
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231 – 2307, Volume- 1 Issue- 6, January 2012

218

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D094071411/2012©BEIESP

String Matching Algorithms and their Applicability

in various Applications

Nimisha Singla, Deepak Garg

Abstract- In this paper the applicability of the various

strings matching algorithms are being described. Which

algorithm is best in which application and why. This describes

the optimal algorithm for various activities that include string

matching as an important aspect of functionality. In all

applications test string and pattern class needs to be matched

always.

Keywords: Databases, Dynamic programming, Search

engine, String matching algorithms

I. INTRODUCTION

The problem of string matching is that there are two

strings one is text T [1…..n] i.e. is main string given and the

other is pattern P [1…….m] i.e. is the given string to be

matched with the given main string given m<=n. String

matching is in variably used in real word applications like

Database schema, Network systems. There are main 2

techniques of string matching one is exact matching

(Needleman Wunsch, Smith Waterman, KMP, Dynamic

Programming, BMH) and other is approximate matching

(fuzzy string searching, Rabin Karp, Brute Force). Various

string matching algorithms are used to solve the given above

problems like wide window pattern matching, approximate

string matching, polymorphic string matching, string

matching with minimum mismatches, prefix matching,

suffix matching, similarity measure, longest common

subsequence (dynamic programming algorithm), Boyer

Moore Horspool (BMH), Brute Force, Knuth Morris Pratt

(KMP), Quick search, Rabin Karp.

Some of the applications are Text editors in computing

machines, Database queries, Bioinformatics and

Cheminformatics, two dimensional mesh, network intrusion

detections system, wide window pattern matching (large

string matching), music content retrievals, language syntax

checker, ms word spell checker, matching DNA sequences,

digital libraries, search engines and many more applications.

Combinatorial pattern matching addresses issues of

searching and matching strings and more complicated

patterns such as trees, regular expressions, graphs, arrays

and point sets. The goal is to derive non trivial

combinatorial properties for such structures and then exploit

these properties in order to achieve improves performance.

Manuscript received January 10, 2012.

Nimisha Singla, Department of Computer Science, Thapar University,

Ludhiana, India, nimishasingla@gmail.com

Dr.Deepak Garg, Department of Computer Science, Thapar University,
Patiala, India, dgarg@thapar.edu

This area is expected to grow even more due to increasing

demand of speed and efficiency that comes from molecular

biology, information retrieval, pattern recognition,

compiling, data compression, program analysis and security.

Also long strings create natural variations and random noise.

II. RELATED WORKS/DEFINITIONS

A brief introduction to all the basic algorithms of string

matching:-

2.i Approximate String Matching Algorithm (fuzzy

string searching): It is the technique of finding strings that

match a pattern approximately (rather than exactly). The

problem of approximate string matching is typically divided

into two sub problems: finding

approximate substring matches inside a given string and

finding dictionary strings that match the pattern

approximately.

2.ii Rabin Karp Algorithm: It is a string searching

algorithm that uses hashing to find any one of a set of

pattern strings in a text. For text of length n and p patterns of

combined length m, its average and best case running time

is O (n+m) in space O (p), but its worst-case time is O

(nm).A practical application of Rabin Karp is

detecting plagiarism. Rabin Karp can rapidly search through

a paper for instances of sentences from the given source

material, ignoring details such as case and punctuation.

2.iii Needleman Wunsch Algorithm: It performs a global

alignment on two sequences. It is commonly used

in bioinformatics to align protein or nucleotide sequences.

The Needleman Wunsch algorithm is an example

of dynamic programming, and was the first application of

dynamic programming to biological sequence comparison.

2.iv Knuth Morris Pratt Algorithm: KMP string

searching algorithm searches for occurrences of a

"word" W within a main "text string" T by employing the

observation that when a mismatch occurs, the word itself

embodies sufficient information to determine where the next

match could begin, thus bypassing re-examination of

previously matched characters.

2.v Dynamic Programming Algorithm (longest

common subsequence (LCS) problem): It is to find the

longest subsequence common to all sequences in a set of

sequences. The subsequence is different from a substring, It

is a classic computer science problem, the basis

of different (a file comparison program that outputs the

differences between two files), and has applications

in bioinformatics.

http://en.wikipedia.org/wiki/String_(computing)
http://en.wikipedia.org/wiki/Pattern
http://en.wikipedia.org/wiki/Substring
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Plagiarism
http://en.wikipedia.org/wiki/Sequence_alignment#Global_and_local_alignments
http://en.wikipedia.org/wiki/Sequence_alignment#Global_and_local_alignments
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/Subsequence
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Diff
http://en.wikipedia.org/wiki/Bioinformatics

String Matching Algorithms and their Applicability in various Applications

219

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D094071411/2012©BEIESP

2.vi Algorithm using Levenshtein Distance:

Levenshtein distance is a metric for measuring the amount

of difference between two sequences (i.e. an edit distance).

The term edit distance is often used to refer specifically to

Levenshtein distance. The Levenshtein distance between

two strings is defined as the minimum number of edits

needed to transform one string into the other, with the

allowable edit operations being insertion, deletion, or

substitution of a single character.

2.vii Smith Waterman Algorithm: It is a well-known

algorithm for performing local sequence alignment; that is,

for determining similar regions between two nucleotide or

protein sequences. Instead of looking at the total sequence,

the Smith Waterman algorithm compares segments of all

possible lengths and optimizes similarity measure.

2.viii Brute Force Algorithm: It is also known as proof

by exhaustion, also known as proof by cases, perfect

induction, or the brute force method, is a method

of mathematical proof in which the statement to be proved is

split into a finite number of cases and each case is checked

to see if the proposition in question holds. A proof by

exhaustion contains two stages: proof that the cases are

exhaustive; i.e., that each instance of the statement to be

proved matches the conditions of (at least) one of the cases

and a proof of each of the cases.

2.ix Boyer Moore Algorithm: It is a particularly

efficient string searching algorithm, and it has been the

standard benchmark for the practical string search literature.

The algorithm preprocesses the target string (key) that is

being searched for, but not the string being

searched in (unlike some algorithms that preprocess the

string to be searched and can then amortize the expense of

the preprocessing by searching repeatedly). The execution

time of the Boyer Moore algorithm, while still linear in the

size of the string being searched, can have a significantly

lower constant factor than many other search algorithms: it

doesn't need to check every character of the string to be

searched, but rather skips over some of them. Generally the

algorithm gets faster as the key being searched for becomes

longer. Its efficiency derives from the fact that with each

unsuccessful attempt to find a match between the search

string and the text it is searching, it uses the information

gained from that attempt to rule out as many positions of the

text as possible where the string cannot match. BMH

approach uses only the Bad Character Heuristic of Boyer

Moore for skipping comparisons rather than both the Bad

Character and Good Suffix Heuristics.

2.x Jaccard Similarity: It is a measure of the similarity

between two binary vectors. It can be simply used to

measure the similarity of the strings.

Standard

Boyer-

Moore bad

character

shift

Before Shift:

p -> six plus two

 *

t -> two plus three equals five

After Shift:

p -> six plus two

 *

t -> two plus three equals five

The characters are matched starting at *

and compared in right to the left

manner. The whole pattern shift one by

one along the text to be searched from

left to right. The first only comparison

fails on the ‘r’. No r exists in the

pattern; it can be shifted by 12

characters as shown. The next

comparison begins after shifting and at

the second *.

Standard

Boyer-

Moore

repeated

substring

shift

Before Shift:

p ->two plus two

 *

t -> count to two hundred four

After Shift:

p -> two plus two

 *

t ->count to two hundred four

The characters are matched starting at *

and continues examining characters

from right to left. It fails on second ‘o’

from the text. Since two is a repeated

substring in the pattern, the pattern is

shifted by 9 characters so that the two

of pattern is aligned with the matching

part of the text. The next comparison

begins after shifting and at the second

*.

III. VARIOUS ALGORITHM ANALYSIS TABLE

Algorithm name Comparison

Order

Preprocess time

complexity

Search time

complexity

Main characteristic

Boyer Moore Right to Left O(m+n) O(mn) Use both good suffix shift and bad

character shift

http://en.wikipedia.org/wiki/String_metric
http://en.wikipedia.org/wiki/Edit_distance
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Nucleotide_sequence
http://en.wikipedia.org/wiki/Protein_sequence
http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Preprocessor
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Amortization

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231 – 2307, Volume- 1 Issue- 6, January 2012

220

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D094071411/2012©BEIESP

BM Horspool Not relevant O(m+n) O(mn) Use only bad character shift with

rightmost character

Brute Force Not relevant No preprocessing O(mn) Use one by one character shift. Not an

optimal one

KMP Left to Right O(m) O(m+n) Independent of alphabet size, use the

notion of border of the string, increases

performance, decrease delay and decrease

time of comparing

Quick Search Not relevant O(m+n) O(mn) Use only bad character shift, very fast

Rabin Karp Left to Right O(m) O(mn) Use hashing function, very effective for

multiple pattern matching in 1D matching

Approximate string

matching

Not relevant - O(mn) First matching approximate then

searching dictionary

Needleman Wunsch Left to Right - O(mn) Global alignment of proteins and

nucleotides

Smith Waterman Left to Right - O(mn) Align local sequence in segments of

proteins and nucleotides

IV. APPLICATIONS WITH THEIR OPTIMAL

ALGORITHMS

3.i Text Editor, Digital Library and Search Engine:

Every person uses a text editor and every user of a digital

library or search engine, needs to find patterns in a text. The

Boyer Moore algorithm is directly implemented the search

command of practically all text editors. The longest

common subsequence dynamic programming algorithm is

implemented in system commands that test differences

between files.

3.ii Multimedia and Computational Biology: It has

shown that a much more generalized theoretical basis of

pattern matching could be of tremendous benefit. Pattern

matching has to adapt itself to increasingly broader

definitions of matching. In computational biology one may

be interested in finding a close mutation, in communications

one may want to adjust for transmission noise, in texts it

may be desirable to allow common typing errors. In

multimedia one may want to adjust for loss compressions,

occlusions, scaling, affine transformations or dimension

loss. The largest overlap heuristic for finding the shortest

common superstring has been used in DNA sequencing. The

algorithms that are used in Needleman Wunsch and Smith

Waterman.

3.iii Medical Tests: The BMH algorithm achieves the

best overall results when used with medical tests. This

algorithm usually performs at least twice as fast as the other

algorithms tested. The time performance of exact string

pattern matching can be greatly improved if an efficient

algorithm is used. Considering the growing amount of text

handled in the electronic patient record, it is worth

implementing this efficient algorithm.

3.iv String Prefix Matching Problem: this refers to the

matching the prefixes of the pattern and the text. It also

checks the longest prefix of some given sequence/text. This

occurs at the starting of the patterns. It also includes

preprocessing of the pattern. KMP algorithm and

deterministic sequential comparison model are used to solve

this problem. This can be done by assigning the lower and

the upper bounds of the prefix to be matched.
[1]

3.v Polymorphic String Matching: In this some basic

string matching algorithm are combined to make one or

more efficient algorithms for further computation as in

fusion of the algorithms some functions become easy to

define and some of the time consuming parameters need not

be used.

3.vi

String Matching Algorithms and their Applicability in various Applications

221

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D094071411/2012©BEIESP

3.vii In this data representation technique used is tree.

One example is KMP and Boyer Moore fusion. There

combination completes the task in amortized constant time

and cost is also equal to equality check cost. The quadratic

time is dropped. The features of both the algorithms are

combined and used for producing a better functional

algorithm.
[2]

3.viii Network Intrusion Detection System: This problem

requires exact pattern matching technique. This is open

source IDS snort. It reduces computational time and higher

order of context matching is performed. To solve this Boyer

Moore algorithm is used as it needs exact matching of the

given pattern. To achieve this tree data structure is used in

modified algorithms that convert the bad character shift to

good prefix shift and resulting in far better performance.
[3]

3.ix Denoising of the Pattern: When the text is long it

creates noise in the pattern. To remove these denoise

technique i.e. DUDE algorithm is used for this. It comprises

of simple string matching technique with radix sort for

getting a noise free sequence. It has 2 passes: 1
st
 collects the

empirical probability distribution and observe the noise

pattern within the double sided window and in 2
nd

 pass those

noise patterns are replaced by denoise pattern/sequence.
[4]

3.x Approximate Similarity Measure: This algorithm is

used in real world applications. This is for finite length

strings. It searches the optimal alignment for pattern

searching. It is far-far better than the any other algorithms.

In the previous similarity measure algorithm the variations

in the pattern decreases but now in the new proposed

algorithm the numbers of the comparisons are reduced. This

is done by picking only those strings from the database

whose lengths are either equal or greater than the pattern to

be matched. Time variation depend on the length of query

string, L and number of strings in the database of the length

U where (L-L/2) <=U<= (L+L/2).
[5]

3.xi Retrieving Music Pattern from Musical Database:

When musical note from musical database are to be

retrieved then we need string matching. There are four

similar techniques for this: edit distance, dice similarity,

jaccard similarity and cosine similarity. The musical notes

are retrieved by QBE (query by example) approach. So the

best scheme for this problem is Levenshtein distance with

jaccard similarity. This is an approximate music search

technique. As the jaccard similarity performs excellent in

passing a query when a pitch change scenario is selected.
[6]

3.xii String Matching through Two Dimensional

Meshes: This is the optimal time algorithm that is used for

computational biology, cellular automata. It reduces time

spent on the comparisons in string matching by using mesh

or 2D matrix. Data partition technique is used here. The

process is as find the occurrences of pattern, pattern

preprocessing, text searching, decomposing the pattern

given and finally creating sparse table. The maximum time

will be less than half of the size of the string to be matched.

This is a optimal algorithm for the mesh network structure.
[7]

3.xiii Bioinformatics and Cheminformatics: The string

matching is also used in Bioinformatics and

Cheminformatics. Local data warehouse in which genes,

DNA, proteins and chemists information is stored is present.

Chemicals are represented by using lines representing

chemical bond between atoms and shaped on 2D structural

formulae known as SMILES representation in the

NMRShiftDB (database for organic structures). Linear

formulae are better read by computer than graphical

structures. Nowadays the string matching problem received

an enormous deal of attention due to its various applications

in computational biology. It include some steps like

searching the antimicrobial structures followed development

of local data warehouse followed by development of user

interface for replying queries and finally checking the

presence of the antimicrobial structures in the local data

warehouse. The interface tool used is JME editor.
[8]

Fig. Bioinformatics and Chemin-formatics

V. CONCLUSION

In today’s online scenario finding the appropriate

content in minimum time is most important. String

algorithms play a vital role for this. Different groups are

working on software and hardware levels to make pattern

searching faster. By applying various algorithms in various

applications the approximate best algorithm for different

applications is determined. The recommended algorithms

give the reduced complexity and also reduced computation

time. The algorithms assigned to various applications may

not be best optimal algorithm but better than the general

algorithms. Rather than applying each algorithm to every

application one application is explained with particular

optimal algorithm. And it has been noted that most

applications uses Boyer Moore, BMH or KMP algorithms

for their effective and efficient functionality and other

applications uses

NMRShiftDB

Local Database Similar matching using

Quick search algorithm

Structure query using

JME interface

Conversion to SMILES

format with tool

Details of the structure

searched

Mine Antimicrobial

SMILES format

Compare SMILES format

to Local Database

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231 – 2307, Volume- 1 Issue- 6, January 2012

222

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D094071411/2012©BEIESP

the basics of these algorithms for their functionalities as

the KMP algorithm has less time complexity and Boyer

Moore and BMH algorithms has preprocessing time

complexity less. Other algorithms depends upon the type of

input and is efficient for certain or particular application.

REFERENCES

1. Dany Breslauer, Livio Colussi and Laura Toniolo, ‘Tight Comparison

Bounds for the String Prefix Matching Problem’, Stiching
Mathematisch Centrum, Amsterdam, 1-9, 1992.

2. Richard S. Bird, ‘Polymorphic String Matching’, 110-115, Haskell’05

2005, Tallin, Estonia.
3. C. Jason Coit, Stuart Staniford and Joseph McAlerney, ‘Towards

Faster String Matching for Intrusion Detection or Exceeding the

Speed of Snort’, 1-7.
4. S. Chen, S. Diggavi, S. Dusad and S. Muthukrishnan, ‘Efficient String

Matching Algorithms for Combinatorial Universal Denoising’,1-10.

5. Narendra Kumar, Vimal Bibhu, Mohammad Islam and Shashank
Bhardwaj, ‘Approximate string matching Algorithm’, International

Journal on Computer Science and Engineering, Vol. 02, No. 03, 2010,
641-644.

6. Yu-lung Lo Chien-Chi Huang, ‘Fault Tolerant Music Retrieval by

similar String Matching’, National Science Council of ROC Grant
NSC98-2221-E-324-027,1-10.

7. S. Viswanadha Raju and A. Vinayababu. ‘Optimal Parallel algorithm

for String Matching on Mesh Network Structure’, International
Journal of Applied Mathematical Sciences ISSN 0973-0176 Vol.3

No.2 2006, 167-175.

8. Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed,
Rosma Ahmad, and Wahidah Hussin, ‘Application of Exact String

Matching Algorithms towards SMILES Representation of Chemical

Structure’, World Academy of Science, Engineering and Technology
34 2007,36-40.

9. Venkata Padmavati Metta, Kamala Kritivasan, Deepak Garg, "On

String Languages Generated by SN P Systems with Anti-Spikes",
International Journal of Foundations in Computer Science, World

Scientific May 2011.

10. www.cs.biu.ac.il.

11. Venkatesan T. Chakaravarthy, Rajasekar Krishnamurthy, ‘The

Problem of Context Sensitive String Matching’, 1-12.

AUTHORS PROFILE

Nimisha Singla has received her Bachelor of Technology in Computer
Science & Engineering from Punjab Technical University, Jalandhar, India.

She is pursuing her Master in Engineering in Computer Science &
Engineering from Thapar University, Patiala, India. She is Secretary of

Student Chapter of Technical Society viz. Association for Computing

Machinery (ACM). Her main research interests include: String matching
problems.

Dr.Deepak Garg is Chair ACM SIGACT North India and Secretary of
IEEE Computer Society, Delhi Section. He is senior member of IEEE and

senior member of ACM. He is Life Member of CSI, IETE, ISCA and ISTE.

He has undertaken research projects funded of Indian Govt. He is on
various advisory boards and technical committees of International

workshops and conferences. He is a certified on various technologies. He is

guiding many MTech and PhD students. His active area of research is
advance algorithm design and theory of computer science. He has more

than 80 Publications in International Journal and Conferences of Repute.

He is Faculty at Computer Science and Engineering Department at Thapar
University, Patiala.

