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Abstract— PID controller is a well known controller which is 
used in most control applications. Around 90% control 
applications use PID controller as the controlling element.  The 
tuning of PID controller is mostly done using Zeigler-Nichols 
tuning method. But there are some inherent drawbacks of 
Ziegler-Nichols based tuning. For the optimal tuning of 
controller, the tuned values have to be changed using computer 
simulation to meet the process needs. In PID controller the 
derivative and the integral order are in integer. Fractional order 
PID (FOPID) is a special kind of PID controller whose 
derivative and integral order are fractional rather than integer. 
The key challenge of designing FOPID controller is to determine 
the two key parameters λ (integral order) and µ (derivative 
order) apart from the usual tuning parameters of PID using 
different tuning methods. Both λ and µ are in fraction which 
increases the robustness of the system and gives an optimal 
control. This paper proposes a novel tuning method for tuning λ 
and µ of FOPID using genetic algorithms.  

 
Index Terms—Fractional order PID, genetic algorithms, PID, 

Ziegler-Nichols 
 

I. INTRODUCTION 

PID controllers have been used for several decades in 
industries for process control applications. The reason for 
their wide popularity lies in the simplicity of design and good 
performance including low percentage overshoot and small 
settling time for slow process plants [1]. The performance of 
the PID controllers can be improved by making use of 
fractional order derivatives and integrals. This flexibility 
helps to design more robust control system. In fractional order 
PID (FOPID) controller, the integral and derivative orders are 
usually fractional. In FOPID besides Kp, Ki, Kd there are two 
more parameters λ and µ, the integral and derivative orders 
respectively. If λ =1 and µ =1, then it becomes integer PID. If 
λ and µ are in fractions then it becomes fractional order PID.  

Many random search methods, such as genetic algorithm 
(GA) have recently received much interest for achieving high 
efficiency and searching global optimal solution in problem 
space [2]. Due to its high potential for global optimization, 
GA has received great attention in control systems such as the 
search of optimal PID controller parameters.  
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II. INTEGER AND FRACTIONAL ORDER PID CONTROLLER 

A. Integer Order PID Controller 
The mnemonic PID refers to the first letters of the 

names of the individual terms that make up the standard 
three-term controller. These are P for the proportional term, I 
for the integral term and D for the derivative term in the 
controller. Three-term or PID controllers are probably the 
most widely used industrial controller. Even complex 
industrial control systems may comprise a control network 
whose main control building block is a PID control module. 
The three-term PID controller has had a long history of use 
and has survived the changes of technology from the analogue 
era into the digital computer control system age quite 
satisfactorily. It was the first (only) controller to be mass 
produced for the high-volume market that existed in the 
process industries. Eq(1) shows the time domain equation of 
ideal PID controller.  
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e(t) is the error signal, u(t) is the controller output, Kc is the 
controller gain, τi and τd are integral gain and derivative gain 
respectively. Eq(2) shows the Laplace domain equation of 
ideal PID controller. 
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Eq(3) represents the Laplace domain expression of real PID 
controller.  
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B. Fractional Calculus 
The concept of fractional order controller means 

controllers can be described by fractional order differential 
equations. Of the several definitions of fractional derivatives, 
the Grunwald- Letnikov and Riemann-Liouville definitions 
are the most used. These definitions are required for the 
realization of discrete control algorithms.  
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(.)Γ  is called the Euler’s gamma function 
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With special case when x = n 
( ) ( 1)!n nΓ = −                                                 (6) 

 
The Laplace transformation of Riemann-Liouville definition 
is discussed below.  
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Eq(7) and Eq(8) represents the Laplace transformation of 
fractional order system.  
 

C. Fractional Order PID Controller 
The fractional-order controller will be represented 

by fractional-order PIλ Dµ controller with transfer function 
given by the following expression: 
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Where λ and µ are an arbitrary real numbers, Kp is 
amplification (gain), Ti is integration constant and Td is 
differentiation constant. Taking λ=1 and µ=1, a classical PID 
controller is obtained. For further practical digital realization, 
the derivative part has to be complemented by first order 
filter. The filter is used to remove high frequency noise.  
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The PIλ Dµ controller is more flexible and gives an 
opportunity to better adjust the dynamics of control system. 
Its compact and simple but the analog realization of fractional 
order system is very difficult.  
 

III. PROBLEM FORMULATION 

The transfer function considered for the implementation of 
PID and FOPID controller is given as  
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To tune the PID controller, Zeigler-Nichols closed loop 
oscillation based tuning is used. After tuning the PID 
controller, the values of Kc, Ti and Td comes out to be 6, 0.49 
and 0.1225 respectively. 
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Fig. 1  Block diagram representation of system with fractional order PID 
controller  

Figure 1 represents the integer order process with 
fractional order controller. In fractional order PID controller, 
apart from the three tuning parameters (Kp, Ki and Kd) there 
are two additional tuning parameters that is λ and µ. λ is 
integral order and µ is derivative order. The range of λ and µ 
can be anything except 1, but these are in fraction. The three 
controller parameters (Kp, Ki and Kd) of FOPID are tuned 
using Zeigler-Nichols method and to find the optimal values 
of λ and µ, genetic algorithm is used.   

IV. GENETIC ALGORITHM BASED TUNING OF FRACTIONAL 
ORDER PID CONTROLLER 

A. Overview of genetic algorithm 
Genetic algorithm introduced by Holland in 1975 is used 

for optimization of existing rule base of fuzzy inference 
system. Genetic algorithm belongs to the group of 
optimization methods called as non traditional optimization 
methods. GA tries to imitate natural genetics and natural 
selection. The main philosophy behind GA is survival of the 
fittest. As a result GA is used primarily for maximization 
problems in optimization.  GA don’t suffer from the basic 
setback of traditional optimization methods such as getting 
stuck in local minima. This is because GA works on the 
principle of natural genetics, which incorporates large number 
of randomness.  
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Fig. 2  Flow chart of genetic algorithms 

Figure 3 shows the operational flow chart of a genetic 
algorithm. There are basically three operators of genetic 
algorithm, namely reproduction, crossover and mutation. This 
operators are used till, the genetic algorithm finds the optimal 
values.  

B. Optimal values of λ and µ using genetic algorithm  
Unlike optimization of PID controller, where the main 

objective was to find out the optimal set of values of Kp, Ki 
and Kd, in fractional order PID controller the objective is to 
find out the optimal values of λ and µ. If λ and µ are changed, 
it affects the unit step response of the system because λ and µ 
represents the integral and derivative term. To find out the 
optimal values of λ and µ, genetic algorithm is used. Figure 5 
represents the GA based finding of optimal values of λ and µ. 

 First of all a good set of values of λ and µ are considered as 
parents and to get the new set of values of λ and µ, crossover 
operation is performed between two good values of λ and µ. 
So the first generation of offspring’s is produced. The total 
population increases and selection operation is performed on 
the population. The good chromosomes are kept where as the 
worst chromosomes are left out.  Then the ISE value of the 
good chromosomes are checked to find out if these are the 
best chromosomes or optimal chromosomes, if the ISE value 
is not satisfied, then again crossover between the best 
chromosomes are performed, till the ISE value comes within 
limit. To get more optimal results, mutation operation is 
performed. By the above steps the optimal values of λ and µ 
are achieved.  

 
 
 

C. Parameters of genetic algorithm 
 
Parameter Values 

Lower Bound [λ µ] [0 0] 

Upper Bound [λ µ] [100 100] 

Population Size  40 

Crossover fraction 0.8 

Mutation fraction 0.01 

Stopping Criteria (iterations) 100 

Stopping Criteria ISE (integral square error) 

 

 
Fig. 3  Detailed flow chart of finding out optimal values of λ and µ of 
fractional order PID controller using genetic algorithm 
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Unlike other optimization problem, GA can get stuck in 

global optimum. To get rid of this problem, a condition 
checking of generation is performed.   

 

V. SIMULATIONS AND TESTING 

Figure 6 shows the unit step response of system using integer 
PID controller. In integer PID controller, the values of λ and µ 
are unity.  

 
Fig. 4  Unit step response of system using integer PID controller 

The step response shown above is unit step response of PID  
controller with the PID parameters tuned using 
Zeigler-Nichols closed loop oscillation based tuning method. 
The peak overshoot of PID controller is 47% and settling time 
is 23 sec.  

 

 
Fig. 5  Unit step response of system using fractional PID controller with 
varying variable µ (derivative order µ < 1) 

Figure 5 shows the unit step response of system with 
fractional PID controller, where the derivative order µ and 
integral order λ of the fractional PID system are in fractions. 
The fractions can be less than or greater than 1. In figure 7 the 
integral order λ is kept constant where as derivative order µ is 
changed. Here derivative order µ <1. 

 
Fig. 6  Unit step response of system using fractional PID controller with 
varying variable λ (integral order λ < 1) 

Figure 6 shows the unit step response of system using 
fractional PID controller where the integral order λ <1 and is 
variable and derivative order µ is kept fixed.  

 
Fig. 7  Unit step response of system using fractional PID controller with 
varying variable µ and λ (derivative order µ < 1, integral order λ <1) 

Figure 7 shows the unit step response of system using 
fractional PID controller where the integral order λ <1 and 
derivative order µ < 1.  

 

 
Fig. 8 Unit step response of system using fractional PID controller with 
varying variable µ (derivative order µ > 1) 
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Figure 8 shows the unit step response of system using 
fractional PID controller where derivative order µ  > 1.  

 

 
Fig. 9  Unit step response of system using fractional PID controller with 
varying variable λ (integral order λ > 1) 

Figure 9 shows the unit step response of system using 
fractional PID controller where the integral order λ > 1  

 
 

 
Fig. 10  Unit step response of system using fractional PID controller with 
varying variable µ and λ (derivative order µ > 1, integral order λ > 1) 

Figure 10 shows the unit step response of system using 
fractional PID controller where the integral order λ > 1 and 
derivative order µ > 1.  

 

 
 

Fig. 11  Unit step response of system using fractional PID controller with 
varying variable µ and λ (derivative order µ < 1, integral order λ > 1) 

Figure 11 shows the unit step response of system using 
fractional PID controller where the derivative order µ < 1, 
integral order λ > 1.  

 
 
 

 
Fig. 12  Unit step response of system using fractional PID controller with 
varying variable µ and λ (derivative order µ > 1, integral order λ <1) 

Figure 12 shows the unit step response of system using 
fractional PID controller where derivative order µ > 1, 
integral order λ < 1.  

To find out the optimal value of derivative order µ and 
integral order λ, this paper proposes a novel method using 
genetic algorithm. The detailed flow chart of implementation 
of genetic algorithm to find out the optimal values of 
derivative order µ and integral order λ is shown in figure 5.  
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Fig. 13  Generation and fitness value graph of genetic algorithm 

Figure 13 shows the graph between generation and fitness 
values.  

 

Fig. 14  Unit step response of system using fractional PID controller with 
optimal values of µ and λ  

Figure 14 shows the unit step response of system using 
fractional order PID controller with optimally tuned values of 
µ and λ. The optimal values of µ and λ are generated using 
genetic algorithm. After the application of optimal tuning of µ 
and λ the peak overshoot and settling time of the system meets 
the design requirement.  

VI. RESULTS AND DISCUSSIONS 

In previous section different configurations of FOPID 
controller is considered and the unit step response of the 
system with different configuration of FOPID is displayed. 
From the unit step response different transient parameters are 
calculated which are tabulated in this section. But to find out 
the optimal value of derivative order and integral order this 
paper takes help of genetic algorithm. Table 1 shows the 
different transient parameters of PID controller. The transient 
parameters considered are settling time, peak overshoot, ISE 
(integral square error) and ITAE (integral time absolute 
error).  

 
 
 
 
 

Table 1  
Time domain parameters of PID controller 

 
  Ts Mp ISE ITAE 
1 λ=1, 

µ=1 
23.65 47.15 2.35 53.7 

 
Table 2 displays the transient response parameters of FOPID 
controller for µ < 1.  

Table 2  
Time domain parameters of FOPID controller with µ < 1 

 
  Ts Mp ISE ITAE 
1 µ=0.3 41.742 46.0245 2.889 123.7 

2 µ=0.5 34.903 46.9016 2.659 89.85 

3 µ=0.7 25.293 47.2256 2.505 67.85 

4 µ=0.9 24.148 47.3067 2.405 56.97 

 
Table 3 displays the transient response parameters of FOPID 
controller for derivative order µ = 1, integral order λ < 1 
 

Table 3  
Time domain parameters of FOPID controller with λ < 1  

 
  Ts Mp ISE ITAE 
1 λ=0.3 27.228 37.3379 2.243 68.56 

2 λ=0.5 24.263 40.0857 2.253 56.97 

3 λ=0.7 24.031 42.9715 2.291 54.11 

4 λ=0.9 23.632 45.8391 2.335 53.58 

 
Table 4 displays the transient response parameters of FOPID 
controller for derivative order µ < 1, integral order λ < 1 

 
Table 4  

Time domain parameters of FOPID controller with λ < 1 and µ < 1 
 
  Ts Mp ISE ITAE 

1 λ=0.5, 

µ=0.5 

35.404 38.7205 2.543 95.84 

2 λ=0.5, 

µ=0.7 

26.266 39.7392 2.397 72.19 

3 λ=0.5, 

µ=0.9 

24.703 40.1304 2.300 60.52 

4 λ=0.7, 

µ=0.5 

28.661 42.1173 2.589 92.45 

5 λ=0.9, 

µ=0.5 

34.542 45.3238 2.634 90.24 

 
Table 5 displays the transient response parameters of FOPID 
controller for derivative order µ > 1 

 
 

Table 5  
Time domain parameters of FOPID controller with µ > 1 

 
  Ts Mp ISE ITAE 
1 µ=1.1 23.268 44.6457 2.12 48.78 

2 µ=1.15 22.498 35.2118 1.42 38.21 

3 µ=1.2 13.085 44.9356 0.2717 12.58 

4 µ=1.21 20.750 93.3417 0.8473 29.49 
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Table 6 displays the transient response parameters of FOPID 
controller for integral order λ > 1  

 
Table 6  

Time domain parameters of FOPID controller with λ > 1 
 
  Ts Mp ISE ITAE 
1 λ=1.1 23.4050 48.5314 2.381 54.04 

2 λ=1.5 27.4584 53.5798 2.475 56.14 

3 λ=2.5 26.0765 64.6047 2.713 63.91 

4 λ=7.5 37.8834 141.1292 5.643 121.3 

 
Table 7 displays the transient response parameters of FOPID 
controller for derivative order µ > 1, integral order λ > 1 
 

Table 7  
Time domain parameters of FOPID controller with λ > 1 and µ > 1 

 
  Ts Mp ISE ITAE 
1 λ=1.1, 

µ=1.1 

22.925 45.8945 2.142 49.08 

2 λ=2.5, 

µ=1.1 

25.475 60.6300 2.441 57.84 

3 λ=1.1, 

µ=1.15 

22.096 36.1264 1.438 38.42 

4 λ=2.5, 

µ=1.15 

24.189 46.7059 1.658 44.59 

5 λ=1.1, 

µ=1.2 

13.319  44.7987 0.2839 13.54 

6 λ=2.5, 

µ=1.2 

17.147 44.2505 0.4092 21.84 

7 λ=1.1, 

µ=1.21 

20.628 93.2290 0.8556 30.17 

 
Table 8 displays the transient response parameters of FOPID 
controller for derivative order µ < 1, integral order λ > 1 
 

Table 8  
Time domain parameters of FOPID controller with λ > 1 and µ < 1 

 
  Ts Mp ISE ITAE 
1 λ=1.1, 

µ=0.3 

41.357 47.7478 2.918 123.5 

2 λ=1.1, 

µ=0.9 

23.860 48.6390 2.428 57.27 

3 λ=2.5, 

µ=0.3 

41.870 68.5062 3.339 123.6 

4 λ=2.5, 

µ=0.9 

30.375 64.9865 2.764 67.17 

5 λ=4.5, 

µ=0.3 

40.946  102.1544 4.574 135.4 

6 λ=4.5, 

µ=0.9 

32.814 88.3281 3.428 86.87 

Table 9 displays the transient response parameters of FOPID 
controller for derivative order µ > 1, integral order λ < 1  
 

 

 

Table 9  
Time domain parameters of FOPID controller with λ < 1 and µ > 1 

 
  Ts Mp ISE ITAE 
1 λ=0.3, 

µ=1.1 

26.564 36.0403 2.021 63.14 

2 λ=0.9, 

µ=1.1 

23.366 43.4405 2.098 48.6 

3 λ=0.3, 

µ=1.15 

25.260 30.5292 1.344 48.47 

4 λ=0.9, 

µ=1.15 

22.705 34.3791 1.403 38.11 

5 λ=0.3, 

µ=1.2 

4.8701 47.5611 0.1939 5.328 

6 λ=0.9, 

µ=1.2 

13.042  45.1063 0.2591 11.7 

 

The above tables are shown for different combinations of of µ 
and λ. To find out the optimal value of µ and λ GA has been 
proposed.  

VII. CONCLUSIONS 

This paper proposes a novel method of tuning the 
parameters of FOPID using genetic algorithm. The genetic 
algorithm finds the optimal value of derivative order and 
integral order of fractional order PID controller. With the help 
of fractional order PID controller, control systems responses 
can be designed with much more flexibility.  

There are other soft computing based methods by which 
the optimal tuning values of FOPID can be obtained. Swarm 
intelligence methods like particle swarm intelligence (PSO) 
and ant colony optimization (ACO) can be used instead of 
evolutionary algorithms like GA. Fuzzy based method and 
adaptive neuro fuzzy based method can also be used to find 
the best fit values of µ and λ.   
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