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Abstract— Multi-site parallel job schedulers can improve 

average job turn-around time by making use of fragmented node 

resources available throughout the grid. By mapping jobs across 

potentially many clusters, jobs that would otherwise wait in the 

queue for local resources can begin execution much earlier; 

thereby improving system utilization and reducing average queue 

waiting time. Recent research in this area of scheduling leverages 

user-provided estimates of job communication characteristics to 

more effectively partition the job across system resources. In this 

paper, we address the impact of inaccuracies in these estimates 

on system performance and show that multi-site scheduling 

techniques benefit from these estimates, even in the presence of 

considerable inaccuracy. While these results are encouraging, 

there are instances where these errors result in poor job 

scheduling decisions that cause network over-subscription. This 

situation can lead to significantly degraded application 

performance and turnaround time. Consequently, we explore the 

use of job check pointing, termination, migration, and restart 

(CTMR) to selectively stop offending jobs to alleviate network 

congestion and subsequently restart them when (and where) 

sufficient network resources are available. We then characterize 

the conditions and the extent to which the process of CTMR 

improves overall performance.  

 

Keywords- parallel job scheduling; check pointing; migration; 
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I.  INTRODUCTION   

As cluster computing becomes more commonplace, 
industrial and academic research parks often purchase 
several clusters to meet their computational needs. These 
geographically co-located clusters can be connected via an 
interconnection network to form a larger computational grid 
resource known as a multi-cluster or super-cluster [2].  

This configuration allows flexibility for distributing 
parallel jobs among available clusters; however, it also 
increases the complexity of managing both computing and 
networking resources. As multi-cluster systems become more 
prevalent, techniques for efficiently exploiting these 
resources become increasingly significant. A critical aspect 
of exploiting these systems is the challenge of job scheduling 
[3], [4]. Intelligent schedulers can make use of information 
related to job communication structure and inter-cluster 
bandwidth availability to improve average job response time 
by selectively mapping parallel jobs across potentially many 
clusters in a process known as job co-allocation or multi-site 
scheduling [5, 6, 7]. 
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One of the caveats of this type of resource sharing is that 
user-provided job communication estimates may be 
inaccurate. Since multi-site scheduling techniques can 
explicitly make use of job bandwidth requirements to 
partition the job across clusters, any inaccuracies could have 
adverse effects on the overall system performance. In fact, 
the question becomes one of determining how sensitive the 
job schedulers actually are to the quality of these estimates. 
In addressing this question, one can begin to evaluate the 
trade-off between the cost of providing more accurate 
information, and the improvement obtained in doing so. The 
notion of making use of user estimates for the purpose of job 
scheduling and exploring the effects of their inaccuracies [8], 
[9] is not new. If fact, many backfilling production 
schedulers (Maui/Moab [10] and IBM's LoadLeveler) make 
use of user-provided estimates of job runtime to determine 
when and how to backfill jobs. However, in multi-site 
parallel job scheduling, communication characterizations are 
used in addition to runtime estimates to allow the scheduler 
to partition the job across two or more clusters by 
intelligently managing both node and network resources [5]. 
Specifically, our contributions are centered around exploring 
system behavior in the presence of inaccurate user-predicted 
bandwidth requirements as opposed to runtimes. 
Understanding the resulting behavior is particularly 
important in the context of bandwidth-aware multi-site 
parallel job scheduling. Our initial research has shown that 
the impact of these inaccuracies ranges from negligible to 
severe, depending on a number of factors including the 
relative intensity of inter-process communication [11]. It is 
therefore equally important to identify mechanisms to 
mitigate the negative impact of these inaccuracies when they 
occur. One such technique is to checkpoint an offending job, 
terminate its current execution, migrate it to a location where 
more network resources are available, and to subsequently 
restart its execution, a collective process we refer to as 
CTMR. Job checkpointing is a process where the entire state 
of the application is saved to traditionally persistent storage 
so that it may be restarted at later time, typically after a fatal 
error [12, 13]. While checkpointing is largely used in parallel 
and distributed computing to recover from component 
failures, we use it in conjunction with job migration, to 
recover from scheduling decisions that lead to network over-
subscription. For example, if a user underestimates a job's 
bandwidth requirements, the scheduler may co-allocate a job 
that result in network over-subscription. This in turn causes 
all jobs that are mapped across over-saturated links to slow 
down. We focus on job checkpoint, termination, migration, 
and restart (CTMR) to alleviate network over-subscription 
and mitigate job slowdown. In this paper, we begin the 
analysis by addressing the impact of inaccuracies in user-
provided communication requirement estimates on overall 
system performance from several points of view.  
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Furthermore, we demonstrate that multi-site job 
scheduling techniques benefit from these estimates, even in 
the presence of considerable inaccuracy. Additionally we 
quantify the difference in the impact that overestimation 
causes versus underestimation. We also demonstrate that the 
extent to which estimate error impacts co-allocation is 
strongly correlated to the intensity of inter-processor 
communication. We then continue the analysis by describing 
an agent that autonomously decides when to checkpoint, 
terminate, migrate and subsequently restart jobs to mitigate 
network over-subscription due to estimate inaccuracies and 
we provide a rationale behind its parameterization. We 
subsequently characterize the conditions and the extent to 
which check pointing, migration and ultimate the restart 
improves multi-site parallel job scheduling performance. We 
demonstrate that check pointing improves performance even 
when the overhead of doing so is very costly. Finally we 
show that at moderate levels of overhead, CTMR can be used 
to mitigate the negative impact of estimate inaccuracies.   

II. THE MODEL 

In this section we describe the parallel job model as well as 

the multi-cluster architecture. We provide a very brief 

explanation of the communication model used, as well as a 

strategy to account for the time-varying inter-cluster network 

utilization. This general technique is based on the work 

presented in [5]. 

A. Multi-cluster and Parallel Job Models 

As a first step, we consider a multi-cluster to be a 
collection of arbitrarily-sized clusters with globally 
homogeneous node. Each cluster has its own internal switch. 
Additionally, the clusters are connected to one another with a 
single dedicated link to a central switch. Each node in the 
multi-cluster has a single processor and a single network 
interface card. Jobs can be coallocated in a multi-cluster by 
allocating nodes from different clusters to the same job to 
better meet collective needs across the multi-cluster. The 
model used assumes that jobs are non-malleable. In other 
words, each job requires a fixed number of processors for the 
life of the job, and the scheduler may not adjust this number. 
A job's execution time, TE, is a function of two components, 
the computation time, TP, and the non-overlapped 
communication time, TC. The initial value of these two 
quantities is considered to represent the total execution time 
that the job would experience on a single dedicated cluster. 
They therefore form a basis for the best-case execution time 
of a given job when it is co-allocated in the multi-cluster. 
The computation portion of the execution time does not vary, 
however the communication time is considered dynamic, 
since the communication time of simultaneously co-allocated 
jobs may be lengthened due to the utilization of any shared 
inter-cluster network links. 

B. Communication Characterization 

In order to capture both local and global communication 
characteristics, each job modeled in this paper is assumed to 
perform both nearest neighbor (2D mesh) and all-to-all 
personalized communication patterns throughout its 
execution. Jobs are further characterized by their 
preprocessor bandwidth (PPBW), i.e. the network bandwidth 
required by each node in the job. During co-allocation, nodes 
must communicate across cluster boundaries. This 
communication requires a certain amount of bandwidth in the 
inter-cluster network links. A job's performance will 
deteriorate if it does not receive the amount of bandwidth it 

requires to run at full speed. Each time a new job is co-
allocated or a co-allocated job terminates, an algorithm is 
applied to determine the amount of bandwidth ultimately 
allotted to each job on each link. The amount of bandwidth 
each job receives is limited by the most saturated link over 
which it spans. As these inter-cluster state changing events 
occur, the remaining execution and communication times are 
recalculated based on a number of factors, including 
available network bandwidth. Due to these recalculations, the 
job's end-event can slide forward (later) or backward (earlier) 
in time, reacting either a degradation or improvement in 
saturation levels of the inter-cluster links over which it spans. 
The full description is rather lengthy and can be found 
described in detail in [5]. This procedure provides a dynamic 
view of job communication by accounting for the slowdown 
a job experiences due to the time-varying utilization of the 
inter-cluster network links. This is particularly important 
when considering inaccurate user estimates of bandwidth 
since they can cause the scheduler to perform co-allocation 
when su_cient inter-cluster network resources are not 
available. 

C. Job Checkpointing And Migration 

Check pointing is largely used in parallel and distributed 
computing as a mechanism to recover from failures in system 
components [15] and has recently been used to improve 
application and system resilience [16]. As the size of parallel 
systems increases, the mean time between failures (MTBF) 
typically decreases [17] . Without check pointing, a job 
mapped across a failed component would likely need to be 
restarted from the beginning, thus resulting in longer 
turnaround times, and redundant usage of system resources. 
While this is an extremely important use of check pointing, it 
is not the focus of this paper. Migration is the process where 
a job is moved from one set of computational and network 
resources to another. In this case, the job would be migrated 
to a location where more network resources are available, 
and if need be, pause the job until sufficient resources 
become available. By combining the utility of job 
checkpointing with the exibility of job migration, we are able 
to recover from initially poor scheduling decisions by 
alleviating network congestion, and therefore mitigating job 
slowdown. In this section, we describe the 
checkpoint/migration agent and the motivation behind certain 
decisions regarding its implementation. 

D. Agent Motivation 

Determining how and when to checkpoint, terminate, 
migrate, and restart a job to alleviate network saturation is a 
difficult question. A naive approach may simply checkpoint 
and restart a co-allocated job any time an interconnection 
network link is over-subscribed. This aggressive approach 
does not take into account several important factors. In this 
section we describe a few scenarios that will serve as 
motivation for the CTMR agent implementation we 
ultimately use. First, previous research has shown that 
occasional over-subscription can actually improve overall job 
throughput (refer to [5], Section 6.3). For example, the 
reduction in queue waiting time can outweigh the increase in 
execution time caused by network saturation. Second, there 
is the issue of capacity loss. Suppose a co-allocated job were 
checkpointed to alleviate oversubscription,  
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but there are no jobs waiting in the queue that can 
immediately make use of the resources freed by the 
checkpointed job. This is due to two primary reasons: there 
are no jobs that can fit within the number of nodes freed, or 
there are jobs that could fit; but other scheduling constraints 
exist prevent job dispatch, such as priorities, backfill 
reservations, bandwidth requirements, etc. In this case, the 
decrease in system utilization can lead to a decrease in 
performance that outweighs the improvement in network 
saturation. Lastly, it is important to consider the additional 
time required to checkpoint, terminate, migrate, and restart. 
If this time is sufficiently long compared to the remaining 
execution time of the collocated jobs, check pointing can 
lead to an increase in the jobs' execution times that outweighs 
the benefit of reducing network over-subscription. 

E. CTMR Agent Implementation 

Each of the above factors, among others, plays an 
important role in the implementation of our checkpoint, 
termination, migration, and restart (CTMR) agent. The basic 
agent iteration is as follows: 

Step 1: Identify congestion - If network saturation exists 
AND candidate jobs remain, identify the cluster with the 
most saturated link, L, and proceed; else schedule CTMR 
agent to run in the future and exit. 

Step 2: Find a candidate job - Inspect all jobs co-allocated 
across link L. Find the job with the largest subscription on 
link L, subject to three constraints: (1) the job underestimated 
its bandwidth requirements, (2) the time required to CP (if 
known) the job is less than some fraction of the job's 
remaining execution time. (The determination of this 
parameter is described below.), and (3) at least one waiting 
job could immediately make use of freed resources if 
candidate job were checkpointed.  

Step 3: Checkpoint job - If a suitable candidate is found, 
checkpoint and place at head of local waiting queue; else 
exit. 

Step 4: Run scheduler - After checkpoint is complete, run 
parallel job scheduler to identify and dispatch jobs that can 
now run using the freed resources. 

Step 5: Re-evaluate system - Goto step 1. 

In addition, a job that initially underestimates its 
bandwidth requirements is immediately marked as such prior 
to the first checkpoint / migration. The scheduler then assigns 
the job a new bandwidth estimate based on observed runtime 
behavior. If the job causes network over-subscription a 
second time, it will be checkpointed and restarted again; 
however it will no longer be considered for job co-allocation. 
This ensures that its inter-process communications will not 
traverse any network trunks connecting the participating 
clusters to the grid. Note, we assume that the communication 
bottlenecks in such a multi-cluster are in the inter-cluster 
trunks, i.e., not in the backplane bandwidth of the internal 
cluster switches. In Step 2, we make use of a configurable 
parameter, CPfrac, that serves as one factor to determine the 
suitability of a job as a checkpointing / migration candidate. 
In particular,CPfrac is used to prevent a job from being 
checkpointed if the overhead in doing so is sufficiently" long 
compared to the remaining execution time. A natural 
question is how to choose its value. We initially conducted a 
parameter sweep to determine the value of CPfrac that 
minimizes average job turnaround time in a number of 
different scenarios. Specifically, we needed to determine 
how sensitive this parameter is to other system 

characteristics. We found that in almost every case we tried, 
a value of around 4% resulted in the best performance. This 
was a surprising result and greatly simplified the logic 
applied in finding a checkpointing candidate. Note, if the 
time required to checkpoint/restart is not known or 
unavailable, we assume a generous overhead of 30 minutes.  

III. RESULTS AND OBSERVATIONS 

As mentioned before, determining the effect of inaccurate 
user predictions on performance ultimately becomes a 
question of how sensitive the scheduling strategy is to the 
bandwidth parameter itself. Clearly, co-allocation is affected 
by the amount of inter-process communication that takes 
place; therefore, we have setup three experiments to illustrate 
the effect of different per processor bandwidths (PPBWs). In 
addition to varying the amount of error in the estimates (and 
average PPBWs), we also wish to show the difference 
between making use of estimates that are inaccurate versus 
not making use of the information in the first place. 
Therefore we also conducted experiments in which varying 
percentages of jobs expose their communication requirement 
to the scheduler. We call this information availability", i.e. 
the percentage of jobs in the workload stream that reveal 
their PPBW to the scheduler. When this information is not 
available, the scheduler simply resorts to local and remote 
(via migration) job dispatching and does not attempt to co-
allocate the given job. In Figures 1, 3, and 5 we have 
explored both the error and information availability 
parameter space for three distinct PPBW intensities, 
specifically at 150 (low), 300 (medium), and 400 (high) 
Mbps. Figures 2, 4, and 6 help to complement the 3D plots 
by focusing on the behavior at four distinct error levels, 
namely, 0, 50, 80, and 100%. Note that in each of the 2D 
plots, the horizontal line Migration Only" denotes the 
performance when co-allocation is disabled. 

 

 

A. Initial Impact of Inaccuracy 

From these results, we can make several interesting 
observations. The level of acceptable" error in user estimates 
is highly dependent on the intensity of inter-process 
communication. When the parallel job workload exhibits on 
average per-processor bandwidth of 150 Mbps (Figures 1, 2), 
even a 100% error (57.7 RMSPE) in user-predicted 
bandwidth results in a significant improvement in job 
turnaround time beyond that of 
Migration Only.  
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For example, when at least 20% of the workload arrives 
with user-estimates provided to the scheduler, a 16% 
improvement over Migration Only is obtained. This is not 
much less than the 22% improvement z obtained in the ideal 
case, where 100% of the jobs arrive with perfectly accurate 
PPBW estimates. In fact, even at error levels up to 100%, the 
average job turnaround times are essentially monotonically 
non-increasing functions of information availability. This 
would correspond to the notion that more information is 
always" better, even in the presence of large errors in user 
predictions of per-processor bandwidth. However, as the 
PPBW increases to 300 Mbps (Figures 3, 4), the impact of 
error in user estimates becomes more severe. In this case, an 
error larger than roughly 75% actually begins to degrade 
performance as more information is made available (note the 
@ 80% Error" curve in Figure 4). Note that the increase in 
PPBW results in a max improvement over Migration Only of 
16% (in the ideal case) versus the 22% in the 150 Mbps case. 
Therefore, at the 80% error level, the improvement over 
Migration Only" is 8%, representing only 50% of the max 
improvement possible. This is in contrast to the 73%2 of max 
improvement obtained when the PPBW is 150 Mbps. At the 
higher PPBW intensity of 400 Mbps (Figures 5, 6), the same 
error level of 80% referenced above results in only a 4% 
improvement over Migration Only. This represents roughly 
33% of the max improvement obtainable in the ideal case 
(12% in this instance). However, modest error in user 
estimates (below 50%) results in improvement that is nearly 
as good as the ideal case. 

 

IV. ADDRESSING CHECKPOINT/RESTART 

OVERHEAD 

Checkpointing a job requires time to save the state of the 
application to disk. The amount of time checkpointing 
requires depends on a large number of interacting factors, but 
is primarily bound by the amount of memory that needs to be 
saved and the speed at which it can be written to disk. Later, 
when the job is to be restarted, time is spent restoring the 
application image from secondary storage to memory. 
Altogether, this additional time constitutes an overhead 
associated with performing checkpointing that would not 
otherwise be present. In order to provide additional realism, 
we take this overhead into account when modeling the 
execution times of checkpointed jobs. In particular, we make 
this checkpoint/restart time a con_gurable parameter in order 
to study the benefit of checkpoint-enabled multi-site 
scheduling as a function of increasing overhead. In this way, 
we can determine the extent to which checkpointing is a 
meaningful tool in recovering from poor scheduling 
decisions. In our simulations, we have used 
checkpoint/restart overhead ranging from 0 minutes 
(effectively no overhead) to as much as 90 minutes. Most 
systems with a large amount of RAM and relatively slow 
disk I/O should be able to write out the entire contents of 
memory (in the worst case) to disk and read it back in under 

90 minutes [20]. For example, 12 minutes is used as an upper 
bound in [15]. 

V. CONCLUSIONS 

In this paper, we have explored the impact of user-
provided bandwidth estimate inaccuracies on overall system 
performance. We demonstrated that multi-site job scheduling 
techniques benefit from these estimates, even in the presence 
of considerable inaccuracy. Furthermore, we have shown that 
the extent to which these errors impact performance is highly 
correlated to the inter-process communication intensity. 
Additionally, we have illustrated that underestimation is 
more costly than overestimation with respect to average job 
turnaround time. Furthermore, we have examined the use of 
check pointing followed by job migration in an effort to 
mitigate the negative impact of user-provided estimate 
inaccuracy during periods of intense inter-process 
communication. We have developed a relatively simple 
checkpoint, termination, migration, restart (CTMR) agent 
that autonomously decides when to selectively checkpoint 
jobs to reduce network over-subscription. We subsequently 
characterize the conditions and the extent to which CTMR 
improves multi-site parallel job scheduling performance. We 
demonstrate that CTMR improves performance even when 
the overhead of doing so is very costly. We show that at 
moderate levels of overhead, CTMR can be used to greatly 
mitigate the impact of estimate inaccuracies. As multi-cluster 
job scheduling matures, the search for increasingly accurate 
user estimates will undoubtedly turn to alternative methods 
of improvement [19, 4]. Users of parallel machines often 
repeatedly execute the same (or similar) programs; [21]; 
therefore, future efforts may focus on making use of 
historical data to predict bandwidth requirements. 
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