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Abstract— -  As  more  and  more  IP  cores  are  integrated  into  

an SOC design, the communication flow  between IP cores has  

increased  drastically  and  the  efficiency  of  the  on-chip bus  has 

become a  dominant  factor for the performance  of a  system.  The  

on-chip  bus  design  can  be  divided  into  two parts, namely the 

interface and the internal architecture of the  bus.  In  this  work  

we  adopt  the  well-defined  interface standard, the Open Core 

Protocol and focus on the design  of  the  internal  bus  

architecture.  We  develop  an efficient  bus  architecture  to  

support  most  advanced  bus functionalities      defined      in open 

core protocol ,  including      burst transactions, lock transactions, 

pipelined transactions, and out-of-order  transactions.  We  first  

model  and  design  the on-chip   bus   with   transaction   level    

modeling    for   the consideration   of   design   flexibility   and   

fast   simulation speed.  We  then  implement  the  RTL  models  of  

the  bus  for synthesis  and  gate-level  simulation.  Experimental  

results show  that  the  proposed  TLM  model  is  quite  efficient  

for the  whole  system  simulation  and  the  real  implementation 

can significantly save the communication time.  

 

Index Terms—AMBA,OCP 

I. INTRODUCTION 

  An  SOC  chip  usually  contains  a  large  number  of  IP  

cores that  communicate  with  each  other  through  on-chip  

buses.  Ast he   VLSI   process   technology   continuously   

advances,   the frequency and the amount of the data 

communication between IP  cores  increase  substantially.  As  

a  result,  the  ability  of  on- chip   buses   to   deal   with   the   

large   amount   of   data   traffic becomes a dominant factor for 

the overall performance. The design of on-chip buses can be 

divided into two parts: bus   interface   and   bus   

architecture.   The   bus   interface  involves  a  set  of  

interface  signals  and  their  corresponding timing  

relationship,  while  the  bus  architecture  refers  to  the 

internal components of buses  and  the interconnections 

among the  IP  cores.  The  widely  accepted  on-chip  bus,  

AMBA  AHB [1],  defines  a  set  of  bus  interface  to  

facilitate  basic  (single) and   burst   read/write   transactions.   

AHB   also   defines   the bus   architecture,   which   is   mainly   

a   shared   bus composed     of     multiplexors.     The     

multiplexer-based     bus architecture works well for a design. 

with a small number of IP cores.  When  the  number  of  

integrated  IP  cores  increases,  the communication between  

 

IP cores also increase and it becomes quite frequent that two  

or more master IPs would request data from   different   slaves   

at   the   same   time.   The   shared   bus architecture   often 

cannot   provide   efficient   communication since only one bus 
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transaction can be supported at a time. To   solve   this 

problem,   two   bus   protocols   have   been proposed  

recently.  One  is  the  Advanced  eXtensible  Interface 

protocol   (AXI)   [1]   proposed   by  the   ARM   company.   

AXI defines  five  independent  channels  (write  address, 

write  data, write  response,  read  address,  and  read  data 

channels).  Each channel  involves  a  set  of  signals.  AXI 

does  not  restrict  the internal   bus   architecture   and   leaves  

it   to   designers.   Thus integrate  two  IP  cores  with  AXI  by 

either  connecting  the  wires  directly  or  invoking  an  

in-house bus   between   them.   The   other   bus   interface  

protocol   is proposed   by  a   non-profitable   organization,    

the   Open   Core Protocol  -  International  Partnership 

(OCP-IP)  [2].  OCP  is  an interface  (or  socket)  aiming  to 

standardize  and  thus  simplify the    system    integration    

problems.    It    facilitates    system integration by defining a 

set of concrete interface (I/O signals and the handshaking 

protocol) which is independent of the bus architecture.  Based  

on  this  interface  IP  core  designers  can concentrate on 

designing the internal functionality of IP cores, bus  designers  

can  emphasize  on  the  internal  bus  architecture, and system 

integrators can focus on the system issues such as the   

requirement   of   the   bandwidth   and   the   whole   system  

architecture.  In  this  way,  system  integration  becomes much 

more efficient. Most of the bus functionalities defined in AXI 

and  OCP  are  quite  similar.  The  most  conspicuous  

difference between  them  is  that  AXI  divides  the  address  

channel  into independent  write  address  channel  and  read  

address  channel such   that   read   and   write   transactions   

can   be   processed simultaneously. However,  the  additional 

area of the separated address channels is the penalty. Some  

previous  work  has  investigated  on-chip  buses  from various  

aspects.  The  work  presented  in  develops high-level  AMBA 

bus  models  with  fast  simulation  speed  and high timing 

accuracy. The authors in [5] propose an automatic approach  

to  generate  high-level  bus  models  from  a  formal channel 

model of OCP. In both of the above work, the authors 

concentrate  on  fast  and  accurate  simulation  models  at  

high level but did not provide real hardware implementation 

details. we  authors  implement  the  Advanced  eXtensible  

Interface interface  on  a  shared- bus architecture. Even 

though  it costs less in area, the benefit of Advanced 

eXtensible  Interface in the communication efficiency may be 

limited by the shared-bus architecture. In  this  paper  we  

propose  a  high-performance  on-chip  bus design   with   OCP   

as   the   bus   interface.   We   choose   OCP because  it  is  

open  to  the  public  and  OCP-IP  has  provided some free 

tools to verify this protocol. Nevertheless, most bus design 

techniques developed  in this paper  can also  be applied to   

the   AXI   bus.    
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Our   proposed   bus   architecture   features 

crossbar/partial-crossbar  based  interconnect  and  realizes  

most transactions  defined  in  OCP,  including  1)single  

transactions, 2)    burst   transactions,   3)    lock   transactions,   

4)    pipelined transactions,  and  5) out-of-order  transactions.  

In  addition,  the proposed  bus  is  flexible   such  that  one  can  

adjust  the  bus architecture according to the system 

requirement.  

One key issue of advanced  buses is  how to  manipulate the  

order   of   transactions   such   that   requests   from   masters   

and  responses  from  slaves  can  be  carried  out  in  best  

efficiency without  violating  any  ordering  constraint.  In  this  

work  we have  developed  a  key  bus  component  called  the  

scheduler  to handle  the  ordering  issues  of  out-of-order  

transactions.  We  will   show   that   the   proposed   

crossbar/partial-crossbar   bus architecture   together   with   

the   scheduler   can   significantly enhance the communication 

efficiency of a complex SOC..  

Another  notable  feature  of  this  work  is  that  we  employ  

both  transaction  level  modeling  (TLM)  and  register  

transfer level  (RTL)  modeling  to  design  the  bus.  We  start  

from  the TLM   for   the   consideration   of   design   flexibility   

and   fast simulation   speed.   We   then   refine   the   TLM   

design   into synthesizable  and  cycle-accurate  RTL  codes  

which  can  be synthesized   into   gate   level   hardware   to   

facilitate   accurate timing  and  functional  simulation.  The  

proposed  bus  has  been employed  in  a  multimedia  SOC  

design  and  the  results  show that not only our  TLM  model 

has better  simulation efficiency comparing  to  a  bus  

obtained  through  a  commercial  ESL tool, but  also  our  

RTL  on-chip  bus  design  performs  much  more efficient  

than  the  multiplexer-based  buses  or  those  without 

out-of-order feature in real SOC design.  

The  remainder  of  this  paper  is  organized  as  follows.  The  

various    advanced    functionalities    of    on-chip    buses    are 

described  in  Section   2.   Section   3   details   the   hardware 

architecture    of    the    proposed    bus.    Section    4    gives    

the experimental   results   which   show   the   efficiency   on   

both simulation  speed  and  data  communication.  

Conclusions  are  then drawn in Section. 

II. ON-CHIP BUS FUNCTIONALITIES  

We  first  describe  the  various  bus  functionalities  including 

1) burst, 2) lock, 3) pipelined, and 4) out-of-order 

transactions.  

•   Burst transactions  

The   burst   transactions   allow   the   grouping   of   

multiple transactions  that  have  a  certain  address  

relationship,  and  can be  classified  into  multi-request  burst  

and  single-request  burst according   to   how   many   times   

the   addresses   are   issued. FIGURE 1 shows the two types of 

burst read transactions. The  multi-request   burst   as   defined   

in   AHB   is   illustrated   in  FIGURE  1(a)  where  the  address  

information  must  be  issued for each command of a burst 

transaction (e.g., A11, A12, A13 and A14). This may cause 

some unnecessary overhead. In the more   advanced   bus   

architecture,   the   single-request burst transaction is 

supported. As shown in FIGURE 1(b), which is the   burst 

type   defined   in   AXI,   the   address  information   is issued  

only  once  for  each  burst  transaction.  In  our  proposed  bus  

design  we  support  both  burst  transactions  such  that  IP 

cores  with  various  burst  types  can  use  the  proposed  

on-chip bus without changing their original burst behavior.  

 

 

 
 

 Lock transactions  

Lock is a protection mechanism for  masters that have low  

bus    priorities.    Without    this    mechanism    the    read/write  

transactions    of    masters    with    lower    priority    would    

be interrupted whenever a higher-priority master issues a 

request. Lock    transactions    prevent    an    arbiter    from    

performing arbitration   and   assure   that   the   low   priority   

masters   can complete its granted transaction without being 

interrupted.  

       

 Pipelined transactions (outstanding transactions)  

Figure  2(a)  and  2(b)  show  the  difference  between  non-  

pipelined  and  pipelined  (also  called  outstanding  in  AXI)  

read transactions. In FIGURE 2(a),  for  a  non-pipelined  

transaction a read data must be returned after its 

corresponding address is issued plus a period of latency. For 

example, D21 is sent right after A21 is issued plus t. For a 

pipelined transaction as shown in FIGURE 2(b), this hard  

link is not required. Thus  A21  can be  issued  right  after  A11  

is  issued  without  waiting  for  the return of data requested by 

A11 (i.e., D11-D14).  

 

 

 
 

•   Out-of-order transactions  

The  out-of-order  transactions  allow  the  return  order  of  

responses  to  be  different  from  the  order  of  their  requests.  

These       transactions       can       significantly       improve       

the communication  efficiency  of  an  SOC  system  

containing  IP cores with various access latencies as 

illustrated in FIGURE 3. In    FIGURE    3(a)    which    does    

not    allow    out-of-order transactions,  the  corresponding  

responses  of  A21  and  A31 must  be  returned  after  the  

response  of  A11.  With  the  support of  out-of-order  

transactions  as  shown  in  FIGURE  3(b),  the response with 

shorter access latency (D21, D22 and D31) can be  returned  

before  those  with  longer  latency  (D11-D14)  and  thus the 

transactions can be completed in much less cycles.  
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III. HARDWARE DESIGN OF THE ON-CHIP BUS  

The  architecture  of  the  proposed  on-chip  bus  is 

illustrated in  FIGURE  4,  where  we  show  an  example  with  

two  masters and  two  slaves. A crossbar  architecture is 

employed  such that more  than  one  master  can  

communicate  with  more  than  one slave  simultaneously.  If  

not  all  masters  require  the  accessing paths   to   all   slaves,   

a   partial   crossbar   architecture   is   also allowed. The main 

blocks of the proposed bus architecture are described next.  

 

•   Arbiter  

In     a     traditional     shared     bus     architecture,     resource 

contention  happens  whenever  more  than  one  master  

requests the  bus  at  the  same  time.  For  a  crossbar  or  

partial  crossbar architecture,  resource  contention  occurs  

when  more  than  one master   is  to   access  the   same   slave   

simultaneously.   In  the proposed  design  each  slave  IP  is  

associated  with  an  arbiter that determines which master can 

access the slave.  

 

 

•   Decoder  

Since more than one slave exists in the system, the decoder  

decodes  the  address  and  decides  which  slave  return  

response to  the  target  master.  In  addition,  the  proposed  

decoder  also checks   whether   the   transaction   address   is   

illegal   or   non- existent and responses with an error message 

if necessary.  

 

•   FSM-M & FSM-S  

Depending  on  whether  a  transaction  is  a  read  or  a  

write operation,  the  request  and  response  processes  are  

different. For  a  write  transaction,  the  data  to  be  written  is  

sent  out together    with   the   address   of   the   target   slave,   

and    the transaction is  complete  when  the target slave 

accepts the data and   acknowledges   the   reception   of   the   

data.   For   a   read operation,  the  address  of  the  target  slave  

is  first  sent  out  and the target slave will issue an accept 

signal when it receives the message. The slave then generates 

the required data and sends it  to  the  bus  where  the  data  will  

be  properly  directed  to  the master   requesting   the   data.    

 

The   read   transaction   finally completes when the master 

accepts the response and issues an acknowledge   signal.   In   

the   proposed   bus   architecture,   we employ  two  types  of  

finite  state  machines,  namely  FSM-M and  FSM-S  to  

control  the  flow  of  each  transaction.  FSM-M acts  as  a  

master  and  generates  the  OCP  signals  of  a  master, while  

FSM-S  acts  as  a  slave  and  generates  those  of  a  slave. 

These  finite  state  machines  are  designed  in  a  way  that  

burst, pipelined,  and  out-or-order  read/write transactions  

can  all  be properly controlled.  

 

•   Scheduler  

Out-of-order  transactions  in  either  OCP  [2]  or  AXI  [1]  

allow the  order  of the  returned  responses to  be different  

from the  order  of  the  requests.  In  the  OCP  protocol,  each  

out-of- order  transaction  is  tagged  with  a  TagID  by  a  

master.  For those transactions with the same TagID, they 

must be returned in  the  same  order  as  requested,  but  for  

those  with  different TagID, they can be returned  in any 

order.  In general, both in- order and out-of-order transactions 

are supported in an out-of- order SOC system. Whether  to  

favor  in-order  or  out-of-order  transactions  is  a design issue 

of the bus. In [7] it is stated that conventional bus scheduling  

algorithms  tend  to  favor  the  in-order transactions, while  the  

ordering  mechanism  proposed  in  favors  out-of- order  

transactions.  In  our  proposed  scheduler,  we  reserve  the 

flexibility   of   being   in-order   response   first   or   

out-of-order response   first,   which   means   that   system   

integrators   are allowed  to  select  either  order  based  on  the  

applications.  The architecture of the proposed scheduler is 

shown in FIGURE 5.  

multiplexer,  MUX1,  is  used  to  solve  the  problem  of  

resource  contention  when  more  than  one  slave  returns  the  

responses to  the same  master.  It selects the response from 

the slave that has the highest priority. The function of MUX2 

will be described shortly. The recorder shown in the figure is 

used to  keep  track  of  the  ID  of  the  target  slave  and  the  

TagID  of every  out-of-order  transaction.  Whenever  a  

response  arrives, the  comparator  determines  whether  the  

ordering  restriction  is violated  or  not  by  comparing  the  ID  

of  the  target  slave  and TagID.  If  no  ordering  restriction  is  

violated,  the  response  is sent forward to the priority setter. If 

the restriction is violated, the  response  is  sent  backward  to  

one  of  the  inputs  of  MUX2,  

which is always a preferred input over the input from MUX1.  

The  responses  sent  forward  are  given  a  priority,   which  is  

different  from  the  slave  priority,  according  to  the  TagID  

and are  stored  in  the  priority  queue.  For  the  transactions  

without TagID,   which   are   regarded   as   in-order   

transactions,   the priority  setter  sets  the  priority  to  0  or  the  

largest  value  to reflect  whether  in-order  first  or  

out-of-order  first  policy  is used.  Finally,  the  responses  

stored  in  the  priority  queue  are returned   to   the   masters   

from   the   first   priority   to   the   last priority such that the 

objective of "transactions with the same TagID  are  returned  

in-order,  and  transactions  with  different  TagID  can  be  

returned  out-of-order"  can  be  achieved.   
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To further  improve  the  efficiency  of  the  scheduler,  the  

response can be forwarded to the master directly without 

going through the priority queue when the priority queue is 

empty.  

 

 

IV. EXPERIMENTAL RESULTS  

We  design  the  proposed  bus  with  both  TLM  and  RTL 

models. The RTL  model can be further  synthesized  into  

gate- level  description.  The  specification  and  the  synthesis  

results when 4 masters and 6 slaves are used are shown in 

TABLE 1, where  all  masters  can  issue  burst,  lock,  

pipelined  and  out-of- order transactions.  

 

 
total  area  of  the  proposed  on-chip  bus  at  333MHz using  

TSMC  0.13_m  CMOS  process  is  153,823  um   (about 30K  

gates).  We  find  that  for  each  additional  master,  about  

3,682 and 4,531 more gates are needed for a port without and 

the  out-of-order  capability,  respectively.  On  the  other 

hand, about 1,456 gates are required for one slave port.  

We  further  perform three  experiments.  In  the  first  one,  

we demonstrate  the  simulation  efficiency  of  our  TLM  

design.  A multimedia  SOC  design  [8]  is  used  that  contains  

an  ARM9 processor, a Parallel Architecture Core (PAC) 

DSP processor, a  RAM,  a  ROM  and  some  peripheral  

devices.  Originally  the  on-chip  bus  is  a  multi-layer  bus  

consisting  of  two  AHB-lite busses  modeled  with  a 

commercial  bus  library  (CoWare  [9]). The  ARM9 

processor  is  connected  to  one  AHB-lite  bus,  and the  PAC  

DSP   processor  is  connected  to  the  other.  In  the 

experiment, we replace the AHB-lite bus connecting the PAC  

DSP  processor  with  the  proposed  on-chip  bus  and  verify  

the whole   SOC   design   with   an   H.264   decoding   

procedure. Experimental results show that the proposed 

on-chip bus deals with all the communications in the  SOC  

well. The simulation times of decoding one  frame are about 

48.6  and  44.3  seconds before  and  after  the  replacement,  

respectively.  It  should  be pointed  out  that  even  though  

both  the  proposed  bus  and  the one    using    CoWare    bus    

library    are    cycle-accurate,    our proposed  bus  is  further  

a  pin-accurate  one  but  the  one  from CoWare  is  not.  Thus   

the  proposed  TLM  bus  model  provides better simulation 

speed since it contains more implementation details.  

To  focus  on  the  efficiency  evaluation  of  the  crossbar  

bus architecture,  we  design  an  SOC  system as  shown  in  

FIGURE 6  which  contains  two  masters  (IP1  and  IP2)  and  

three  slaves (IP3,   IP4   and   IP5).   In   this   experiment   we   

compare   the communication efficiency of the SOC systems 

with the shared bus   architecture   and    the   crossbar    bus   

architecture.   The transactions used in the experiment are 

described as follows.  

1.   Master IP2 first requests a series of burst WR transactions  

to slave IP4 and a WR transaction to slave IP3.  

2. Master  IP1  then requests a series of burst  RD                    

transactions to slave IP4.  

3.   Master IP1 then requests a series of burst WR transactions  

to slave IP5, and master IP2 requests a series of burst WR  

transactions to slave IP4.  

4.   Master  IP2  requests  a  series  of  burst  RD  transactions     

to slave IP5.  

The   procedure   from   step2   to   step4   is   iterated   for   

100 iterations. The execution of these transactions on the 

crossbar architecture  can  be  illustrated  in  FIGURE  7,  

where  parallel communication between different  masters and  

slaves  happens in time intervals B, D, F, H and J. The 

behavior on the shared  bus    architecture    is    all    in    series    

without    any    parallel communication.  Experimental  results  

show  that  the  proposed bus   with   crossbar   interconnection   

reduces   about   23.35% communication  cycles  as  

comparing  to  the  tradition  shared bus architecture such as 

AHB.  

In the last experiment, we evaluate the efficiency of out-of-  

order  transactions  using  the  proposed  scheduler.  We  

assume that the access latency of the  slave IP3  and  IP4  in 

FIGURE  6 are  1  cycle  and  3  cycles,  respectively.  The  

slave  IP5  has  the access  latency  of  5  cycles  when  it  is  

accessed  by  master  IP1 and  two  cycles  when  it  is  

accessed  by  master  IP2.  In  the simulation,   IP1   first   

requests   a   series   of   out-of-order   WR transactions,  IP2  

then  requests  a  series  of  out-of-order  RD transactions.  

After  that,  IP2  requests  a  series  of  out-of-order  

WR  transactions,  and  IP1  finally  requests  a  series  of  

out-of- order RD transactions. The simulation results show 

that when each  series  of  these  requests  contain  6000  

transactions,  the proposed  scheduler  reduces  67.16%  

communication  cycles  as comparing to a bus that supports 

only in-order transactions.  
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V. CONCLUSIONS  

The   current   trend   of   the   bus   standard   is   to   define   

an explicit bus interface and leave the internal bus 

architecture to the  bus  designer.  The  design  which  

complies  with  the  bus interface   protocol   to   carry   out   the   

various   advanced   bus functionality    consequently     

dominates    the    communication efficiency of an SOC 

system. In this work, we develop an on- chip  bus  employing  

OCP  as  the  bus  interface.  Various  bus transactions    

defined    in    AXI    and    OCP    to    reduce    the 

communication  latency  and  increase  the  bus  throughput  

are supported   by   the   proposed   bus   architecture.   

Experimental results demonstrate the efficiency of the 

proposed bus in both simulation speed and execution 

performance.  
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