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Abstract: Brain tumours represent critical medical conditions 
requiring accurate and timely diagnosis to improve patient 
outcomes and guide effective treatment strategies. Manual 
interpretation of magnetic resonance imaging (MRI) scans by 
radiologists remains time-consuming and subject to inter-observer 
variability. This study addresses these challenges by proposing an 
ensemble deep learning framework that integrates three 
complementary convolutional neural network architectures: 
ResNet101V2, InceptionV3, and EfficientNetB0. The 
methodology employs transfer learning from ImageNet pre-
trained weights, leveraging global average pooling to extract 
discriminative features from brain MRI scans. The ensemble 
system classifies images into four categories: glioma tumours, 
meningioma tumours, pituitary adenomas, and normal brain 
tissue. Comprehensive experimental evaluation on a dataset of 
approximately 3,000 MRI images demonstrates an overall 
classification accuracy of 82%, with precision, recall, and F1 
Score of 84%, 82%, and 80%, respectively. Class-specific analysis 
reveals exceptional performance for pituitary tumour detection, 
with 97% precision and 92% recall, while meningioma 
classification achieves 97% recall. The ensemble approach 
outperforms individual architectures by capturing complementary 
feature representations across multiple scales and hierarchies. 
These results demonstrate the clinical potential of ensemble deep 
learning for automated brain tumour diagnosis, offering a robust 
framework that balances computational efficiency with diagnostic 
accuracy. The proposed system provides a foundation for future 
development of clinical decision support tools in neuro-oncology. 
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I. INTRODUCTION

Brain tumours represent one of the most challenging

medical conditions in modern healthcare. Timely and 

accurate diagnosis significantly impacts treatment planning 

and patient prognosis [1]. Currently, radiological assessment 

of magnetic resonance imaging (MRI) scans relies heavily 

on manual interpretation by experienced radiologists. This 

process is time-consuming, subject to inter-observer 

variability, and prone to human error [2]. Consequently, 

there is an urgent need for automated diagnostic systems 

that can assist clinicians in making accurate and consistent 

diagnoses. 

Deep learning, particularly convolutional neural networks 

(CNNs), has revolutionised medical image analysis by 

enabling automatic feature extraction and classification [3]. 

However, individual CNN architectures exhibit varying 

strengths and limitations depending on the specific 

characteristics of the medical imaging task [4]. To 

address these limitations, we propose an ensemble learning 

framework that combines multiple complementary CNN 

architectures, leveraging their individual strengths while 

mitigating their weaknesses. 

Our research introduces an integrated ensemble system 

that combines the ResNet101V2, InceptionV3, and 

EfficientNetB0 architectures. These architectures were 

strategically selected for their complementary feature 

extraction capabilities and diverse approaches to processing 

medical images [5]. The framework employs transfer 

learning from ImageNet pre-trained weights, followed by 

fine-tuning on brain tumour MRI data [11]. The final 

classification is obtained by weighted averaging of 

individual model predictions, thereby enhancing robustness 

and reducing overfitting. 

The main contributions of this work are fourfold: (1) 

Development of a novel ensemble framework combining 

ResNet101V2, InceptionV3, and EfficientNetB0 specifically 

tailored for brain tumour classification; (2) Comprehensive 

experimental evaluation on a multi-class brain tumour dataset 

with detailed performance analysis; (3) Class-specific 

performance assessment 

identifying strengths and areas  

for improvement in tumour 

type detection; and (4) 
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Investigation of architectural synergies in ensemble learning 

for complex medical imaging tasks. 

II. LITERATURE REVIEW 

Significant advances have been made in applying deep 

learning to medical image analysis, particularly for brain 

tumour detection and classification [6]. Researchers have 

explored various ensemble strategies and architectural 

approaches to improve diagnostic accuracy and reliability. 

A. Ensemble Learning Approaches 

Multiple studies have demonstrated that ensemble 

methods combining diverse deep learning architectures 

consistently outperform single-model approaches [7]. 

Research has shown that heterogeneous ensemble 

combinations can improve classification accuracy by 5–8% 

compared to individual models [8]. This improvement stems 

from the ability of different architectures to capture 

complementary features and patterns in medical images. 

B. Spatial Feature Preservation 

Recent research has emphasised the importance of 

preserving spatial information in medical image analysis [9]. 

Investigators have explored capsule networks and attention 

mechanisms to preserve spatial relationships among 

anatomical structures, though these approaches can be 

computationally intensive [10]. Attention-based mechanisms 

that automatically focus on diagnostically relevant regions 

have shown promise in both improving accuracy and 

providing interpretable visualisations. 

C. Transfer Learning Applications 

Transfer learning has become a cornerstone technique in 

medical imaging due to the often-limited availability of 

labelled training data [12]. Studies investigating the 

adaptation of pre-trained models from natural image 

domains to medical imaging have consistently demonstrated 

substantial improvements over training from scratch [13]. 

Various researchers have compared different deep learning 

frameworks designed explicitly for brain tumour analysis. 

D. Comparative Architecture Studies 

The consensus of contemporary research indicates that 

ensemble architectures consistently outperform individual 

models across diverse medical imaging applications [14]. 

Brain tumour segmentation benchmarks have established 

standardised evaluation protocols for comparing different 

approaches [15]. The Brain Tumour Segmentation (BraTS) 

challenge has advanced glioma analysis by providing large-

scale annotated datasets and evaluation frameworks [16]. 

Additionally, integrated CNN approaches have shown 

enhanced robustness to data variability in multi-class 

classification problems [17]. 

Advanced network architectures combined with transfer 

learning have proven particularly effective in limited-dataset 

scenarios [21]. Deep neural networks with multi-scale 

processing capabilities have demonstrated superior 

performance in brain lesion segmentation tasks [18]. Recent 

developments in multi-scale 3D CNNs have improved brain 

lesion segmentation accuracy by incorporating fully 

connected conditional random fields [19]. Self-configuring 

deep learning methods have emerged as robust solutions for 

biomedical image segmentation across diverse imaging 

modalities [20]. 

Ensemble deep learning approaches designed explicitly for 

brain tumour classification have demonstrated significant 

improvements in diagnostic accuracy [24]. Hybrid ensemble 

architectures that combine multiple pre-trained networks 

have shown improved performance in distinguishing 

between tumour types [25]. Recent investigations into 

ensemble learning for medical image classification have 

established best practices for architecture selection and 

integration strategies [26]. 

Our work builds upon these foundations while introducing 

a novel contribution: the strategic combination of Efficient- 

NetB0’s parameter efficiency, ResNet101V2’s deep residual 

learning capabilities, and InceptionV3’s multi-scale 

processing. This integration creates a more comprehensive 

analytical framework than previously explored 

combinations. 

III. DATASET DESCRIPTION AND 

PREPROCESSING 

This study utilises a comprehensive Brain Tumour 

Classification MRI dataset containing approximately 3,000 

magnetic resonance images distributed across four 

categories: glioma tumours, meningioma tumours, pituitary 

adenomas, and normal brain tissue. The dataset was 

partitioned into training and testing subsets, with a validation 

set extracted from the training partition for model 

optimisation and hyperparameter tuning. 

A. Data Preprocessing Pipeline 

Several preprocessing steps were implemented to optimise 

model training performance. First, all MRI scans were 

resized to a uniform 224 × 224-pixel resolution to match 

the input requirements of the pre-trained architectures. 

Second, pixel intensity values were normalised to the [0, 1] 

range by dividing by 255, improving convergence and 

numerical stability during training. Third, the dataset was 

partitioned using stratified sampling with an 80% training, 

10% validation, and 10% testing split to ensure balanced 

class representation across all subsets. Fourth, categorical 

labels were converted to one-hot encoding to be compatible 

with multi-class classification. 

The dataset exhibits balanced distribution across all four 

categories, providing sufficient samples per class for 

practical training and unbiased evaluation. Table I presents 

the detailed distribution of images across categories. 

Table I: Dataset Distribution Across Tumour Categories 

(Authors’ Own Compilation) 

Category Training Validation Testing Total 

Glioma 600 75 75 750 
Meningioma 600 75 75 750 
Pituitary 600 75 75 750 
Normal 600 75 75 750 
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IV. PROPOSED METHODOLOGY 

A. Architectural Framework Overview 

The proposed ensemble methodology integrates three 

complementary CNN architectures with distinct feature 

extraction characteristics. ResNet101V2 was selected for its 

residual learning framework, which enables training deep 

networks while mitigating vanishing-gradient problems [5]. 

InceptionV3 provides multi-scale feature extraction through 

parallel convolutional pathways with varying filter sizes 

[22]. EfficientNetB0 achieves parameter efficiency through 

a compound-scaling methodology [23]. 

These three architectures were selected for their 

complementary feature-extraction mechanisms and proven 

effectiveness in medical imaging applications. Their 

integration creates a comprehensive analytical framework 

that captures diverse tumour characteristics across multiple 

scales and feature hierarchies. 

B. Transfer Learning Implementation Strategy 

Transfer learning from ImageNet pre-trained weights 

provides several advantages for this medical imaging task. 

First, pre-trained models encode general-purpose low-level 

feature extractors applicable across diverse image domains, 

including medical imaging. Second, transfer learning 

significantly reduces training time and computational 

requirements compared to training from scratch. Third, pre-

trained weights serve as an effective regularisation 

mechanism, improving generalisation performance on 

unseen data. 

In the proposed framework, the convolutional base layers 

of each pre-trained model were frozen, focusing training 

efforts on the final classification layers. This approach 

preserves learned representations while enabling adaptation 

to the specific brain tumour classification task. 

The feature extraction process for each base model can be 

formulated mathematically as: 

ℎ𝑖  (𝑥) = 𝑔𝑖   (𝑓𝑖  (𝑥; 𝜗frozen𝑖
);  𝜗trainable𝑖

   …   (1) 

 

Where fi(x; θfrozeni) represents the frozen convolutional 

feature extractor, and gi(·; θtrainablei ) represents the trainable 

classification head for model i. This formulation is 

adapted from standard transfer learning practices in deep 

learning [23]. 

C. Individual Model Construction 

Each model in the ensemble follows a consistent 

architectural pattern while preserving its unique feature 

extraction characteristics. The construction pipeline 

includes: (1) loading pre-trained weights from ImageNet; (2) 

freezing the convolutional base to preserve learned features; 

(3) adding global average pooling for dimensionality 

reduction; (4) incorporating dropout regularization (rate = 

0.4) to prevent overfitting; and (5) appending a dense output 

layer with softmax activation for four-class classification. 

The specific configurations for each model are as follows: 

ResNet101V2 utilises ImageNet pre-trained weights, global 

average pooling, 40% dropout, and softmax-activated dense 

output. InceptionV3 and EfficientNetB0 share identical 

configurations and specifications. 

D. Ensemble Integration Methodology 

Rather than relying on a single architecture, the proposed 

framework combines predictions from all three base models 

through an averaging ensemble strategy. Each base model 

generates class probability distributions independently, 

which are subsequently aggregated to produce the final 

classification decision. This approach reduces prediction 

variance and enhances generalization capability compared 

to individual models. 

 

 

[Fig.1: Schematic Representation of the Proposed 

Ensemble Deep Learning Framework (Authors’ Own 

Design)] 

Mathematically, the ensemble prediction process can be 

formalised as follows: Let X represent an input MRI 

image, and let p1(X), p2(X), and p3(X) denote the 

softmax probability distributions produced by 

ResNet101V2, InceptionV3, and EfficientNetB0, 

respectively. The ensemble prediction Pensemble(X) is 

computed as: 

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑥) =  𝑃1(𝑥) +  𝑃2(𝑥) +  𝑃3(𝑥)  …   (2) 

The final predicted class corresponds to the category with 

maximum probability in Pensemble(X). This averaging 

approach follows ensemble learning principles established 

in machine learning literature [26]. 

E. Training Configuration and Implementation 

The ensemble model was implemented using the 

TensorFlow and Keras frameworks with the following 

hyperparameters: an Adam optimiser with learning rate α 

= 1 × 10−4 and a categorical cross-entropy loss. 

Cross-entropy loss function, batch size of 32 samples, and 

training duration of 15 epochs. Additionally, early stopping 

with patience of 5 epochs was implemented based on 

validation loss monitoring, and model checkpointing was 

configured to save the best-performing weights based on 

validation accuracy. 

All experiments were conducted on an NVIDIA GeForce 

RTX 3080 GPU with 10GB of memory. Callback 

mechanisms for early stopping and model checkpointing 

were employed to prevent 

overfitting and preserve 

optimal model configurations 

during training. 
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V. EXPERIMENTAL RESULTS AND 

PERFORMANCE ANALYSIS 

A. Training Performance Progression 

Figure 2 presents the evolution of training and validation 

metrics across 15 training epochs. The model demonstrates 

consistent improvement in both accuracy and loss metrics, 

achieving training accuracy of 94.7% and validation 

accuracy of 92.0%. The convergence patterns indicate 

effective learning without significant overfitting issues. 

 

[Fig.2: Model Training Performance Showing Accuracy 

and Loss Metrics Throughout Training (Authors’ 

Experimental Results)] 

B. Overall Performance Metrics 

The integrated ensemble framework was evaluated using 

standard classification metrics on independent test data. 

Table II summarises the overall performance achieved by 

the proposed system. 

Table II. Comprehensive Performance Evaluation 

Metrics (Authors’ Experimental Results) 

Performance Metric Achieved Value 

Classification Accuracy 82.0% 

Precision 84.0% 

Recall (Sensitivity) 82.0% 

F1-Score 80.0% 

C. Class-Specific Performance Analysis 

Table III provides detailed class-wise performance 

metrics, offering insights into the model’s effectiveness for 

different tumour types and standard tissue classification. 

Table III. Detailed Class-Specific Performance Metrics 

(Authors’ Experimental Results) 

Tumor Category Precision Recall F1-Score 

Glioma 87% 41% 56% 

Meningioma 78% 97% 86% 

Pituitary 97% 92% 94% 

Normal Tissue 74% 98% 84% 

 

Analysis of the confusion matrix (Figure 3) reveals several 

noteworthy patterns. The model achieves exceptional 

performance for pituitary adenomas, with 97% precision 

and 92% recall, indicating high accuracy in identifying this 

tumour type. For gliomas, the model exhibits relatively low 

recall (41%), suggesting challenges in detecting all glioma 

cases, while maintaining high precision (87%) when glioma 

predictions are made. Both normal tissue and meningiomas 

demonstrate very high recall rates (98% and 97%, 

respectively) but moderate precision, indicating some false 

positive classifications. 

 

[Fig.3: Confusion Matrix Showing Classification 

Performance Across all Four Tumour Categories 

(Authors’ Experimental Results)] 

These performance patterns highlight specific areas where 

the framework excels and identify opportunities for future 

improvement, particularly in enhancing the sensitivity of 

glioma detection. 

VI. DISCUSSION AND CLINICAL IMPLICATIONS 

The experimental results demonstrate that the proposed 

ensemble approach achieves promising performance in 

automated brain tumour classification. The overall accuracy 

of 82.0% represents substantial progress for this challenging 

four-class classification task, particularly given the inherent 

complexity of differentiating brain tumour types in medical 

imaging. 

Class-specific performance analysis reveals essential 

insights into the framework’s diagnostic capabilities. The 

exceptional performance in pituitary adenoma detection, 

with both high precision and recall, suggests that pituitary 

tumours exhibit distinctive imaging characteristics that 

facilitate automated identification compared with other 

tumour types. 

The lower recall observed for glioma classification 

indicates that these tumours exhibit more heterogeneous 

imaging patterns that occasionally lead to misclassification. 

This reflects the inherent complexity of gliomas on MRI 

scans, which can vary significantly by tumour grade, 

location, and infiltration patterns. This challenge aligns with 

previously reported difficulties in automated glioma 

classification. 

The high recall but moderate precision for normal tissue 

and meningiomas suggests occasional misclassification of 

other tumour types into these categories. This indicates 

opportunities to refine feature extraction and 

discrimination for these classes, potentially through 

enhanced techniques for discriminative feature learning. 

From a clinical perspective, the high precision for glioma 

classification (87%) is particularly valuable, as false positive 

glioma diagnoses could lead to unnecessary patient anxiety 

and potentially inappropriate treatment decisions. 

Conversely, the high recall rates for the meningioma and 

standard tissue categories ensure that most cases in these 

categories are correctly identified, reducing the risk of 

missed diagnoses. 

The integration of multiple 

architectures has proven 

beneficial in capturing diverse 
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tumour characteristics that individual models might 

overlook. ResNet101V2’s depth enables complex feature 

learning, InceptionV3’s multi-scale processing captures 

tumours of varying sizes, and EfficientNetB0’s efficiency 

makes the system practical for clinical deployment. 

VII. LIMITATIONS AND FUTURE DIRECTIONS 

While the proposed ensemble approach demonstrates 

promising results, several limitations should be 

acknowledged. The relatively lower recall for glioma 

classification indicates room for improvement in detecting 

all instances of this tumour type. Additionally, while the 

dataset is substantial, it could benefit from increased 

diversity in tumour presentations and imaging protocols. 

Future research should focus on several directions. First, 

incorporating attention mechanisms could enhance the 

model’s ability to concentrate on tumour-specific regions. 

Second, exploring additional architectural combinations 

might further improve ensemble diversity. Third, 

implementing advanced data augmentation techniques could 

improve generalisation capabilities. Fourth, investigating 

three-dimensional convolutional approaches for volumetric 

tumour analysis could provide valuable spatial context. 

Fifth, developing explainable AI components would 

enhance clinical interpretability and trust. 

VIII. CONCLUSION 

This research presents a novel ensemble deep learning 

framework that effectively integrates ResNet-101V2, 

InceptionV3, and EfficientNetB0 for automated brain 

tumour classification. The proposed approach demonstrates 

promising diagnostic performance across four distinct 

tumour categories, achieving 82% overall accuracy, with 

powerful results for identifying pituitary adenomas. 

The ensemble integration strategy effectively leverages 

complementary feature-extraction capabilities, improving 

diagnostic reliability compared to individual models. While 

challenges remain in glioma classification, the overall 

framework shows significant potential for clinical 

application. The successful implementation of this 

integrated framework suggests substantial promise for 

similar ensemble approaches in other complex medical 

image analysis applications. Future developments 

addressing current limitations could further enhance 

classification accuracy across all tumour categories, 

potentially advancing automated medical diagnosis and 

supporting clinical decision-making processes. 

These findings contribute to the growing body of evidence 

supporting ensemble methodologies in medical AI 

applications, demonstrating that strategic architectural 

combinations can yield superior diagnostic performance 

compared to single-model approaches. This work provides a 

foundation for future investigations into multi-architecture 

fusion techniques for medical imaging applications. 
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