
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

357

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0243101511/2011©BEIESP

Abstract— - As more and more IP cores are integrated into

an SOC design, the communication flow between IP cores has

increased drastically and the efficiency of the on-chip bus has

become a dominant factor for the performance of a system. The

on-chip bus design can be divided into two parts, namely the

interface and the internal architecture of the bus. In this work

we adopt the well-defined interface standard, the Open Core

Protocol and focus on the design of the internal bus

architecture. We develop an efficient bus architecture to

support most advanced bus functionalities defined in open

core protocol , including burst transactions, lock transactions,

pipelined transactions, and out-of-order transactions. We first

model and design the on-chip bus with transaction level

modeling for the consideration of design flexibility and

fast simulation speed. We then implement the RTL models of

the bus for synthesis and gate-level simulation. Experimental

results show that the proposed TLM model is quite efficient

for the whole system simulation and the real implementation

can significantly save the communication time.

Index Terms—AMBA,OCP

I. INTRODUCTION

 An SOC chip usually contains a large number of IP

cores that communicate with each other through on-chip

buses. Ast he VLSI process technology continuously

advances, the frequency and the amount of the data

communication between IP cores increase substantially. As

a result, the ability of on- chip buses to deal with the

large amount of data traffic becomes a dominant factor for

the overall performance. The design of on-chip buses can be

divided into two parts: bus interface and bus

architecture. The bus interface involves a set of

interface signals and their corresponding timing

relationship, while the bus architecture refers to the

internal components of buses and the interconnections

among the IP cores. The widely accepted on-chip bus,

AMBA AHB [1], defines a set of bus interface to

facilitate basic (single) and burst read/write transactions.

AHB also defines the bus architecture, which is mainly

a shared bus composed of multiplexors. The

multiplexer-based bus architecture works well for a design.

with a small number of IP cores. When the number of

integrated IP cores increases, the communication between

IP cores also increase and it becomes quite frequent that two

or more master IPs would request data from different slaves

at the same time. The shared bus architecture often

cannot provide efficient communication since only one bus

Manuscript Received October 25, 2011.

Nayab Rasool Shaik, Electronics and Communication Engg, jntuk/

Pdah college, Vishakapatnam, INDIA, 09247972800 (e-mail:

sknayab54@gamil.com).

Srikanth Pothula, Electronics and Communication Engg, jntuk/ Pdah

college, Vishakapatnam, INDIA,, 9052285338., (e-mail:

srikanth_pothula@yahoo.co.in).

transaction can be supported at a time. To solve this

problem, two bus protocols have been proposed

recently. One is the Advanced eXtensible Interface

protocol (AXI) [1] proposed by the ARM company.

AXI defines five independent channels (write address,

write data, write response, read address, and read data

channels). Each channel involves a set of signals. AXI

does not restrict the internal bus architecture and leaves

it to designers. Thus integrate two IP cores with AXI by

either connecting the wires directly or invoking an

in-house bus between them. The other bus interface

protocol is proposed by a non-profitable organization,

the Open Core Protocol - International Partnership

(OCP-IP) [2]. OCP is an interface (or socket) aiming to

standardize and thus simplify the system integration

problems. It facilitates system integration by defining a

set of concrete interface (I/O signals and the handshaking

protocol) which is independent of the bus architecture. Based

on this interface IP core designers can concentrate on

designing the internal functionality of IP cores, bus designers

can emphasize on the internal bus architecture, and system

integrators can focus on the system issues such as the

requirement of the bandwidth and the whole system

architecture. In this way, system integration becomes much

more efficient. Most of the bus functionalities defined in AXI

and OCP are quite similar. The most conspicuous

difference between them is that AXI divides the address

channel into independent write address channel and read

address channel such that read and write transactions

can be processed simultaneously. However, the additional

area of the separated address channels is the penalty. Some

previous work has investigated on-chip buses from various

aspects. The work presented in develops high-level AMBA

bus models with fast simulation speed and high timing

accuracy. The authors in [5] propose an automatic approach

to generate high-level bus models from a formal channel

model of OCP. In both of the above work, the authors

concentrate on fast and accurate simulation models at

high level but did not provide real hardware implementation

details. we authors implement the Advanced eXtensible

Interface interface on a shared- bus architecture. Even

though it costs less in area, the benefit of Advanced

eXtensible Interface in the communication efficiency may be

limited by the shared-bus architecture. In this paper we

propose a high-performance on-chip bus design with OCP

as the bus interface. We choose OCP because it is

open to the public and OCP-IP has provided some free

tools to verify this protocol. Nevertheless, most bus design

techniques developed in this paper can also be applied to

the AXI bus.

Design of Open Core Protocol

NayabRasool Shaik, Srikanth Pothula

Design of Open Core Protocol

358

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0243101511/2011©BEIESP

Our proposed bus architecture features

crossbar/partial-crossbar based interconnect and realizes

most transactions defined in OCP, including 1)single

transactions, 2) burst transactions, 3) lock transactions,

4) pipelined transactions, and 5) out-of-order transactions.

In addition, the proposed bus is flexible such that one can

adjust the bus architecture according to the system

requirement.

One key issue of advanced buses is how to manipulate the

order of transactions such that requests from masters

and responses from slaves can be carried out in best

efficiency without violating any ordering constraint. In this

work we have developed a key bus component called the

scheduler to handle the ordering issues of out-of-order

transactions. We will show that the proposed

crossbar/partial-crossbar bus architecture together with

the scheduler can significantly enhance the communication

efficiency of a complex SOC..

Another notable feature of this work is that we employ

both transaction level modeling (TLM) and register

transfer level (RTL) modeling to design the bus. We start

from the TLM for the consideration of design flexibility

and fast simulation speed. We then refine the TLM

design into synthesizable and cycle-accurate RTL codes

which can be synthesized into gate level hardware to

facilitate accurate timing and functional simulation. The

proposed bus has been employed in a multimedia SOC

design and the results show that not only our TLM model

has better simulation efficiency comparing to a bus

obtained through a commercial ESL tool, but also our

RTL on-chip bus design performs much more efficient

than the multiplexer-based buses or those without

out-of-order feature in real SOC design.

The remainder of this paper is organized as follows. The

various advanced functionalities of on-chip buses are

described in Section 2. Section 3 details the hardware

architecture of the proposed bus. Section 4 gives

the experimental results which show the efficiency on

both simulation speed and data communication.

Conclusions are then drawn in Section.

II. ON-CHIP BUS FUNCTIONALITIES

We first describe the various bus functionalities including

1) burst, 2) lock, 3) pipelined, and 4) out-of-order

transactions.

• Burst transactions

The burst transactions allow the grouping of

multiple transactions that have a certain address

relationship, and can be classified into multi-request burst

and single-request burst according to how many times

the addresses are issued. FIGURE 1 shows the two types of

burst read transactions. The multi-request burst as defined

in AHB is illustrated in FIGURE 1(a) where the address

information must be issued for each command of a burst

transaction (e.g., A11, A12, A13 and A14). This may cause

some unnecessary overhead. In the more advanced bus

architecture, the single-request burst transaction is

supported. As shown in FIGURE 1(b), which is the burst

type defined in AXI, the address information is issued

only once for each burst transaction. In our proposed bus

design we support both burst transactions such that IP

cores with various burst types can use the proposed

on-chip bus without changing their original burst behavior.

 Lock transactions

Lock is a protection mechanism for masters that have low

bus priorities. Without this mechanism the read/write

transactions of masters with lower priority would

be interrupted whenever a higher-priority master issues a

request. Lock transactions prevent an arbiter from

performing arbitration and assure that the low priority

masters can complete its granted transaction without being

interrupted.

 Pipelined transactions (outstanding transactions)

Figure 2(a) and 2(b) show the difference between non-

pipelined and pipelined (also called outstanding in AXI)

read transactions. In FIGURE 2(a), for a non-pipelined

transaction a read data must be returned after its

corresponding address is issued plus a period of latency. For

example, D21 is sent right after A21 is issued plus t. For a

pipelined transaction as shown in FIGURE 2(b), this hard

link is not required. Thus A21 can be issued right after A11

is issued without waiting for the return of data requested by

A11 (i.e., D11-D14).

• Out-of-order transactions

The out-of-order transactions allow the return order of

responses to be different from the order of their requests.

These transactions can significantly improve

the communication efficiency of an SOC system

containing IP cores with various access latencies as

illustrated in FIGURE 3. In FIGURE 3(a) which does

not allow out-of-order transactions, the corresponding

responses of A21 and A31 must be returned after the

response of A11. With the support of out-of-order

transactions as shown in FIGURE 3(b), the response with

shorter access latency (D21, D22 and D31) can be returned

before those with longer latency (D11-D14) and thus the

transactions can be completed in much less cycles.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

359

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0243101511/2011©BEIESP

III. HARDWARE DESIGN OF THE ON-CHIP BUS

The architecture of the proposed on-chip bus is

illustrated in FIGURE 4, where we show an example with

two masters and two slaves. A crossbar architecture is

employed such that more than one master can

communicate with more than one slave simultaneously. If

not all masters require the accessing paths to all slaves,

a partial crossbar architecture is also allowed. The main

blocks of the proposed bus architecture are described next.

• Arbiter

In a traditional shared bus architecture, resource

contention happens whenever more than one master

requests the bus at the same time. For a crossbar or

partial crossbar architecture, resource contention occurs

when more than one master is to access the same slave

simultaneously. In the proposed design each slave IP is

associated with an arbiter that determines which master can

access the slave.

• Decoder

Since more than one slave exists in the system, the decoder

decodes the address and decides which slave return

response to the target master. In addition, the proposed

decoder also checks whether the transaction address is

illegal or non- existent and responses with an error message

if necessary.

• FSM-M & FSM-S

Depending on whether a transaction is a read or a

write operation, the request and response processes are

different. For a write transaction, the data to be written is

sent out together with the address of the target slave,

and the transaction is complete when the target slave

accepts the data and acknowledges the reception of the

data. For a read operation, the address of the target slave

is first sent out and the target slave will issue an accept

signal when it receives the message. The slave then generates

the required data and sends it to the bus where the data will

be properly directed to the master requesting the data.

The read transaction finally completes when the master

accepts the response and issues an acknowledge signal. In

the proposed bus architecture, we employ two types of

finite state machines, namely FSM-M and FSM-S to

control the flow of each transaction. FSM-M acts as a

master and generates the OCP signals of a master, while

FSM-S acts as a slave and generates those of a slave.

These finite state machines are designed in a way that

burst, pipelined, and out-or-order read/write transactions

can all be properly controlled.

• Scheduler

Out-of-order transactions in either OCP [2] or AXI [1]

allow the order of the returned responses to be different

from the order of the requests. In the OCP protocol, each

out-of- order transaction is tagged with a TagID by a

master. For those transactions with the same TagID, they

must be returned in the same order as requested, but for

those with different TagID, they can be returned in any

order. In general, both in- order and out-of-order transactions

are supported in an out-of- order SOC system. Whether to

favor in-order or out-of-order transactions is a design issue

of the bus. In [7] it is stated that conventional bus scheduling

algorithms tend to favor the in-order transactions, while the

ordering mechanism proposed in favors out-of- order

transactions. In our proposed scheduler, we reserve the

flexibility of being in-order response first or

out-of-order response first, which means that system

integrators are allowed to select either order based on the

applications. The architecture of the proposed scheduler is

shown in FIGURE 5.

multiplexer, MUX1, is used to solve the problem of

resource contention when more than one slave returns the

responses to the same master. It selects the response from

the slave that has the highest priority. The function of MUX2

will be described shortly. The recorder shown in the figure is

used to keep track of the ID of the target slave and the

TagID of every out-of-order transaction. Whenever a

response arrives, the comparator determines whether the

ordering restriction is violated or not by comparing the ID

of the target slave and TagID. If no ordering restriction is

violated, the response is sent forward to the priority setter. If

the restriction is violated, the response is sent backward to

one of the inputs of MUX2,

which is always a preferred input over the input from MUX1.

The responses sent forward are given a priority, which is

different from the slave priority, according to the TagID

and are stored in the priority queue. For the transactions

without TagID, which are regarded as in-order

transactions, the priority setter sets the priority to 0 or the

largest value to reflect whether in-order first or

out-of-order first policy is used. Finally, the responses

stored in the priority queue are returned to the masters

from the first priority to the last priority such that the

objective of "transactions with the same TagID are returned

in-order, and transactions with different TagID can be

returned out-of-order" can be achieved.

Design of Open Core Protocol

360

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0243101511/2011©BEIESP

To further improve the efficiency of the scheduler, the

response can be forwarded to the master directly without

going through the priority queue when the priority queue is

empty.

IV. EXPERIMENTAL RESULTS

We design the proposed bus with both TLM and RTL

models. The RTL model can be further synthesized into

gate- level description. The specification and the synthesis

results when 4 masters and 6 slaves are used are shown in

TABLE 1, where all masters can issue burst, lock,

pipelined and out-of- order transactions.

total area of the proposed on-chip bus at 333MHz using

TSMC 0.13_m CMOS process is 153,823 um (about 30K

gates). We find that for each additional master, about

3,682 and 4,531 more gates are needed for a port without and

the out-of-order capability, respectively. On the other

hand, about 1,456 gates are required for one slave port.

We further perform three experiments. In the first one,

we demonstrate the simulation efficiency of our TLM

design. A multimedia SOC design [8] is used that contains

an ARM9 processor, a Parallel Architecture Core (PAC)

DSP processor, a RAM, a ROM and some peripheral

devices. Originally the on-chip bus is a multi-layer bus

consisting of two AHB-lite busses modeled with a

commercial bus library (CoWare [9]). The ARM9

processor is connected to one AHB-lite bus, and the PAC

DSP processor is connected to the other. In the

experiment, we replace the AHB-lite bus connecting the PAC

DSP processor with the proposed on-chip bus and verify

the whole SOC design with an H.264 decoding

procedure. Experimental results show that the proposed

on-chip bus deals with all the communications in the SOC

well. The simulation times of decoding one frame are about

48.6 and 44.3 seconds before and after the replacement,

respectively. It should be pointed out that even though

both the proposed bus and the one using CoWare bus

library are cycle-accurate, our proposed bus is further

a pin-accurate one but the one from CoWare is not. Thus

the proposed TLM bus model provides better simulation

speed since it contains more implementation details.

To focus on the efficiency evaluation of the crossbar

bus architecture, we design an SOC system as shown in

FIGURE 6 which contains two masters (IP1 and IP2) and

three slaves (IP3, IP4 and IP5). In this experiment we

compare the communication efficiency of the SOC systems

with the shared bus architecture and the crossbar bus

architecture. The transactions used in the experiment are

described as follows.

1. Master IP2 first requests a series of burst WR transactions

to slave IP4 and a WR transaction to slave IP3.

2. Master IP1 then requests a series of burst RD

transactions to slave IP4.

3. Master IP1 then requests a series of burst WR transactions

to slave IP5, and master IP2 requests a series of burst WR

transactions to slave IP4.

4. Master IP2 requests a series of burst RD transactions

to slave IP5.

The procedure from step2 to step4 is iterated for

100 iterations. The execution of these transactions on the

crossbar architecture can be illustrated in FIGURE 7,

where parallel communication between different masters and

slaves happens in time intervals B, D, F, H and J. The

behavior on the shared bus architecture is all in series

without any parallel communication. Experimental results

show that the proposed bus with crossbar interconnection

reduces about 23.35% communication cycles as

comparing to the tradition shared bus architecture such as

AHB.

In the last experiment, we evaluate the efficiency of out-of-

order transactions using the proposed scheduler. We

assume that the access latency of the slave IP3 and IP4 in

FIGURE 6 are 1 cycle and 3 cycles, respectively. The

slave IP5 has the access latency of 5 cycles when it is

accessed by master IP1 and two cycles when it is

accessed by master IP2. In the simulation, IP1 first

requests a series of out-of-order WR transactions, IP2

then requests a series of out-of-order RD transactions.

After that, IP2 requests a series of out-of-order

WR transactions, and IP1 finally requests a series of

out-of- order RD transactions. The simulation results show

that when each series of these requests contain 6000

transactions, the proposed scheduler reduces 67.16%

communication cycles as comparing to a bus that supports

only in-order transactions.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

361

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0243101511/2011©BEIESP

V. CONCLUSIONS

The current trend of the bus standard is to define

an explicit bus interface and leave the internal bus

architecture to the bus designer. The design which

complies with the bus interface protocol to carry out the

various advanced bus functionality consequently

dominates the communication efficiency of an SOC

system. In this work, we develop an on- chip bus employing

OCP as the bus interface. Various bus transactions

defined in AXI and OCP to reduce the

communication latency and increase the bus throughput

are supported by the proposed bus architecture.

Experimental results demonstrate the efficiency of the

proposed bus in both simulation speed and execution

performance.

REFERENCES

1. Advanced Microcontroller Bus Architecture (AMBA)

Specification Rev 2.0 & 3.0

2. Open core protocol specifications http://www.ocpip.org/home.

3. Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y. Chung, K.-M. Choi,

J.-T. Kong, S.-K. Eo, "Fast and Accurate Transaction Level

Modeling of an Extended AMBA2.0 Bus Architecture," Design,

Automation, and Test in Europe, pages 138-139, 2005.

4. G. Schirner and R. Domer, "Quantitative Analysis of

Transaction Level Models for the AMBA Bus," Design,

Automation, and Test in Europe, 6 pages, 2006.

5. C.-K. Lo and R.-S. Tsay, "Automatic Generation of Cycle Accurate

and Cycle Count Accurate Transaction Level Bus Models from a

Formal Model," Asia and South Pacific Design Automation

Conference, pages 558-563, 2009.

6. N.Y.-C. Chang, Y.-Z. Liao and T.-S. Chang, "Analysis of

Shared-link AXI," IET Computers & Digital Techniques,

Volume 3, Issue 4, pages 373-383, 2009.

7. IBM Corporation, "Prioritization of Out-of-Order Data

Transfers on Shared Data Bus," US Patent No. 7,392,353, 2008.

8. David C.-W. Chang, I.-T. Liao, J.-K. Lee, W.-F. Chen, S.-Y. Tseng

and C.-W. Jen, "PAC DSP Core and Application Processors,"

International Conference on Multimedia and Expo, pages

289-292, 2006.

9. CoWare website, http://www.coware.com

AUTHORS PROFILE

Nayab Rasool Shaik is an Associate Professor in the

Dept of ECE, Pydah Engg College. He is pusuing

M.Tech from JNTUK.

Srikanth P pursuing MTECH in Pydah college of

engineering and did BE in Sir C R Reddy college of

engineering.

http://www.ocpip.org/home
http://www.coware.com/

