
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

402

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0253101511/2011©BEIESP

Floating-Point FPGA: Architecture Performance

and Modeling

Shaik Ayesha, B.V. Ramana, K.V. Ramana Rao

Abstract-This paper presents a novel architecture for domain-

specific FPGA devices. This architecture can be optimized for

both speed and density by exploiting domain-specific information

to produce efficient reconfigurable logic with multiple

granularity. In the reconfigurable logic, general-purpose fine

grained units are used for implementing control logic and bit-

oriented operations, while domain-specific coarse-grained units

and heterogeneous blocks are used for implementing data paths;

the precise amount of each type of resources can be customized

to suit specific application domains. Issues and challenges

associated with the design flow and the architecture modeling are

addressed. Examples of the proposed architecture for speeding

up floating point applications are illustrated. We assume that

current proposed architecture can achieve 2.5 times improvement

in speed and 18 times reduction in area on average, when

compared with traditional FPGA devices on selected floating

point benchmark circuits.

Keywords: Architecture, field-programmable gate array

(FPGA), Floating Point, Application domains, modeling.

I. INTRODUCTION

FPGA technology has been widely adopted to speed up

computationally intensive applications. Most current FPGA

devices employ an island-style fine-grained architecture,

with additional fixed-function heterogeneous blocks such as

multipliers and block RAMs; these have been shown to have

severe area penalties compared with standard cell ASICs

[1]. In this work, we propose domain-specific coarse-

grained architectures which can have advantages in speed,

density and power over more conventional heterogeneous

FPGAs. One key issue associated with such an approach is

identifying the correct amount of coarse-grained logic

necessary to enhance the performance of an application

without adversely affecting area and flexibility. For

example, an application that demands high performance

floating point computation can potentially achieve better

speed and density by introducing dedicated embedded

floating point units (FPUs).

However, for those applications which do not have any

floating point computations, the FPU resources will be

wasted. To address this issue, we advocate domain-specific

FPGAs with flexible, parameterized architectures that can

be generated to address application sets that are smaller than

those targeted by conventional FPGAs, but possibly larger

than that of ASICs.

Manuscript received October 30, 2011.

Shaik Ayesha, M.Tech(ECE), Pydah College of Engineering &
Technology, India. Email: ayeshashaik2009@gmail.com

B.V. Ramana, M.Tech(ECE), Pydah College of Engineering &

Technology, India.
K.V. Ramana Rao, Assoc.Professor & Head, Dept. of ECE, Pydah

College of Engineering & Technology, India.

We introduce a hybrid FPGA model in which both fine

grained and coarse-grained units are considered important.

Given a domain-specific application requirement, a

reconfigurable fabric consisting of both types of units is

generated, the coarse-grained units being used for the data

path and fine-grained units for control and bit-oriented

operations. A model is also introduced that allows us to

search for the best proportion of each type of fabric, and a

method for rapidly evaluating the performance of the

architecture is employed.

The key contributions of this paper are:

• A generic hybrid FPGA architecture that supports

configurable resources of multiple granularity that can be

customized for different applications.

• Use of this architecture to design a domain-specific

hybrid FPGA for various floating point computations.

• Demonstration that a single configuration of a floating

point specific hybrid FPGA is able to achieve improvements

in both speed and area compared with commercial and

proposed reconfigurable devices on selected floating point

benchmarks.

II. OVERVIEW OF FPGA

Recent years have seen an impressive improvement in the

achievable density of integrated circuits. This improvement

has led to an increase in the cost and difficulty of designing

and testing a correctly-functioning chip. Stand-alone

FPGAs (Field Programmable Gate Arrays) provide one way

of reducing the design cost; however, many designs are not

suitable for FPGAs because of their speed, density or power

requirements. For these types of designs, a fixed-function

chip, often designed using standard cells and the System on-

Chip (SoC) methodology [2], may be the only option.

Configurability can be provided by embedding one or

more programmable logic cores into the fixed-function chip.

In such a chip, most of the design is implemented using

fixed function ASIC (Application Specific Integrated

Circuit) gates, while programmable logic is used sparingly

in those parts of the chip that are likely to change. These

changes may be due to errors in the design or specification,

future upgrades, or to allow for the customization of an

integrated circuit for multiple customers. Embedded

programmable logic can also provide a mechanism to add

debug capability [3].

A programmable logic fabric can either be hard or soft.

An ASIC designer using a hard fabric would obtain a layout

and embed it directly into the integrated circuit. One

challenge with this approach is that design tools that allow

seamless integration of fixed and programmable logic are

still not mature.

mailto:ayeshashaik2009@gmail.com

Floating-Point FPGA: Architecture Performance and Modeling

403

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0253101511/2011©BEIESP

Timing analysis, power distribution, and verification are

difficult when the function to be implemented in the core is

not known. An alternative technique is recently described

which addresses this concern by shifting the burden from the

ASIC designer to mature standard-cell synthesis tools [4, 5].

In this technique, an ASIC designer would obtain a

synthesizable version of their programmable logic fabric (a

soft core) written in a hardware description language, and

would synthesize it along with the rest of the ASIC. The

primary advantage of this technique is that the task of

integrating such cores is far easier than the task of

integrating hard cores. The synthesis tools can be the same

ones that are used to synthesize the fixed (ASIC) portions of

the chip. No modifications to the tools are required, and the

flow follows a standard integrated circuit design flow that

designers are familiar with. Despite these advantages, there

are significant area, speed, and power penalties when using

these cores. Previous architectures [14, 15] suffer a 6.4

times overhead compared to a hard programmable logic

core. This limits their application to small circuits such as

state machines.

In this paper we present a new architecture that is

between 6 times and 426 times more area efficient than the

best previously reported synthesizable programmable logic

core.

Moreover, we show that the new architecture has a

density similar to that of a standard full-custom fine-grained

FPGA. The density improvement is obtained by using a data

path style architecture, optimized for performing

computations.

2.1 FPGA Architectures

An FPGA is typically constructed as an array of fine-

grained or coarse-grained units. A typical fine-grained unit

is a –input LUT, where typically ranges from 4 to 7, and can

implement any -input Boolean equation. We call this an

LUT-based fabric. Several LUT-based cells can be joined in

a hardwired manner to make a cluster. This greatly reduces

area and routing resources within the fabric [6].

Heterogeneous functional blocks are found in commercial

FPGA devices. For example, a Virtex II device has

embedded fixed-function 18-bit multipliers, and a Xilinx

Virtex 4 device has embedded DSP units with 18-bit

multipliers and 48-bit accumulators. The flexibility of these

blocks is limited and it is less common to build a digital

system solely using these blocks.

When the blocks are not used, they consume die area

without adding to functionality. FPGA fabric can have

different levels of granularity. In general, a unit of smaller

granularity has more flexibility, but can be less effective in

speed, area, and power consumption. Fabrics with different

granularity can coexist as evident in many commercial

FPGA devices. Most importantly, the aforementioned

examples illustrate that FPGA architectures are evolving to

be more coarse-grained and application-specific. The

proposed architecture in this paper follows this trend,

focusing on floating-point computations.

III. MODIFIED FPGA ARCHITECTURE

The first modification embeds floating-point multiply-add

units in FPGA, while offering a dramatic reduction in area

and improvement in clock rate. The next modifications

target a major component of IEEE compliant floating-point

computations variable length shifters. The first alternative to

lookup tables (LUTs) for implementing the variable length

shifters is a coarse-grained approach: embedded variable

length shifters in the FPGA fabric. These shifters offer a

significant reduction in area with a modest increase in clock

rate and are smaller and more general than embedded

floating-point units.

3.1 Proposed Method

In order to improve the floating point performance of

FPGAs [7], three modifications has to be done in the

architecture of FPGA, the three modifications are adding a

embedded shifter unit, adding a 4:1 MUX in parallel to the

CLB and adding a embedded floating point unit. In this

multiplier in the floating point unit is replaced by high speed

multiplier. The high speed is achieved through canonic

signed digit code (CSD) method. Due to CSD representation

the number of non-zero bits is reduced, this results in

reduced number of partial products. Due to reduction in

partial products accumulation speed will increase, this

increases the computation speed and number of adders

required for accumulation is reduced since multiplier plays a

major role in all computations unit like more area

occupation and speed, it is replaced by high speed multiplier

to reduce area and to increase the computational speed.

Figure 2.1 floating point unit

IV. MULTIPLICATION OF FLOATING POINT

NUMBERS USING CSD

The product of two n-bit binary integers is obtained using

CSD multiplication algorithm in n/2-1 steps. This

significantly reduces the hardware as compared to other

multiplication algorithm. This unit receives two inputs of

which one is 24 bits of multiplier the other is 24 bit

multiplicand.

1. CSD representation of multiplier is computed.

2. Multiplicand and CSD number of multiplier is given as

input.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

404

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0253101511/2011©BEIESP

3. Difference between right most bit having logic value „1‟

and next bit having value logic value „1‟is calculated

and based on the resultant value the multiplicand is

shifted.

4. If the sign of CSD number is positive it is added with the

shifted multiplicand.

5. If the sign of CSD number is negative it is subtracted with

the shifted multiplicand.

V. THE BGM ARCHITECTURE

Our design divides the entire MC simulation into three

stages: simulation initialization, BGM path generation, and

post processing. In the initialization stage, we initialize the

volatility vector ~_, reset the Gaussian random number

generators and initialize the Brownian motion generator. In

the second stage, the BGM paths are generated according to

Equation 1. The pseudo code for the main BGM model can

be described by:

Step 1: for n = CurrPeriod + 1 to N

Step 2: f actor = _nFn=(1:0 + _nFn)

Step 3: ~_n = f actor _ ~_n

Step 4: ~_n = ~_n + ~_n�1

Step 5: _ = (~_n _ ~_n)dt + (��! dW _ ~_n)

Step 6: dFn = _ _ Fn

Step 7: Fn = Fn + dFn

where CurrPeriod is the index of the current standard

period, i.e. m(t) = CurrPeriod + 1, and N is the number of

standard forward rates.

The for-loop (step 1) is the main loop of the BGM model.

The computation consists of one division (step 2), one

vector addition (step 4) and three vector product operations

(step 3, step 5) in each iteration of the for-loop. We use a

Taylor series expansion to implement step 2 and it is

discussed in detail in Section.

 In order to maximize parallelism, the vector operations

are implemented as parallel scalar operations. Finally, we do

the post-processing which involves pricing the cap

according to Equations 4 and 5 and calculate the mean and

standard error of the generated BGM paths on the PowerPC

processor.

VI. CONCLUSION

FPGAs provide effective solutions for many coarse-

grained applications, such as digital signal processing,

encryption, scientific data processing, and others. However,

commercial FPGAs are fine-grained, and miss many

optimization opportunities.

The use of CSD multiplier reduces the no of adders, no of

slices occupied in CLBs and reduced delay. By selecting

proper modules of reduced latency, area and delay,

significant improvement in speed and area is achieved.

Floating point unit is implemented and CSD multiplier is

included in it. One modification in FPGAs has to be made,

embedding a variable length shifter unit

Current and future research includes further optimization

of our design based on techniques such as run-time

recon_guration, and extensions of our approach to cover

other _nancial models.

REFERENCES

1. I. Kuon and J. Rose, “Measuring the gap between FPGAs and

ASICs,” in Proc. FPGA. New York, NY, USA: ACM Press, 2006,
pp. 21–30.

2. R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G.

Lemieux, P. Pande, C. Grecu, and A. Ivanov. System-on-chip:
Reuse and integration. Proceedings of the IEEE, 94(6):1050–1069,

June 2006.

3. B. Quinton and S. Wilton. Post-silicon debug using programmable
logic cores. In Int. Conf. on Field-Programmable Technology, pages

241–247, Dec. 2005.

4. S. Wilton, N. Kafafi, J. Wu, K. Bozman, V. Aken‟Ova, and R.
Saleh. Design considerations for soft embedded programmable logic

cores. IEEE Journal of Solid-State Circuits, 40(2):485–497, Feb.

2005.
5. A. Yan and S. Wilton. Product-term based synthesizable embedded

programmable logic cores. IEEE Trans. on VLSI, 14(5):474–488,

May 2006.

6. E. Ahmed and J. Rose, “The effect of LUT and cluster size on

deepsubmicron FPGA performance and density,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 12, no. 3, pp. 288–298, Mar.
2004.

7. Michael J. Beauchamp, Scott Hauck, Keith D.Underwood, and K.

Scott Hemmert, (Feb 2008)“Architectural Modifications to Enhance
the Floating- Point Performance of FPGAs”, IEEE Transactions on

Very Large Scale Integration (VLSI)Systems vol. 16. 2.

AUTHORS PROFILE

Shaik Ayesha pursuing her M.Tech(ECE) in Pydah

College of Engineering & Technology, under the

guidence of K.V Ramana Assoc.Professor & Head,
Dept.of ECE at Pydah College of Engineering &

Technology, Visakhapatnam, A.P., India. My

research Interests are V LSI Design, Digital Signal

Processing and Instrumentation.

B. V. Ramana pursuing his M.Tech(ECE) in Pydah
College of Engineering & Technology, under the

guidence of K.V Ramana Assoc.Professor & Head,

Dept.of ECE at Pydah College of Engineering &
Technology, Visakhapatnam, A.P., India. My

research Interests are VLSI Design and Digital

Signal Processing.

Sri K.V. Ramana Rao working as Assoc. Professor
& Head, Department of ECE at Pydah College of

Engineering & Technology, Visakhapatnam, A.P.,

India. His research interests are Digital Signal
Processing and VLSI Design.

