
International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-1 Issue-5, November 2011 

105 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E0161081511/2011©BEIESP 

 

Abstract— Bees Algorithm (BA) is a population-based 

algorithm inspired by the honey bees forage for food. The 

algorithm presents a neighbourhood search associated with a 

random search which can be used for optimisation problems. In 

the basic version of BA, when a bee finds a food source, it returns 

to the hive and shares the information with other bees. Later, the 

bees will decide how many of them should fly towards the food 

source, depending on its quality (the quality represents the fitness 

value). In this paper, we have proposed to investigate the using of 

BA for examination timetabling problems, in addition a 

modification on the algorithm has been applied by replacing the 

fitness value by probability value. Experimental results indicate 

that the proposed approach produces promising results in solving 

examination timetabling problems and also show that the 

modified bees’ algorithm outperforms the basic bees algorithm 

when tested on the same problems. 

 

Index Terms: Bees Algorithm, Examination Timetabling 

Problems.  

I. INTRODUCTION 

  Examination Timetabling Problem (ETTP) is an 

optimization problem faced by many academic institutions 

[13]. ETTP is the process of allocating a number of 

examinations into a predefined number of timeslots, by 

satisfying a set of constraints, where the hard constraints 

cannot be violated and soft constraints must be minimised as 

much as possible [23]. Numbers of approaches have been 

previously employed on examination timetabling problems 

[19]. 

The Bees Algorithm has been introduced in 2005 by Pham 

et al.[1]. Pham et al., in 2006 [2] proved that Bee Algorithm 

generally outperforms other techniques (i.e. Genetic 

Algorithms such as Ant Colony Optimization and Artificial 

bee colony) in terms of speed of optimization and accuracy of 

results [2]. In our research, we have concerned to improve the 

efficiency of the Bees Algorithm by replacing the fitness 

value to rank the solutions in the population by using a 

probability value in order to maintain population diversity. 

The details of the basic bees‟ algorithm and the proposed 

approach are discussed in Section II, that is followed by some 

explanations about examination timetabling problems and its 

formulation (Section III). Our experimental results and 

comparison are presented in Section IV.   The conclusion and 
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future work are discussed in Section IIV.  

II. BEES ALGORITHM  

A. The Basic Bees Algorithm 

This section summarises the main steps of the basic Bees 

Algorithm as stated in [2]. As mentioned before, the Bees 

Algorithm is one of optimisation algorithms which inspired 

by the natural foraging behaviour of honey bees. Figure I 

shows the simplest form of the pseudo code of the algorithm. 

The algorithm starts with initial population (scout bees) which 

is generated randomly, and then the BA search process is 

started until the stopping criterion is met. 

 

Initialize population with random solutions. 

Evaluate fitness of the population. 

While (stopping criterion not met) 

//Forming new population. 

Select sites for neighbourhood search. 

Recruit bees for selected sites (more bees for best e sites) and 

evaluate fitness. 

Select the fittest bee from each patch. 

Assign remaining bees to search randomly and evaluate 

their fitness. 

End While. 

Figure I.  Original Bees algorithm 

In first step, the scout bees that have the highest fitness are 

chosen as “selected bees” and sites (solutions) visited by them 

are chosen for neighbourhood search. Then, the algorithm 

performs the search in the neighbourhood of the selected sites, 

assigning more bees to search near to the best sites. The bees 

can be chosen directly according to the fitness associated with 

the sites they are visiting. The remaining bees in the 

population are assigned randomly around the search space 

scouting for new solutions. At the end of each iteration, the 

colony will have two parts for its new population. The first 

part will contain the representatives from each selected sites 

(selected solutions), and the second part will contain other 

scout bees assigned to conduct random searches. 

B. The Proposed Bees Algorithm 

Figure II presents the pseudo-code of our approach. The 

algorithm starts with feasible initial solutions generated using 

a graph colouring heuristic to form an initial population. The 

size of the population is equal to the number of the scout bees 

(ns). Each scout bee evaluates the solution using the fitness 

function.  

 

 

The Bees Algorithm for Examination 

Timetabling Problems 

Malek Alzaqebah, Salwani Abdullah 



 

The Bees Algorithm for Examination Timetabling Problems 

106 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E0161081511/2011©BEIESP 

The algorithm then starts the search process. The solutions 

in the population are ranked according to the probability 

value as in formula (1). Note that in the basic bees algorithm, 

the solutions are ranked based on the fitness value. 

 


SN

i

i

fi

fi
p

1

                                (1) 

where SN = number of food sources,  fi = fitness function of the ith 

food source. 
Initialization: 

Initialize the initial population and 

Calculate the fitness values; 

Set best solution, Solbest;  

Set maximum number of iteration, NumOfIte; 

Set the population size, PopSize; 

Set ne: number of elite solutions; 

Set nre: recruited bees for elite solutions; 

Set nb: number of best solutions; 

Set nrb: recruited bees for remaining best 

solutions; 

Set stlim: limit of stagnation cycles for the 

abandonment solutions; 

iteration ←   0; 

Improvement: 

do while (iteration < NumOfIte) 

for i=1: popsize 

Scout bees evaluate the solutions; 

Calculate the probability value, Pi; 

Rank the solutions based on Pi  
(For basic BA use the fitness value to rank 

the solutions) 

end for 

nbSet ← Select the top nb solutions from the 

population; 

neSet ← Select the top ne solutions from the 

nbSet; 

for j=1: nrb 

for h=1: nb 

Sol*  ← neSeth; 

Apply random neighbourhood on Sol*; 

Update the population by the Improved 

solutions; 

end for 

end for 

for j=1: nre 

for h=1: ne 

Sol*  ← neSeth; 

Apply random neighbourhood on Sol*; 

Update the population by the Improved 

solutions; 

end for 

end for 

recruit the remaining bees for random search 

  Solbest ← best solution found so far; 

   iteration++;                             

end do 

Figure II.  The pseudo code for the Bees algorithm  

Later, the highest ranked solutions (nb solutions) will be 

selected for a local exploration by other bees (foragers) that 

are directed to the neighbourhood of the selected solutions by 

the scout bees. For each selected solution, the number of 

foragers will be allocated deterministically as follows: each 

scout bee that returns from one of the nb best solutions 

performs the „waggle dance‟, meaning that it recruits nrb 

mates for local exploration. The scout bees that visit the first 

ne elite solutions among the best nb sites recruit nre foragers 

for a neighbourhood search. The scout bees that visit the 

remaining (nb–ne) solutions recruit nrb < nre foragers for a 

neighbourhood search. The neighbourhood search is thus able 

to give more tries for the elite solutions to be improved during 

the search process, in which the elite solutions are considered 

as the most promising solutions in the search space. 

Figure III shows the block diagram for the proposed 

algorithm on examination timetabling problems. It illustrates 

the process of our proposed algorithm. The algorithm starts 

by generating the conflict matrix, which shows the students in 

conflict between the exams. Based on this conflict matrix we 

generate the initial solution using a constructive heuristic 

algorithm (largest degree in this case). Next, the improvement 

process (bees algorithm) is executed (as discussed earlier). 

 

 

Figure III.  The Block Diagram for the Proposed 

Algorithm 
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III.  PROBLEM DEFINITION 

In this Paper, the problem description is separated into 

two problems: 

 Problem I: (Toronto Benchmark) This problem is an 

incapacitated examination timetabling problem where 

a room capacity requirement is not considered while 

constructing a timetable. This problem has been 

introduced by Carter [13], along with a set of 13 

real-world instances from a variety of educational 

institutions that have been accepted as a benchmark 

datasets for over a decade. 

 Problem II: (International Timetabling Competition 

(ITC2007)) This represents an exam timetabling 

model that incorporates a significant number of 

real-world constraints. This formulation was 

introduced as part of the 2
nd

 International Timetabling 

Competition (ITC2007).  

A. Problem I (The Toronto Benchmark) 

The description of this problem is adapted from Burke et al. 

[3]. Examination timetabling problems consist of the inputs as 

stated below:  

 N is the number of exams. 

 Ei is an exam, i  {1… N}. 

 T is the given number of available timeslots. 

 M is the number of students. 

 C = (cij)NxN is the conflict matrix where each element 

denoted by cij, i,j  1,…,N is the number of students 
taking exams i and j. 

 tk  (1≤ tk T)  specifies the assigned timeslot for exam 

k (k  1,…,N). 

We have formulated an objective function which tries to 

space out students‟ exams throughout the exam period 

(Expression (2)) that can then be formulated as the 

minimization of: 
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            Equation (3) presents the cost for an exam which is 

given by the proximity value multiplied by the number of 

students in conflict. Equation (4) represents a proximity value 

between two exams [13]. Equation (5) represents a clash-free 

requirement so that no student is asked to sit two exams at the 

same time. The clash-free requirement is considered to be a 

hard constraint.  

 

B. Problem II (The International Timetabling 

Competition (ITC2007)) 

 

The benchmark instances considered for problem are 

taken from the third track of the second International 

Timetabling Competition (ITC 2007) [22]. 

(http://www.cs.qub.ac.uk/itc2007/index.htm). Eight cases 

have been introduced. A set of hard and soft constraints are 

drawn from real world problems and are listed as bellow.   

Hard Constraints 

 There cannot be any students sitting for more than 
one exam at the same time. 

 The total number of students assigned to each room 
cannot exceed the room capacity. 

 The length of exams assigned to each timeslot should 
not violate the timeslot length. 

 Some sequences of exams have to be respected. e.g. 
Exam_X must be schedule after Exam_Y. 

 Room related hard constraints must be satisfied e.g. 
Exam_X must be scheduled in Room 20.  

Soft Constraints  

 Two exams in a row: Minimize the number of 
consecutive exams in a row for a student. (coded as 

C
R

S

2 )  

 Two exams in a day: student should not be assigned to 
sit more than two exams in a day. Of course, this 
constraint only becomes important when there are 
more than two examination periods in the same day. 

(coded as C
D

S

2 ) 

 Periods spread: all students should have a fair 
distribution of exams over their timetable. (coded as 

C
PS

S
) 

 Mixed durations: The numbers of exams with 
different durations that are scheduled into the same 
room has to be minimized as much as possible (coded 

asC
NMD

S

2 ). 

 Larger examinations appearing later in the timetable: 

Minimize the number of examinations of large class 

size that appear later in the examination timetable (to 

facilitate the assessment process) (coded asC
FL ). 

 Period Penalty: some periods have an associated 
penalty; minimize the number of exams scheduled in 

penalized periods (coded asC
P ). 

 
 
 
 

http://www.cs.qub.ac.uk/itc2007/index.htm
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 Room Penalty: some rooms have an associated 
penalty; minimize the number of exams scheduled in 

penalized rooms (coded asC
R ). 

A feasible timetable is one in which all examinations have 

been assigned to a period and room and there is no violation 

of the hard constraints. The objective function is to minimize 

the violation of the soft constraints as given in expression (5) 

[22]. 

 )5()(min
22222

CwCwCwCwCwCwCw
RRPpFLFLNMDNMD

Ss

PS

S

PSD

S

DR

S

R

s




 

IV. SIMULATION RESULTS AND COMPARISON 

We have compared the performance of our proposed 

modification with the basic BA in order to show the effects of 

employing the probability value on the basic BA algorithm. 

Table 4 shows the parameter settings which have been used in 

this work (according to Pham & Castellani [18], and some 

preliminary experiments). 

TABLE I.  Parameters Setting. 

Parameter Value 

Iteration 500 

population size 50 

ne:  number of elite sites 2 

nre: recruited bees for elite sites 30 

nb: number of best sites 4 

nrb: recruited bees for remaining best sites 10 

stlim: limit of stagnation cycles for site 

abandonment 

10 

 

The following neighbourhoods have been employed in 

this paper, in order to enhance the performance of searching 

algorithms. 

Nbs1: Select 2 exams at random and swap timeslots. 

Nbs2: Select a single exam at random and move to a new 

random feasible timeslots. 

Nbs3: Select 4 exams randomly and swap the timeslots 

between them feasibly. 

Nbs4: Select 2 exams at random and move to a new random 

feasible timeslots. 

The following section illustrates the best results produced 

by BA and the Probable BA (coded as PBA). Both algorithms 

were run for 10 times.  

The Toronto Benchmark Experimental Results 

Table II shows the comparison of the BA and PBA with 

the best known results (shown in bold). The comparison 

between the basic BA and PBA shows, that the PBA perform 

better than the basic BA (shown in italic). Overall comparison 

with the best known results shows that even though we are 

unable to beat any of the best known results in the literature, 

but we are still able to produce good enough solutions, where 

the difference between PBA and the best known results in the 

literature falls in the range of 0.43% to 25%.  

TABLE II.  Results Comparison on Incapacitated 
Problems 

Instance 
Basic BA PBA 

Best 

known 

Authors for best 

known 

car91 5.79 5.67 4.50 [21] 

car92 4.76 4.78 3.98 [21] 

ear83 I 38.93 37.67 29.3 [11] 

hec92 I 11.64 11.33 9.2 [11] 

kfu93 15.70 15.23 13.0 [9] 

lse92 12.66 12.81 9.6 [11] 

sta83 I 158.05 157.59 156.9 [9] 

tre92 9.05 9.00 7.9 [9] 

uta92 I 3.92 3.88 3.14 [21] 

ute92 28.05 27.58 24.8 [9] 

yor83 I 40.01 39.28 34.9 [9] 
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Figure IV.  Convergence graphs for ute92, sta83 I and 

hec92 I datasets. 
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Figure IV shows the behaviour of BA and PBA during the 

search process. We have drawn the graph for ute92, sta83 I 

and hec92 I to show the effect of using the probability value 

rather than the actual penalty value when choosing the best 

and the elite solutions for BA search. 

This graph shows the effects of the modification which are 

implemented on the basic BA algorithm, the convergence of 

the lines in these graphs show how BA and PBA explore the 

search space. However, as the number of iterations increases, 

the slope of the curves indicates a smaller decrease in the 

penalty cost. The behaviour of the BA and PBA algorithms 

works similar at the beginning of the iterations where the 

improvement of the solutions can easily be obtained. Later it 

becomes steady and hard to be improved. The comparison 

between basic BA and PBA shows that the PBA performs 

better than the basic BA that due to the using of the 

probability values to rank the solutions which give the most 

promising solutions a chance to be improved and more over 

this method can maintain the population diversity during the 

evolution process.  

The International Timetabling Competition (ITC2007) 

dataset Experimental Results 

The basic BA and PBA algorithms are also tested on The 

International Timetabling Competition (ITC2007) datasets. 

The results are shown in Table III, which provides the 

comparison between the basic BA and PBA and with some 

available results in the literature. PBA shows better results 

than the basic BA, this can be indicated from the differences 

between PBA and the basic BA results, in a range of 0.28% to 

3.98%.  This again show that the choosing the elite solutions 

based on the probability value (rather than fitness value) helps 

to improve the quality of the solutions.  

TABLE III.  Results Comparison On Itc2007 Datasets 

Datasets Muller 

[24] 

Atsuta 

et al. 

[25] 

Pillay 

[26] 

Gogos 

et al. 

[27] 

Basic 

BA 

PBA 

Exam_1 4370 8006 12035 4699 6145 6049 

Exam_2 400 3470 3074 385 1417 1370 
Exam_3 10049 18622 15917 8500 12404 12251 
Exam_4 18141 22559 23582 14879 19625 19569 
Exam_5 2988 4714 6860 2795 12783 11108 
Exam_6 26950 29155 32250 25410 27090 27000 
Exam_7 4213 10473 17666 3884 6771 6501 

Exam_8 7861 14317 16184 7440 11655 11240 

 

As shown in figure V the behaviour of the two algorithms 

show that the PBA improves the solution better than the basic 

BA. This is can easily observed from the convergence line for 

the three graphs. This is due to the employment of the 

probability values by the PBA to rank the solutions that give 

more chances to improve the highest ranked solutions (unlike 

using the fitness values, which eliminate some of the solutions 

that might promise some good improvements).  

In this paper, we show the convergence for three datasets 

i.e. Exam_3, Exam_4 and Exam_5, which we choose them 

based on the conflict density value considered as medium, 

high and low, respectively as mentioned in McCollum et al. 

[22].  From the figure we can see that the PBA algorithm has 

an ability to further improve the quality of the solutions. 
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Figure V.  Convergence graph for Exam_3, Exam_4 and 

Exam_5 dataset  

V. CONCLUSION AND FUTURE WORK 

The general idea of this paper was to propose the use of 

the basic BA on examination timetabling problems and a 

simple modification had been applied to the basic BA, called 

probability BA (PBA). The results revealed that the 

modification of the algorithm (PBA) effectively enhanced the 

solutions when tested on the examination timetabling 

problems.  
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As a future work, a different selection strategy to select the 

solutions in the population and a combination with a local 

search will be applied on the basic BA. 
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