conditions on crop
yield was shown indirectly.

i. LSTM-Based  Model: Input Features (X):
Ambi-  Ent Temperature, = Module_Temperature,
Irradiation

ii.  QOutput Targets (y). DC_POWER, AC_POWER
Layers of the Model:

LSTM layer with 64 memory units, Dropout layer (0.2) to
prevent overfitting

Dense (fully connected) layer with two output neurons.
Compilation Parameters:

iii. Loss Function: Mean Squared Error (MSE)
Optimiser: Adam
iv.  Epochs: 50-100
v.  Batch Size: 32 [11]
=

Jnput Values Input Layer Hidden Layer 2

[Fig.4: Architecture of CNN]

Output Layer

Hidden Layer 1

D. Training and Evaluation

The chronological order was preserved to maintain
temporal integrity when dividing the dataset into training
(80) and testing (20) sets. The model’s performance was
assessed through the following metrics:

i. Mean Absolute Error (MAE): It gives the average

value of the prediction errors.

ii.  Root Mean Squared Error (RMSE): It gives more

weight to higher deviations [12].
iii.  R? Score: It indicates the percentage of variance
explained by the model.

E. Visualization and Analysis

Hybrid solar plant model predictions were evaluated and
compared by visualising the predicted versus actual DC and
AC power values. This could greatly help with data-driven
climate-impact analysis by providing a solid basis for
estimating variations in agricultural yields across diverse
climate conditions [13].

F. Relevance to
Production

Hybrid solar plant model
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predictions were evaluated and compared by visualising the
predicted versus actual DC and AC power values. This
could greatly help with data-driven climate-impact analysis
by providing a solid basis for estimating variations in
agricultural yields across diverse climate conditions [14].

VII. DATA AND DATASET

A. Sources of Data

The dataset climatechangedataset.csv contains time-series
data on the operation of solar power plants, along with the
climatic factors that influence power generation.

B. Period and Granularity of Data

The 34 observations span 34 days and were reported at
predetermined intervals (most likely every 15 minutes).
Each row represents a time point in the dataset, fusing
power generation data with weather parameters [15].

C. Important Columns in the Dataset

i. Date_Time: timestamp indicating the date and time
of observed values;
ii. Ambient_Temperature:
environment (°C);
iii. Module_Temperature.: temperature of the solar panel
modules (°C);
iv. Irradiation: solar radiation received in W/m?, which
is a key factor for power output;
v. Dc_Power: direct current power
solar panels (in Watts);
vi. Ac_Power: alternating current power sent to the grid
or consumption point (in Watts);
vii. Daily_Yield: energy generated on a given day (in
kWh);
viii. Total_Yield: cumulative energy generated since the
very first day (in kWh).

temperature ~ of  the

output from

D. Pre-Processing Steps

i. Datetime Conversion: DATE_TIME was converted
to a datetime object for resampling and temporal

analysis.
ii. Missing Data: Interpolation or deletion for
significant fields with missing values, e.g.

IRRADIATION, DC_POWER, etc [16].

iii. Feature Engineering: Time-dependent features (e.g.
hour of day, day of week), rolling averages, and
hourly aggregates to enrich the dataset.

Accuracy

wal_accuray

1 2 3 ] s @

[Fig.5: Preprocessing of Dataset Graph Representation]
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E. Intended Use of the Dataset

The primary purpose of the dataset is to understand solar
power forecasts for DC and AC. It focuses on learning the
relationship between environmental conditions and power
production using deep learning models [17].

Deep learning models can be trained to detect complex,
non-linear patterns over time in weather-related features
such as irradiation and temperature, and possibly to improve
forecasting of future solar power output.

F. Dataset Format

The dataset adopts CSV format with clear column names
and discriminated data types, compatible with the relevant
Python data environment, such as Pandas for preprocessing
and TensorFlow/Keras or PyTorch for deep learning [18].

G. Lightweighting in Deep Learning

The features AMBIENT_TEMPERATURE, MODULE
_TEMPERATURE, and IRRADIATION are

The inputs to the deep learning model [19].

DC_POWER and AC_POWER become the outputs (y).

The dataset is usually split into training and testing sets

on an 80/20 basis, or using a time-series holdout approach.
Recurrent Neural Networks (RNNs), Long Short-Term
Memory (LSTM) networks, and 1D Convolutional Neural
Networks (ConvlD) are
dependencies for accurate forecasting [20].

used to model temporal

VIII. RESULTS

Surprisingly, although all the results were derived from
the climatechangedataset.csv deep-learning model against
environmental variables, their derivation is critical when
discussing the energy produced and determining how much
is actually affected by climate change.

A. Model Performance

i. Model Used: Long Short-Term Memory (LSTM)
networks and CNNs have been considered for their
ability to handle time-series data.

Table I: Performance Comparison of Different Models

Model MAE | RMSE | R? Score
LSTM 15.2 23.8 0.93
CNN 17.9 25.1 0.89
Linear Regression | 31.4 45.6 0.74
B. Input Features
Ambient temperature, module temperature, and
irradiation.

C. Target Outputs

DC and AC power are simulated to produce results such
as yield.

D. Evaluation Metrics

The prediction quality was evaluated against the Mean
Absolute Error (MAE), Root Mean Square Error (RMSE)
and R? score.

The model's performance
primarily driven by the LSTM,
which effectively captured the
data's trends and seasonality.

is
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Table II: Evaluation Metrics

Metric Formula Value
Accuracy TP +TN 4 =0.667
TP +TN+FP +FN| 6
Precision TP 3 =075
TP +FP 4
Recall TP 3 =075
TP +FN
F1 Score 2 x Precision xRecall 2 x 0.75x0.75 _ 0.75
Precision+Recall 0.754+0.75

E. Climate Impact Findings

Relationship with Temperature: Increased ambient
temperature exhibited a nonlinear relationship with energy
output, similar to that observed under stress conditions in
crops.

TABLE III: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) =3 | False Negative (FN) = 1

Actual Negative | False Positive (FP) = 1 True Negative (TN) = 1

F. Irradiation

There is a strong relationship between energy yield and
sunlight intensity; sunlight intensity directly influences
output, just as it does in plant photosynthesis.

G. Temporal Patterns

The period of extremely high temperature that would
undoubtedly cause performance decline could be taken to
mean the period during which crop yields might be lowest
due to such severe climate.

H. Consequences in Agriculture

The specific direct outcome predicted was energy output.
However, the pattern observed indirectly is much closer to
typical agricultural behaviour under climate stress:

Increased temperature reduces crop productivity beyond
some threshold.

Solar radiation is a major driver for both energy
production and plant growth.

Temporal variability in weather may, in a considerably
detrimental way, affect both these systems.

I. Exhibit Output

The model yielded a time-series output that contrasted
the predicted and actual outputs over time, showing a high
degree of likeness; consequently, the model was validated
for further application in agricultural risk understanding
under climate change scenarios.

Loss

—— train_loss
—— val_loss

1.60
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1.57 1
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[Fig.6: Graph Representation of Output]
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IX. CONCLUSION

The study’s focus was on agroclimatology, and deep
learning techniques were used to analyse each variable
(temperature, solar irradiation, and power generation) in the
time-series dataset as an environmental parameter.
However, the main goal was to assess the extent to which
the existing industrial scenario influenced crop yield under
climate change. To identify the best algorithm, a
comparative modelling approach was used, with Linear
Regression, CNN, and LSTM models evaluated.

The best-performing model, LSTM, achieved an MAE of
15.2, an RMSE of 23.8, and an R? of 0.93, demonstrating
LSTMs' ability to capture intricate temporal dependencies
in climate data. The CNNs performed well, capturing key
spatiotemporal  features arising from environmental
changes. The linear models, however, were not much help,
most likely because they cannot model the non-linear
interactions in the climate-agriculture relationship.
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