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Abstract— Current progress in computer, geographic 

information system (GIS) and remote sensing technology has led 

to the LIDAR (light detection and ranging) data, as a new 

generation of high-resolution digital elevation model (DEM). 

Although such a high resolution DEM can be a useful tool for 

terrain analysis, high amount of noise is also expected to be 

existent in a mega-data set. To deal with this problem in this 

study, continues wavelet transform (CWT), as a mathematical 

filter, was employed to extract slope, specific area and 

topographic index which are important parameters in 

hydro-environmental studies at different resolutions. In this way 

the proposed methodology was applied to 1-m resolution LIDAR 

DEM of the Elder Creek River watershed where is a sub-basin of 

the South Folk Eel River basin at California. The results were 

also compared favorably with the results of a classic method. The 

result indicates that smoothing ability of the wavelet can be a 

promising DEM processing alternative to cope with the noise and 

pits of a high resolution DEM. 

 

Index Terms— DEM, Elder Creek River, GIS, LIDAR 

Topography, Wavelet transform.  

I. INTRODUCTION 

To apply some hydro-environmental models, the spatial 

distribution of the so-called topographic index (TI) is 

calculated for the catchment from a topographic data set, 

such as a digital elevation model (DEM).The basic and most 

common form of the topographic index, ln(a/tan β), is the 

natural logarithm of the ratio of the cumulative upslope area 

per unit contour length (specific catchment area),a to the 

local slope of the ground surface, tanβ.  

The evolution of affordable, robust computers and 

commonplaceness of geographical information system (GIS) 

are encouraging the use of different GIS-based terrain 

algorithms to calculate the primary topographic 

characteristics of „tanβ‟ and „a‟ which are then combined to 

form the secondary topographic characteristic of the TI. 

O‟Callaghan and Mark [1] introduced the D8 (eight flow 

directions) method as the earliest and simplest algorithm for 

specifying flow direction and accumulation area. Thereafter,  
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some other methods such as multiple flow direction (MFD, 

[23]), modified MFD [3], infinite possible flow directions 

(D∞) [4] and hybrid MFD-D∞ [5] have also been suggested 

as attempts to overcome the limitation of D8 method. On the 

other side, finite difference, linear regression and quadratic 

equation methods have been employed for calculating local 

ground surface slope (tan β) from DEMs [6]. There are also a 

number of studies which compare the patterns of TI 

computed in different ways (e.g., [7]). However, a recurring 

scale issue regarding TI is that the distribution of TI is 

markedly related to the topographic information content of 

the DEM, which can be impacted by both discretization (or 

aggregation) and smoothing effects [8]. Several studies have 

discussed the effects of scale and DEM resolution on the TI 

distribution (e.g., [3], [8]–[14]). Also, the recent emergence 

of airborne altimetry technology (e.g., light detection and 

ranging, LIDAR) as a means of acquiring high resolution 

DEMs, allows the examination of this scale issue using much 

finer grid cell size (see, [15]). 

Beyond the shadow of a doubt, the scale dependence of TI 

distribution effects on the model‟s parameters and 

performance. In the case of using coarser DEMs, it has been 

postulated that a positive shift accompanied, sometimes by a 

deformation may be appeared in the TI distribution and 

although the calibration of parameters can often compensate 

for the lack of resolution, the physical interpretation of the 

parameters and the merit of the model in distributed 

predictions may be lost [10], [16]. On the other hand, some 

other problems may have arisen if very high resolutions 

DEMs are employed. Zhang and Montgomery [14] stated 

that increasing the resolution to 2 or 4 m would not provide 

important additional information and often 10 m cell size is 

sufficient for hydrologic simulation to have a compromise 

between accuracy and computation cost in large area. Cai 

and Wang [17] found that a 90 m DEM can derive TI 

distribution as well as a 30 m DEM for landscapes with 

significant variation in elevation; but Sorensen and Seibert 

[15] utilized high resolution LIDAR data to show the large 

influence of the DEM‟s information content meanwhile, 

simply going from a 5 to 10-m resolution can considerably 

affect the calculated TI. Beven et al. [18] describe required 

resolution as needing to be fine enough to reflect the effect of 

topography;  
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too coarse a DEM may fail to represent convergent slope 

features and results in parameter inconsistency across scales, 

while too fine a DEM may impose perturbation to the flow 

directions and slope angles. Furthermore, as the resolution of 

topographic data is fined, like any other signal, there is a 

greater possibility that the DEM includes artificial 

depressions and pits which result from random noise [19]. 

Aforementioned studies bear out that even the 

implementation of high-resolution DEMs which are 

becoming more readily available nowadays, does not 

warrant the improvement of the modeling if a modification 

or/and DEM pre-processing is not taken into consideration. 

In this way, the wavelet transform as such a DEM 

pre-processing tool may be incorporated into a GIS 

framework for the de-noising and compression purposes 

[20]. 

In this study, the capability of the wavelet transform which 

has recently found wide application in geophysics [21], 

topographic feature extraction [19], [22], [23] and 

hydrological simulation [24]–[26] is examined as an 

alternative for DEM and TI processing computed from a 

high-resolution LIDAR DEM.  

II. STUDY AREA  

The study area which is the subject of this research is the 

Elder Creek sub-basin of the South Fork Eel River in 

northern California, USA (Fig. 1). This 16.84 km2 basin 

drains a landscape of steep hill slopes and narrow canyons. 

The length of its main channel is about 8 km with an average 

stream gradient of 80 m/km. The texturally-filtered DEM of 

the Elder Creek Basin was extracted from 1.0 m LIDAR 

DEM of the South Fork Eel River watershed which is a part 

of University of California at Berkley‟s NCALM (National 

Center for Airborne Laser Mapping) project and can be 

retrieved via (www.ncalm.org) (Fig. 2). 

III. WAVELET TRANSFORM 

The one dimensional (1-D) wavelet transform of a 

continuous signal, f(x), is defined as [27]: 
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Where ψ* corresponds to the complex conjugate and ψ(x) is 

 
Fig. 1 Eel River map and study area location 

 

Fig. 2 Study area DEM 

called wavelet function or mother wavelet. The parameter aw 

acts as a dilation factor, while bw corresponds to a temporal 

or spatial translation of the functionψ(x), which allows the 

study of the signal around bw. In order to be classified as a 

wavelet, a function must have finite energy, and it must 

satisfy the following "admissibility conditions" [27]: 
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where,
)(ˆ w

is Fourier transform of ψ(x); i.e., the wavelet 

must have no zero frequency component. In order to obtain a 

reconstruction formula for the studied signal, it is necessary 

to add "regularity condition" to the previous ones [27]:  





 0)( dxxx l      Where   l= 1,2,…, k–1 (3) 

So the original signal may be reconstructed using the inverse 

wavelet transform as [27]: 
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Almost all of the algorithms for specifying flow direction 

and specific area including D8 and D∞, use first order finite 

difference method to compute local slope. This method 

magnifies the DEM‟s noise since it considers a sudden jump 

and discontinuity, as a step function, between the elevations 

of two adjacent cells. Thus, a smoothing filter may be 

utilized to reduce the noise effect when high-resolution DEM 

is used to compute the local slopes. In the context of channel 

network extraction, Lashermes et al. [22] applied 

convolution product with the 

kernel „g‟ on the elevation height 

(h) as: 

http://www.ncalm.org/
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∂ h∗g 

∂x
=

∂h

∂x
∗ g = h ∗

∂g

∂x
                                         (5) 

in which        h ∗ g (x) =  h(t)

x

0

g(x−t)dt 

to compute the smoothed slope via the continues wavelet 

transform (CWT). 

Comparison of (5) with (1) implies that slope in x-direction 

smoothed by the kernel „g‟, i.e. mx =
∂h

∂x
∗ g, is equal to the 

wavelet coefficient of DEM with mother wavelet of 
∂g

∂x
. 

Similary, my and then magnitude and direction of steepest 

slope are computed for each cell as: 

m =  mx
2 + my

2                        (6) 

and, 

tanβ = γπ + arctan⁡(
my

mx
)         (7) 

Where, γ=0 if mx>0 ; γ=1 if mx<0 and my>0; β= -1 if mx<0 

and my<0. Thereafter, computed slope can be used to 

calculate specific upslope area and TI distribution. In this 

study, the first derivative of the Gaussian function as the 

Gaussian wavelet with unit energy, in the form of (8) was 

applied to the 1-m resolution DEM in both x and y directions 

to compute magnitude and direction of slope and then spatial 

distribution of TI were extracted.  
𝜕𝑔

𝜕𝑥
= (
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𝜋
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     (8) 

The Gaussian wavelet is popular in geophysical applications, 

particularly in terrain analysis because its shape, as shown in 

Fig. 3, is similar to the topography form. It is worthy of note 

that the wavelet transform should be applied to an extended 

area started from outside of the study‟s region in order to 

cope with the edge effect [28]. 

IV. RESULTS AND DISCUSSION 

The NCLAM‟s 1-m resolution LIDAR DEM was re-sampled 

into 2, 4, 8, 16, 32 and 60-m resolution DEMs. Instead of 

using the localized mean which may lead to an overly 

smoothed topography, the aggregation process was 

performed by passing the aggregation window of target size 

across the original 1-m resolution DEM and assigning the 

elevation of the central pixel of window to the corresponding 

pixel in the coarser DEM. For the re-sampled DEMs the 

classic sink removal method [29] was applied and TI 

distributions were computed using the most common flow 

pathway algorithm (i.e., D8) and also CWT methods. The 

results have been presented in Figs. (4a) and (4b) for D8 and 

CWT methods, respectively which indicate that by 

increasing the grid cell size, not only a positive shift in mean 

of TI distribution is appeared but also higher order

 

Fig. 3 Gaussian wavelet 

momentums of the distribution may also be changed. Finer 

grid sizes typically lead to larger values of tan β and smaller 

values of a since steeper hill slopes and smaller drainage area 

are resolved and as a result provide smaller TI values. Fig. 5 

compares calculated TI distributions by two algorithms using 

1- and 32-m resolution DEMs. In CWT method, the 

calculated local slope is smaller than computed slope by D8. 

Therefore, the discrepancy between two distributions is more 

marked especially in the beginning of the distribution which 

grid sizes typically lead to larger values of tan β and smaller 

values of a since steeper hill slopes and smaller drainage area 

are resolved and as a result provide smaller TI values. Fig. 5 

compares calculated TI distributions by two algorithms using 

1- and 32-m resolution DEMs. In CWT method, the 

calculated local slope is smaller than computed slope by D8. 

Therefore, the discrepancy between two distributions is more 

marked especially in the beginning of the distribution which 

his related to steep headwaters and more sensitive to the cell 

size. However in the coarser grid size, the whole trend of the 

flow pathway is almost identical in both methods. Of course, 

the magnitude of the discrepancy depends on the 

catchment‟s terrain and as an evidence for the importance of 

slope; the TI distribution is more sensitive to the grid size 

and flow direction algorithm for the steeper catchments such 

as Elder Creek Basin. 

Also, according to Figs.(6a)and (6b) which show 

respectively the spatial distributions of TI within the basin 

extracted from 1 and 8-m resolution DEMs, for the finer 

DEM the structure of the TI distribution is much complex 

and irregular. In addition to the slope, the specific area may 

also cause this complexity. The smallest value of the specific 

area equals to the grid cell size and in a low resolution DEM, 

a cell in a down slope valley position will have a large 

specific area value. However, the cells in the similar 

positions of the corresponding high resolution DEM may 

have either a large specific area if they are located along the 

channel or a small specific area if they have slightly higher 

elevation than the surrounding cells and located outside of 

the channel. 

A large number of TIs with low and even negative values can 

be seen in the computed distribution by 1-m resolution DEM 

(see Fig.6a). According to the fractal property of the 

topography there is an exponential relationship between the 

elevation difference (∆h) and distance (ε) of two adjacent 

cells within the basin‟s DEM as [30], [6]: 

∆h = αε2−D → tan β =
∆h

ε
= αε1−D                           (9) 

Since the fractal dimension (D) and proportionality 

coefficient (α) are constant for the topography, by decreasing 

the grid cell size (ε) the local slope is increased. Furthermore, 

it has been already shown that the uncertainly in slope has a 

grid spacing dependence and as grid is fined, there is a 

greater probability of error in slope [31]. Consequently, it is 

clear that in a high-resolution DEM, the high slopes result in 

very low (even negative) values of TI on steep slopes. The 

complexity of the local slope (tan β) distribution, extracted 

from 1-m resolution DEM, at different parts of the basin may 

lead to this outcome (Fig. 7).  
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Similar result and argument were reported by Quinn et al. [3] 

and Lane et al. [32] using 5 and 2-m resolution DEMs, 

respectively. Quinn et al. [3] reasoned that this is because 

fining DEM resolution tends to increase the numbers of cells 

with a low specific area value whilst leaving the overall slope 

gradient the same. Also as it was previously mentioned, the 

fractal theory which implies the scale effect on the local 

slope value and also the noise and pits are other important 

reasons for the phenomenon. In spite of DEM and slope 

smoothing potential of applied CWT, some negative TI 

values (about 0.7%) can be still seen in Fig. (6a). Two 

arguments are conceivable for such performance of the CWT. 

The first is related to the basis geometry, so that at very steep 

slope or cliff having a shape like the step function, the 

filtering may even yield to much larger slope values. The 

second is that the applied CWT just acts on x and y directions 

without any filtering across diagonal direction wherever may 

need to be smoothed.  

The effect of change in TI distribution may be imposed to the 

hydro-environmental model. Although the change in the TI 

distribution is offset by calibration of the model‟s 

parameter(s) to match the simulated and observed 

hydrographs, such re-optimized parameters may lead to 

unreasonable results when tested against internal field data 

[3]. 

 

 
Fig. 4 Computed TI distributions by a) D8 b) CWT methods 

Therefore, considering the developments in new generation 

of high resolution DEM, it may become apparent that the 

application of finer grid resolution is more appropriate to the 

observed processes. 

However as mentioned formerly, some other problems may 

be faced when a high-resolution DEM is used; such as 

corruption of the terrain analysis by error in terms of 

instrument noise or scale irregularities in general [31], [22], 

and [19]. 

 

Fig. 5 Comparison of calculated TI distributions by two 

algorithms using 1- and 32-m resolution DEMs. 

 
 

 

 

Fig. 6 Spatial distribution of TI extracted from DEM 

with resolution a) 1-m, b) 8-m 
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Fig. 7 Spatial distribution of the slope extracted from 

original 1-m resolution DEM 

V.   CONCLUSION  

In this study, the concept of continues wavelet transform 

(CWT) was used to compute local ground surface slope and 

then cumulative drainage area and topographic index (TI) 

distribution of the watershed which are important 

geomorphologic parameters in the hydro-environmental 

studies. The Gaussian CWT was applied to the DEMs at 

different resolutions extracted from the high-resolution 

LIDAR DEM. A systematic trend could be seen in the 

computed TI distributions at different resolutions; so that by 

decreasing the resolution of the DEM, the mean of the 

distribution is increased. Furthermore, there is a discrepancy 

between the mean and formation of the computed 

distributions by the classic D8 and proposed CWD methods. 

The smoothing ability of the CWT allows to the method to 

handle the existing pits and noise in the high-resolution 

DEM. 

It is recommended to employ the wavelet-based TI 

distribution in a hydro-environmental model and verify its 

ability in a real world problem. A few studies have been 

already presented to downscale the TI distribution from a 

coarse-resolution DEM and in most of them by neglecting 

the scale effect on the slope value, it has been assumed that 

TI distribution at different scales have similar shapes but not 

necessarily similar means (e.g., [33], [34]). However as a 

research plan for the future study, the fractal (or multi-fractal) 

concept and proposed wavelet analysis may be conjugated 

and used for downscaling and re-scaling of the TI 

distribution. 
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