
 

International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-1, Issue-2, May 2011 

62 

 

Abstract—The problem of mining association rules has 

attracted lots of attention in the research community. Several 

techniques for efficient discovery of association rule have 

appeared. With abundant literature published in research into 

frequent itemset mining and deriving association rules, if the 

question is raised that whether we have solved most of the 

critical problems related to frequent itemset mining and 

association rule discovery. Based on the scope of the recent 

literature, the answer will be negative. The most time consuming 

operation in discovering association rule, is the computation of 

the frequency of the occurrences of interesting subset of items 

(called candidates) in the database of transactions. Can one 

develop a method that may avoid or reduce candidate generation 

and test and utilize some novel data structures to reduce the cost 

in frequent pattern mining? This is the motivation of my study 

for mining frequent-itemsets and association rules. In this paper 

we review some existing algorithms for frequent itemset mining 

and present a proposal of our new approach. 

 

Index Terms — Data mining, Frequent Item-set mining, 

Association Rule Mining. 

 

I. INTRODUCTION 

  The discovery of association rules in transaction 

databases is an important data-mining problem because of its 

wide application in many areas, such as market basket 

analysis, decision support, financial forecast, collaborative 

recommendation, and prediction. Prediction is a process, for 

example, given a set of rules that describe the shopping 

behavior of the customers in a store over time, and some 

purchases made by a particular customer, we wish to predict 

what other purchases will be made by that customer.  Many 

techniques have been proposed for prediction in the past.  In 

addition to the classical decision-tree induction approach, 

there are Bayesian classifications, neural network, nearest 

neighbor classifiers, case-based reasoning, genetic algorithm, 

rough set, fuzzy set, and data mining approaches.   

 

 
Manuscript received May 13, 2011. 

 Anurag Choubey, Dean Academic, Technocrats Institute of 

Technology, Bhopal (Madhya Pradesh), India,  (E-mail: 

choubeyanurag1@gmail.com) 

Dr. Ravindra Patel, Reader & Head, Department of Computer 

Application, UIT-RGPV, Bhopal(M.P.), India Bhopal (Madhya Pradesh), 

India (E-mail: ravindra@rgtu.net) 

Dr. J.L. Rana, Ex. Professor & Head, Department of  Computer Science 

& Engineering, MANIT, Bhopal (Madhya Pradesh), India (E-mail: 

jl_rana@yahoo.com). 

 

For data mining approach, the association rule set is usually 

used for prediction.  However, traditional association rule 

algorithms typically generate a large number of rules, most of 

which are unnecessary when used for prediction.  

Enhancements on simplifying the association rule set directly 

and indirectly have been therefore studied extensively [15, 

16].  Most indirect algorithms simplify the set by post-pruning 

and re-organization of association rules [12, 13, 14].  The 

direct algorithms attempts to reduce the number of association 

rules directly, for example, the constraint association rule 

sets, non-redundant rule sets, and informative rule sets. 

In recent years, association analysis [10, 13, 16] has 

attracted a lot of attention for research and applications. 

Frequent-Item-set mining [2, 4, 7] is one sub-problem and the 

key task of association analysis. Many research works focus 

on mining frequent Item-sets as it is a hard problem when data 

is large. There are proposals on reduction of such a huge set, 

including closed Item-sets, maximal Item-sets, approximate 

Item-sets, condensed Item-set bases, representative Item-sets, 

clustered Item-sets, and discriminative frequent Item-sets. 

However, most of the previously developed frequent and 

closed Item-set mining algorithms work under the candidate 

maintenance-and-test paradigm which is inherently costly in 

both runtime and space usage when the support threshold is 

low or the patterns become long Thus much research is still 

needed to substantially reduce the size of derived Item-set sets 

and enhance the quality of retained Item-sets. In order to find 

more algorithms to solve the frequent Item-set mining 

problem in a given range of the parameters, the behavior of 

the most representative algorithms should be investigated. 

After detecting their drawbacks a novel method can be 

developed which aims to avoid the disadvantages found by 

the algorithms examined. The objectives of the investigation 

are the memory requirements of each method. In this work, 

we are particularly interested in improving the efficiency of 

mining association rule sets by targeting improvement in 

mining of frequent Item-set.  

II. PROBLEM DEFINITIONS 

The association rule mining has received a great deal of 

attention since its introduction [1]. Today the mining of such 

rules is still one of the most popular and attracting 

pattern-discovery methods in Knowledge Discovery and Data 

mining (KDD) [5]. Association rule mining  

A Survey of Efficient Algorithms and New 

Approach for Fast Discovery of Frequent 

Itemset for Association Rule Mining 

(DFIARM) 

Anurag Choubey, Ravindra Patel, J.L. Rana 

mailto:choubeyanurag1@gmail.com
mailto:ravindra@rgtu.net
mailto:jl_rana@yahoo.com


                                                                                

A survey of Efficient Algorithms and New Approach for Fast Discovery of Frequent Item-set for Association Rule 

Mining (DFIARM) 

 

63 

 

[15] is a popular data mining technique because of its wide 

application in marketing and retail communities as well as 

other more diverse fields [18]. Association rule mining is a 

method of finding relationships of the form X→Y amongst 

Item-sets that occur together in a database where X and Y are 

disjoint Item-sets [17]. Support and confidence measures 

serve as the basis for customary techniques in association rule 

mining. The support and confidence are predefined by users 

to drop the rules that are not so interesting or useful. The 

association rule indicates that the transactions that contain X 

tend to also contain Y. Suppose the support of an item is 

0.1%, it means only 0.1 percent of the transaction contain 

purchasing of this item [16]. The task of mining association 

rules is defined as follows:  

Let IS ={i1,i2,i3,…,im} a set of items and TDI ={t1,t2,t3, 

…,tn}be a set of transaction data items,  where ti = {ISi1, 

ISi2, ISi3, ……, ISip}, P≤ m and ISij ∈  IS, if X ⊆  I with 

k=|X| is called a k-item-set or simply an item-set. An An 

expression, where X, Y are item-sets and association rule X 

X∩Y= Φ holds is called an association rule X → Y. The 

measure of number of transactions T supporting an item set 

X with respect to TDI is termed as the Support of an item-set. 

 

Support ( X ) = ǀ {T ∈  TDIǀ X⊆ T}ǀ TDIǀ  ………….(1) 

 

The ratio of the number of transactions that hold X U Y to the 

number of transactions that holds X is said to be the 

confidence of an association rule X → Y. 

 

Conf (X → Y)=Support (X U Y) / Support (X) ………….(2) 

 

Informally, the prediction using association rule set can be 

described as follows.  For a given association rule set R and an 

Item-set P, we say that the predictions for P from R is a 

sequence of items Q.  The sequence of Q is generated by using 

the rules in R which is descending order of confidence.  For 

each rule r that matches P (i.e. for each rule whose antecedent 

is a subset of P), each consequent of r is added to Q.  After 

adding a consequence to Q, all rules whose consequences are 

in Q are removed form R.  The following example shows the 

association rules of a simple data set and its application to 

prediction. 

Example 1: 

Consider a small database shown in table-1.  For minimum 

support 0.5 and minimum confidence 0.5. For the rule: a   b, 

the 67% is called the support of the rule is the percentage of 

transactions that contain both a and b.  The 80% here called 

the confidence of the rule, which means that 80% of 

transaction that contains X also contains Y.  Therefore, set of 

12 association rules can be found, as shown in Table-2. 

 

[Table-1: A Simple Database D 

TID Items 

1 abc 

2 abc 

3 abc 

4 abd 

5 acd 

6 bcd 

 

[Table-2: Association Rule Set obtained from Table-1] 

No. AR Support Confidence 

1 a=>b 0.67 0.8 

2 a=>c   0.67 0.8 

3 b=>a 0.67 0.8 

4 b=>c 0.67 0.8 

5 c=>a 0.67 0.8 

6 c=>b 0.67 0.8 

7 ab=>c   0.5 0.75 

8 ac=>b 0.5 0.75 

9 bc=>a 0.5 0.75 

10 a=>bc 0.5 0.6 

11 b=>ac 0.5 0.6 

12 c=>ab 0.5 0.6 

 

 

For prediction, given an Item-set P = {a, b}, the predicted 

sequence of items will be Q = {b, c, a}.  It can be observed 

that not all association rules are used to produce the predicted 

sequence Q. 

The problem of mining association rules can further be 

decomposed into two sub-problems: 

1. discovering the frequent Item-sets, and  

2. Using the frequent Item-sets to generate the 

association rules for the database. 

A. Frequent Item-set Mining (FIM): 

The task of frequent-Item-set mining, first sub-problem 

was first introduced in [1] discovering the large Item-sets, is 

said to generate all combinations of items that have fractional 

transaction support above a certain threshold.  All other 

combinations that fall below the support threshold are called 

small Item-sets. Finding all frequent Item-sets in a database is 

difficult since it involves searching all possible Item-sets 

(item combinations). The set of possible Item-sets is the 

power set over I and has size 2n − 1 (excluding the empty set 

which is not a valid Item-set). Although the size of the 

power-set grows exponentially in the number of items n in I, 

efficient search is possible using the downward-closure 

property of support [2, 4] which guarantees that for a frequent 

Item-set, all its subsets are also frequent and thus for an 

infrequent Item-set, all its supersets must also be infrequent. 

Exploiting this property, efficient algorithms can find all 

frequent Item-sets.  

A frequent Item-set is a set of items that appears at least in a 

pre-specified number of transactions. Frequent Item-sets are 

typically used to generate association rules. The task of 

frequent-Item-set mining is defined as follows:  

Let I be a set of items. A set X = {ii ,...., ik } ⊆ I is called an 

item set, or a k-item-set, if it contains k items. A transaction 

over I is a couple T=(tid, I) where tid is the transaction 

identifier and I is Item-set. A transaction T= (tid, I) is said to 

support an item-set X⊆I, if X⊆I. A transaction database D 

over I is a set of transactions over I. The support of an Item-set 

X in D is the number of transactions in D that supports X: 

 

Support (X,D)=ǀ {tidǀ (tid,I) ∈D,X ⊆I}ǀ ………….(3) 

 

The frequency of an item-set X in D is the probability of X 



 

International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-1, Issue-2, May 2011 

64 

occurring in a transaction T∈ D. 

 

Frequency (X, D) =P(X) = Support(X,D) / 

ǀ Dǀ ………….(4) 

 

Note that ǀ Dǀ  = support({},D). An item-set is called 

frequent if its support is no less than a given absolute 

minimal support threshold σabs, with 0 ≤ σabs ≤ |D|. The 

frequent itemsets discovered does not reflect the impact of 

any other factor except frequency of the presence or absence 

of an item. 

III. ANALYSIS OF SOME OF THE EFFICIENT EXISTING 

ALGORITHMS FOR FIM  

The goal of frequent-Item-set mining is to discover sets of 

items that frequently co-occur in the data. The problem is 

non-trivial because datasets can be very large, consisting of 

many distinct items, and contain interesting Item-sets of high 

cardinality. Existing approaches can be classified into three 

major categories. First, bottom-up algorithms such as the 

well-known Apriori algorithm [1, 2] repeatedly scan the 

database to build Item-sets of increasing cardinality.  They 

exploit monotonicity proper- ties between frequent Item-sets 

of different cardinalities and are simple to implement, but 

they suffer from a large number of expensive database scans 

as well as costly generation and storage of ―candidate 

Item-sets‖. Second,  top-down  algorithms such  as  Top Down 

[11]—proceed  the other  way around: The  largest  frequent 

Item-set is built  first and  item- sets of smaller  cardinality are 

constructed afterwards, again using  repeated scans  over  the 

database. Finally, prefix-tree algorithms [7, 8] operate in two 

phases. In the first phase, the database is transformed into a 

prefix tree designed for efficient mining. The second phase 

extracts the frequent item- sets from this tree without further 

base data access. Algorithms of this class require only a fixed 

number of database scans, but may require large amounts of 

memory. 

The major emphasis has been placed on finding efficient 

algorithm in finding the large Item-sets.  The core algorithms 

and their performance will be discussed in this sections, are 

the AIS algorithm [1], Apriori and AprioriTid [2], DHP [5], 

Partition Algorithm [6], and FP-growth and Dyn FP-growth 

Algorithm [7, 8]. 

A. AIS Algorithm 

The AIS algorithm put forth by [1] was the forerunner of all 

the algorithms used to generate the frequent Item-sets and 

confident association rules, the description of which has been 

given along with the introduction of mining problem. The 

algorithm comprises of two phases. The first phase constitutes 

the generation of the frequent Item-sets. This is followed by 

the generation of the confident and frequent association rules 

in the second phase. Before explaining the AIS algorithm, 

there are two terms needed to be defined.  The "frontier set" of 

a pass is a set which consists of Item-sets that are extended 

during the pass.  During each pass, a measurement of the 

support for certain Item-sets is taken.  These Item-sets are 

called "candidate Item-sets."  They are derived from the 

tuples in the database and the Item-sets are contained in the 

frontier set.  The AIS algorithm makes multiple passes over 

the database.  Initially, the frontier set is empty. During each 

pass over the database, the candidate sets are generated from 

taking the extensions of the frontier set and the tuples in the 

database.  At the end of each pass, if the support for a 

candidate set is equal or above the minimum support required, 

this candidate set is kept and considered as a large Item-set 

which will then be used in the following passes.  Meanwhile, 

this Item-set will be determined whether it should be added to 

the frontier set for the next pass.  That is, those candidate 

Item-sets that were expected to be small but turned out to be 

large in the current pass would be included in the frontier set 

for the next pass.  The entire algorithm terminates when the 

frontier set becomes empty.  At the end, the remaining 

candidate Item-sets is the large Item-sets that we are supposed 

to discover. 

B. Apriori, AprioriTid, and AprioriHybrid Algorithms 

The exploitation of the monotonicity property of the 

support of Item-sets and the confidence of association rules 

led to the enhancement of the algorithm and it was later 

renamed as Apriori [2]. Though a number of algorithms were 

put forth following the introduction of Apriori algorithm, a 

majority of them dealt with the optimization of one or more 

steps of the Apriori bearing the similar general structure. The 

Apriori algorithm first counts occurrences of items to 

determine the large 1-Item-sets (Item-set with the cardinality 

of 1).  Then there are two phases in the subsequent passes.  

First of all, the large Item-sets Lk-1 found in the (k-1)th pass 

are used to generate the candidate Item-sets Ck, using the 

"apriori-gen" function.  Next, the support of candidates in Ck 

is counted by scanning the database.  The final answer is 

obtained by taking the union of all Lk Item-sets. The 

"apriori-gen" function takes Lk-1 as argument and returns a 

superset of the set of all large k-Item-sets.  Firstly, the join 

step is taken by joining Lk-1 with Lk-1.  The next step is the 

prune step, which deletes all Item-set

(k-1)-subset of c is not in Lk-1.  The intuition behind the 

"apriori-gen" function is that every subset of a large Item-set 

must be large; thus we can combine almost-matching pairs of 

large (k-1)-Item-sets, i.e. Lk-1, and then prune out those with 

non-large (k-1)-subsets. 

The AprioriTid algorithm is a variation of the Apriori 

algorithm.  The AprioriTid algorithm also uses the 

"apriori-gen" function to determine the candidate Item-sets 

before the pass begins.  The main difference from the Apriori 

algorithm is that the AprioriTid algorithm does not use the 

database for counting support after the first pass.  Instead, the 

set <TID, {Xk}> is used for counting.  (Each Xk is a 

potentially large k-Item-set in the transaction with identifier 

TID.)  The benefit of using this scheme for counting support is 

that at each pass other than the first pass, the scanning of the 

entire database is avoided.  But the downside of this is that the 

set <TID, {Xk}> that would have been generated at each pass 

may be huge.  Another algorithm, called AprioriHybrid, was 

introduced in [AS94].  The basic idea of the AprioriHybird 

algorithm is to run the Apriori algorithm initially, and then 

switch to the AprioriTid algorithm when the generated 

database (i.e. <TID, {Xk}>) would fit in the memory. 

AprioriTid performed equivalently well as Apriori for 

smaller problem sizes however performance 



                                                                                

A survey of Efficient Algorithms and New Approach for Fast Discovery of Frequent Item-set for Association Rule 

Mining (DFIARM) 

 

65 

 

degraded twice slow when applied to large problems. Scaleup 

experiments demonstrated that AprioriHybrid scales linearly 

with the number of transactions. In addition, the execution 

time decreases a little as the number of items in the database 

increases. As the average transaction size increases (while 

keeping the database size constant), the execution time 

increases only gradually. 

C. DHP Algorithm 

The DHP (Direct Hashing and Pruning) algorithm is an 

effective hash-based algorithm [5] for the candidate set 

generation.  The DHP algorithm consists of three steps.  The 

first step is to get a set of large 1-Item-sets and constructs a 

hash table for 2-Item-sets.  (The hash table contains the 

information regarding the support of each Item-set.)  The 

second step generates the set of candidate Item-sets Ck, but it 

only adds the k-Item-set into Ck if that k-Item-set is hashed 

into a hash entry whose value is greater than or equal to the 

minimum transaction support.  The third part is essentially the 

same as the second part except it does not use the hash table in 

determining whether to include a particular Item-set into the 

candidate Item-sets. The second part is designed for the use in 

early iteration, whereas the third part should be used for later 

iterations when the number of hash buckets with a support 

count greater than or equal to s (the minimum transaction 

support required) is less than a pre-defined threshold.  Note 

that the DHP algorithm has two major features: one is its 

efficiency in generation of large Item-sets; the other is 

effectiveness in reduction on transaction database size.  The 

generation of smaller candidate sets is the key to effectively 

trim the transaction database size at earlier stages of the 

iterations such that the computational cost for the later 

iterations is significantly reduced.  Therefore, the DHP 

algorithm is particularly powerful to determine large 

Item-sets in early stages, and improves the performance 

bottleneck in a great deal. 

D. Partition Algorithm 

The Partition algorithm logically partitions the database D 

into n partitions, and only reads the entire database at most 

two times to generate the association rules [6].  The reason for 

using the partition scheme is that any potential large Item-set 

would appear as a large Item-set in at least one of the 

partitions.  The algorithm consists of two phases.  In the first 

phase, the algorithm iterates n times, and during each 

iteration, only one partition is considered.  At any given 

iteration, the function "gen_large_Item-sets" takes a single 

partition and generates local large Item-sets of all lengths 

from this partition.  All of these local large Item-sets of the 

same lengths in all n partitions are merged and then combined 

to generate the global candidate Item-sets.  In the second 

phase, the algorithm counts the support of each global 

candidate Item-sets and generates the global large Item-sets.  

Note that the database is read twice during the process: once 

in the first phase and the other in the second phase, which the 

support counting requires a scan of the entire database.  By 

taking minimal number of passes through the entire database 

drastically saves the time used for doing I/O. 

Although the covers of all items can be stored in the main 

memory, during the generation of all local frequent sets for 

every part, it is still possible that the covers of all local 

candidate k-sets can not be stored in main memory. Also, the 

algorithm is highly dependent on the heterogeneity of the 

database and can generate too many local frequent sets, 

resulting in a significant decrease in performance. However, 

if the complete database fits into main memory and the total of 

all covers at any iteration also does not exceed main memory 

limits, then the database must not be partitioned at all.  

E. The FP-Growth Algorithm 

In general there is no ―best" approach for frequent-Item-set 

mining, but the prefix-tree algorithm FP-growth [7, 8, 9 ] is 

usually considered as one of the fastest available algorithms 

[4]. The key advantage of FP-growth is that it requires only 

two passes over the database; it is thus very I/O efficient. The 

two passes are used to build an FP-tree, which can be viewed 

as a compressed representation of the frequent items and their 

co-occurrence in the data. Based on the initial FP-tree, 

FP-growth recursively builds smaller FP-trees that are 

eventually used to obtain the actual frequent Item-sets. Many 

optimizations to FP-growth have been proposed as shown in 

[7, 8, 9], the main bottleneck of the Aprioi-like methods is at 

the candidate set generation and test. This problem was dealt 

with by introducing a novel, compact data structure, called 

frequent pattern tree, or FP-tree then based on this structure an 

FP-tree-based pattern fragment growth method was 

developed, FP-growth. The definition, according to [7] is as 

follows.  

Definition 1 (FP-tree) A frequent pattern tree is a tree 

structure defined below. 

1. It consists of one root labeled as ―root‖, a set of item 

prefix sub-trees as the children of the root, and a 

frequent-item header table. 

2. Each node in the item prefix sub-tree consists of three 

fields: item-name, count, and node-link, where item-name 

registers which item this node represents, count registers the 

number of transactions represented by the portion of the path 

reaching this node, and node-link links to the next node in the 

FP-tree carrying the same item-name, or null if there is none. 

3. Each entry in the frequent-item header table consists of 

two fields, (1) item-name and (2) head of node-link, which 

points to the first node in the FP-tree carrying the item-name. 

The main disadvantage of FP-growth is its excessive 

memory requirement. Even for moderately sized datasets, the 

FP-tree may easily grow to billions of nodes.  

F. The DynFP-Growth Algorithm 

As shown in [2] the main bottleneck of the Aprioi-like 

methods is at the candidate set generation and test. This 

problem was taken into consideration by introducing a novel, 

compact data structure, named frequent pattern tree, or 

FP-tree, then based on this structure an FP-tree-based pattern 

fragment growth method was developed, FP-growth. The 

completeness and compactness of this structure is also shown 

in [7]. Some observations on the way the FP-tree are 

constructed. 

1. The resulting FP-tree is not unique for the same 

―logical‖ database. 

2. The process needs two complete scans of the 

database. 



 

International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-1, Issue-2, May 2011 

66 

A solution to the first observation was given [14], by using 

a support descending order together with a lexicographic 

order, ensuring in this way the uniqueness of the resulting 

FP-tree for different ―logically equivalent‖ databases. The 

second observation was addressed also [14], by devising a 

dynamic FP-tree reordering algorithm, and employing this 

algorithm whenever a ―promotion‖ to a higher order of at least 

one item is detected. Although the resulting FP-tree could be 

too large to be stored in its entirety in the main memory, 

because of its properties, and for a relatively high number of 

queries with different minimum supports, it would be more 

practical, from time consuming point of view, to store it on 

disk in its full form and using only the portions that are 

required from it. Using the dynamic reordering one doesn’t 

have to rebuild the FP-tree even if the actual database is 

updated. In this case the algorithm has to be performed taking 

into consideration only the new transactions and the stored 

FP-tree. This approach can provide a very quick response to 

any queries even on databases that are being continuously 

updated – fact that is true in many cases. Because the dynamic 

reordering process, [14] proposed a modification of the 

original structures, by replacing the single linked list with a 

doubly linked list for linking the tree nodes to the header and 

adding a master-table to the same header. All these 

modifications are presented in more details in [14]. The 

resulting FP-tree is compatible for mining purposes with the 

original FP growth algorithm described in [7]. Because we 

use the Dynamic-FP tree construction algorithm we renamed 

the FP-growth in to DynFP-growth.  

It can be observed that the execution time of 

DynFP-Growth does not depend on support but only on the 

database size, this because the tree construction technique 

does not need the support information. In this way the tree will 

contain all the database transactions and depending on the 

required support the results will be refined so that they will 

contain only the Item-sets that have their frequency greater 

than the required support. 

IV. METHODOLOGY 

A. 0-Level DFD for DFIARM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Block Diagram for DFIARM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Proposed New Approach and Expected Outcomes 

Several efficient algorithms have been proposed to solve 

FIM problem, still much work is to be done in this direction. 

Here we summarize the limitations of algorithms discussed in 

section 3.  

1. The apriori and its variants achieve good 

reduction on the size of candidate set but still 

suffer from generating huge numbers of 

candidates and taking many scans of large 

databases for frequency checking.  

2. The FP-growth mining technique has been found 

to be an efficient algorithm when using the 

prefix-tree data structure. The performance gain 

achieved by FP-growth is mainly based on the 

highly compact nature of the FP-tree, where it 

stores only the frequent items in 

frequency-descending order and ensures the tree 

can maintain as much prefix sharing as possible 

among patterns in the transaction database. 

However, the construction of such an FP-tree 

requires two database scans and prior knowledge 



                                                                                

A survey of Efficient Algorithms and New Approach for Fast Discovery of Frequent Item-set for Association Rule 

Mining (DFIARM) 

 

67 

 

about the support threshold, which are the key 

limitations of applying the FP-tree in a data stream 

environment or for incremental and interactive 

mining. 

Considering the above limitations and the fact of excessive 

memory requirement for data base scans and to improve the 

efficiency, we would like to propose a novel approach toward 

the solution of the Frequent-Item-set mining. 

1. In our approach we would like to introduce 

branch-by-branch prefix- tree technique based 

frequent Item-set mining which depends on 

traversal strategy of conditional data base.   

2. To improve the degree of prefix sharing in the tree 

structure, phase wise tree restructuring will be 

performed. 

3. It is an efficient compact tree structure by which 

no. of data scan shall be reduced and expected to 

capture data base information with only one scan. 

4. For large data base, space requirement for 

recursion is a challenge, by our new concept we 

will be able to solve this problem. 

5. With our new approach we will be able to reduce 

memory requirement and run time for 

frequent-Item-set mining. 

6. The performance of the approach shall be 

evaluated through experimental test and 

compared with some existing efficient algorithm. 

V. CONCLUSION AND FUTURE WORK 

The goal of mining association rules is to discover 

important associations among items in a database of 

transactions such that the presence of some items will imply 

the presence of other items. The problem of mining 

association rules has been decomposed into two 

sub-problems: discovering the large Item-sets, and then 

generate rules based on these large Item-sets.  The attention 

has been placed on the first sub-problem since the second 

sub-problem is quite straightforward up to some extent.  Thus, 

there have been several algorithms proposed to solve the first 

sub-problem.  These researches in algorithms of mining 

association rules are basically motivated by the fact that the 

amount of the processed data in mining association rules is 

huge; thus it is crucial to devise efficient algorithms to 

conduct mining on such data. In this paper, we have presented 

a comprehensive survey of some of the efficient algorithms 

and techniques available and proposed a new approach in 

context of memory utilization and run time for 

frequent-Item-set mining. The algorithms with the 

incorporation of economic utility factors have also been 

presented. A comparative study has been studied through the 

thorough assessment of the results of the algorithms and 

techniques on the basis of parameters utilized. The execution 

time and the utilization of memory in conjunction with the 

minimum threshold for mining frequent Item-sets were the 

chief factors considered during the analysis. The two main 

contributions of this paper are, on the one hand, the 

limitations of the existing algorithms in terms of memory 

requirement and execution time were discussed and on the 

other hand, a logical framework for the solution of the 

problem as a future work proposed.  

REFERENCES 

[1] R. Agrawal, T. Imilienski, and A. Swami, ―Mining Association Rules 

between Sets of Items in Large Databases,‖ Proc. of the ACM 

SIGMOD Int’l Conf. On Management of data, May 1993. 

[2] R. Agrawal, and R. Srikant, ―Fast Algorithms for Mining Association 

Rules,‖ Proc. Of the 20th VLDB Conference, Santiago, Chile, 1994. 

[3] R. Agrawal, J. Shafer, ―Parallel Mining of Association Rules,‖ IEEE 

Transactions on Knowledge and Data Engineering, Vol. 8, No. 6,  Dec. 

1996. 

[4] B. Goethals and  M. J. Zaki. Advances in frequent itemset mining  

implementations:  report on fimi’03. SIGKDD Explorations, 

6(1):109–117, 2004  

[5] J.S. Park, M.-S. Chen, and P.S. Yu, 1995. ―An effective hash based 

algorithm for mining association rules‖. In Proceedings of the 1995 

ACM SIGMOD International Conference on Management of Data, 

volume 24(2) of SIGMOD Record, pp. 175–186. ACM Press. 

[6] Ashok Savasere, Edward Omieinski and Shankant Navathe, 1995. ―An 

Efficient Algorithm for Mining Association Rules in Large 

Databases‖, Proceedings of the 21st International Conference on Very 

Large Data Bases, pp. 432 – 444. 

[7] J. Han,  J. Pei,  and  Y. Yin. Mining  frequent patterns without 

candidate generation. In SIGMOD,  pages1–12, New York,  NY, 

USA, 2000. ACM 

[8] Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao. Mining Frequent 

Patterns without Candidate Generation: A Frequent-Pattern Tree 

Approach. Data Mining and Knowledge Discovery, Volume 8, Issue 1, 

pp. 53 – 87, January 2004 

[9] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, 

Byeong-Soo Jeong, Young-Koo Lee. Efficient single-pass frequent 

pattern mining using a prefix-tree, Elsevier-Information Science 

179 (2008) 559-583. 

[10] C. Agrawal, and P. Yu, ―Mining Large Itemsets for Association Rules,‖ 

Bulletin of the IEEE Computer Society Technical Committee on Data 

Engineering, 1997. 

[11] A. Freitas and S. Lavington, ―Mining very large databases with parallel 

processing,‖ Kluwer Academic Pub., 1998. 

[12] H. Mannila, H. Toivonen, and A. Verkamo, ―Efficient Algorithms for 

Discovering Association Rules,‖ AAAI Workshop on Knowledge 

Discovery in databases (KDD-94), July 1994. 

[13] M. Zaki, ―Parallel and Distributed Association Mining: A Survey, 

―IEEE Concurrency, 7(4), pp. 14-25, 1999. 

[14] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ―New Algorithms 

for Fast Discovery of Association Rules,‖ Proc. Of  the 3rd Int’l Conf. 

On Knowledge Discovery and data Mining (KDD-97), AAAI Press, 

1997. 

[15] Srikant, R. and Agrawal, R., 1996. ―Mining Quantitative Association 

Rules in Large Relational Tables.‖ In Proc. of ACM SIGMOD Conf. on 

Management of Data. ACM Press, pp. 1-12. 

[16] S. Kotsiantis, D. Kanellopoulos, 2006. ―Association Rules Mining: A 

Recent Overview‖, ESTS International Transactions on Computer 

Science and Engineering, Vol.32, No. 1, pp. 71-82. 

[17] Erwin, A., Gopalan, R. P., and Achuthan, N. R., 2007. ―CTU-Mine: An 

Efficient High Utility Itemset Mining Algorithm Using the Pattern 

Growth Approach‖, IEEE 7th International Conferences on Computer 

and Information Technology, pp. 71-76. 

[18] Khan, M.S. Muyeba, M. Coenen, F., 2008. ―A Weighted Utility 

Framework for Mining Association Rules‖, Second UKSIM European 

Symposium on Computer Modeling and Simulation, pp. 87-92. 

 


	I. INTRODUCTION
	II. Problem definitions
	A. Frequent Item-set Mining (FIM):

	III. Analysis of Some of the Efficient Existing Algorithms for FIM
	A. AIS Algorithm
	B. Apriori, AprioriTid, and AprioriHybrid Algorithms
	C. DHP Algorithm
	D. Partition Algorithm
	E. The FP-Growth Algorithm
	F. The DynFP-Growth Algorithm

	IV. METHODOLOGY
	A. 0-Level DFD for DFIARM
	B. Block Diagram for DFIARM
	C. Proposed New Approach and Expected Outcomes

	V. CONCLUSION AND FUTURE WORK
	References

