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Abstract- The Indian railway network has  a high traffic 

density with Vijayawada a s  i ts  g r a v i t y  c e n t e r . The 

s t a r -shape of the network   implies heavily loaded 

bifurcations in which knock-on delays are likely to occur. 

Knock-on d e la ys  should b e  minimized to improve th e  total  

punctuality in the netwo rk . Based o n  experience, t h e  most  

c r i t i c a l  j u n c t i o n s  in the traffic flow are known, but 

others mig ht  be hidden.  To reveal the hidden patterns of 

trains passing d e l a y s  t o  e a c h  o t h e r , we study, adapt and 

apply the state-of-the-art techniques for mining frequent 

episodes to this specific problem. 

 

Keywords: Train delays, Data Analysis, Pattern mining, 

frequent itemsets, Hidden trains. 

I. INTRODUCTION 

The Indian railway network, as shown in Figure 1, is 

very complex because of the numerous bifurcations and 

stations at relatively short distances. It belongs to the 

group of the most dense railway networks. Moreover, its 

star-shaped structure creates a huge bottleneck in its 

center, Vijayawada, as approximately 40% of the daily 

Indian trains pass through the Vijayawada North-South 

junction. 

       During the past three years, the punctuality of the Indian 

trains has gradually decreased towards a worrisome level. 

Meanwhile, the number of passengers, and therefore also the 

number of trains necessary to transport those passengers, has 

increased. Even though the infrastructure capacity is also 

slightly increasing by doubling the number of tracks on the 

main lines around Vijayawada, the punctuality is still 

decreasing.  To solve the decreasing  punctuality problem,  

its main causes should  be discovered,  but  because  of the  

complexity  of the  network,  it is hard to trace  their  true  

origin. It may happen that a structural delay in a particular 

part of the network seems to be caused by busy traffic, 

although in reality this might be caused by a traffic operator 

in a seemingly unrelated place, who makes a bad decision 

every day, unaware of the consequences of his decision. 
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 We study the application of data mining techniques in 

order to discover related train delays in this data.  Whereas, 

Flier et al. [1] try to discover patterns underlying 

dependencies of the delays, this paper considers the patterns 

in the delays themselves but we search for patterns in the 

delays themselves.  Mirabadi and Sharafian [5] use 

association mining to analyze the causes in accident data 

sets, whereas we consider the so called frequent pattern 

mining methods. Prototypical examples of these methods 

can be found in a supermarket retail setting, where the 

marketer is interested in all sets of products being bought 

together by customers. A well known result being 

discovered by a retail store in the early days of frequent 

pattern mining is that “70% of all customers who buy 

computer also buy software”. Such patterns could then be 

used for targeted advertising, product placement, or other 

cross-selling studies.  In general, the identification of sets of 

items, products, symptoms, characteristics, and so forth that 

often occur together in the given database can be seen as one 

of the most basic tasks in Data Mining [7, 3]. 

        

 

       Fig.1 the Indian Railway Network 

Here we use a database of containing the times of trains 

passing through characteristic points in the railway network 
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is being used. In order to discover hidden patterns of trains 

passing delays to each other, our first goal is to find 

frequently occurring sets of train delays. More specifically, 

we try to find all delays that frequently occur within a 

certain time window, counted over several days or months 

of data [5]. In this study, we take into account the train 

(departure) delays larger than or equal to 3 or 6 minutes. For 

example, we consider patterns such as: Trains A, B, and C, 

with C departing before A and B, are often delayed at a 

specific location, approximately at the same time. 

Computing such patterns, however, is intractable in practice 

[4] as the number of such potentially interesting patterns 

grows exponentially with the number of trains. Fortunately, 

efficient pattern mining techniques have recently been 

developed, making the discovery of such patterns possible. 

A remaining challenge is still to distinguish the interesting 

patterns from the irrelevant ones. Typically a frequent 

pattern mining algorithm will find an enormous amount of 

patterns amongst which many can be ruled out by 

irrelevance. For example, two local trains which have no 

common characteristic points in their route could, however 

appear as a pattern if they are both frequently delayed, and 

their common occurrence can be explained already by 

statistical independence. In the next Section, we explain the 

studied pattern mining techniques. In Section 3, we discuss 

the collected data at characteristic points and report on 

preliminary experiments, showing promising results, and we 

conclude the paper with suggestions for future work. 

II. PATTERN MINING 

A.  Item sets 

    The simplest possible patterns are itemsets [7]. 

Typically, we look for items (or events) that often occur 

together, where the user, by setting a frequency threshold, 

decides what is meant by „often‟. 

     Formally, let I = {x1, x2.  . . xn} be a set of items. A set 

X I is called an itemset. The database D consists of a 

set of transactions, where each transaction is of the form 

(t, X) where t is a unique transaction identifier, and X is an 

itemset. itemset.Given a database D, the support of an item 

set Y  in D is defined as the number of transactions in D 

that contain Y , or 

          Sup(Y, D) = | {t|( (t , X)Є D and Y X }|. 

Y is said to be frequent in D if sup(Y, D) ≥ minsup, where 

minsup is a user defined minimum support threshold 

(often referred to as the frequency threshold).Support has a 

very interesting property - it is downward-closed. This 

means that the support of an itemset is always smaller than 

or equal to the support of any of its subsets. This 

observation is crucial for many frequent pattern 

algorithms, and can also be used to reduce the output size 

by leaving out everything that can be deduced from the 

patterns left in the output. 

 

A typical transaction database can be seen in Table.1 

TID Items Bought 

TID           Items Bought 

1 

2 

3 

4 

 {monitor,keyboard,mouse} 

 {mobile,battery,charger} 

 { computer, software, mouse} 

 {Milk, Diapers, Bread, Butter} 

1 

2 

3 

4 

{Bread, Butter, Milk} 

{Bread, Butter, Cookies} 

{Beer, Bread, Diapers} 

{Milk, Diapers, Bread, Butter} 

[Table-1] 

As can be seen in Table 2 the database does not consist of 

transactions of this type.  

                  In order to mine frequent itemsets in the 

traditional way, the database would need to be 

transformed. Therefore a transaction database can be 

created, in which each transaction consists of train IDs of 

trains that were late within a given period of time. Table 3 

shows a part of the data from Table 2 transformed into a 

transaction database with each transaction consisting of 

trains delayed within a period of five minutes. Each 

transaction represents one such period. Mining frequent 

itemsets would then result in obtaining sets of train IDs 

that are often late „together‟. 

 

Table 2: A simplified example of a train delay database. 

 

 

 

 

 

In the example given in Table 3, assuming a support 

threshold of 2, the frequent itemsets are  

{A}, {B}, {C}, {A, B} and {B, C} 

Table 3: Transformed version of an extract of the data in Table 2. 

 

TID Delayed 

 trains 

. . . 

06:00 15/02/2011 - 06:04 15/08/2011 

06:01 15/02/2011 - 06:05 15/08/2011 

06:02 15/02/2011 - 06:06 15/08/2011 

06:03 15/02/2011 - 06:07 15/08/2011 

06:04 15/02/2011 - 06:08 15/08/2011 

06:05 15/02/2011 - 06:09 15/08/2011 

06:06 15/02/2011 - 06:10 15/08/2011 

06:07 15/02/2011 - 06:11 15/08/2011 

06:08 15/02/2011 - 06:12 15/08/2011 

06:09 15/02/2011 - 06:13 15/08/2011 

06:10 15/02/2011 - 06:14 15/08/2011 

. . . 

 
{ } 

{A} 

{A} 

{A,B} 

{A,B} 

{A,B,C} 

{B,C} 

{B,C} 

{C} 

{C} 

{ } 

 

Time stamp Train ID 

. . . 

06:05 15/08/2011 

06:07 15/08/2011 

06:09 15/08/2011 

06:35 15/08/2011 

. . . 

 

    A 

    B 

    C 

    D 
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     Table 3 illustrates why the frequent itemset method is 

not the most intuitive to tackle our problem. First of all, it 

requires a lot of preprocessing work in order to transform 

the data into the necessary format. Second, the 

transformation results in a dataset full of redundant 

information, as there are many empty or identical 

transactions.  This problem is further multiplied when we 

refine our time units to seconds instead of minutes. Finally, 

as will be shown later, itemsets are quite limited and other 

methods allow us to find much better patterns. 

B. Temporal Pattern 

         An episode is a temporal pattern that can be 

represented as a directed acyclic graph, or DAG. In such a 

graph, each node represents an event (an item, or a symbol), 

and each directed edge from event x to event y implies that x 

must take place before y. Clearly, if such a graph contained 

cycles, this would be contradictory, and could never occur 

in a database. Note that both itemsets and sequences can be 

represented as DAGs.  An itemset is simply a DAG with no 

edges (events can then occur in any order), and a sequence 

is a DAG where the events are fullyordered (for example, a 

sequence s1 s2  ... sk corresponds to graph (s1→ s2→·· 

sk)).However, we can now find more general patterns, such 

as the one given in Figure 2. The pattern depicted here tells 

us that A always occurs before B and C, while B and C both 

occur before D, but the order in which B and C occur may 

vary. 
                                   B  

 

 

          

                     A           C            D 

        Fig. 2.A general temporal pattern 

C.  Closed pattern 

         Another problem that we have already touched upon 

is the size of the output. Often, much of the output can be 

left out, as a lot of patterns can be inferred from a certain 

smaller set of patterns.  We have already mentioned that for 

each discovered frequent pattern (in our case, episode), we 

also know that all its sub patterns must be frequent. 

However, should we leave out all these sub episodes, the 

only thing we would know about them is that they are 

frequent, but we would be unable to tell how frequent. If we 

wish to rank episodes, and we do, we cannot remove any 

information about the frequency from the output. 

      Another way to reduce output is to generate only 

closed patterns [7].  In general, a pattern is considered 

closed, if it has no super pattern with the same support. This 

holds for episodes, too. 

      As an example, consider a sequence of delayed trains 

ABC X Y Z ABC.  Assume the time stamps to be 

consecutive.  Given a sliding window of size 3 minutes, and 

a support threshold of 2, we find that the episode (A→B→C 

), meaning that train A is delayed before B, and B before C, 

has frequency 2, but so do all its sub episodes of size 3, such 

as(A→ B, C ), (A, B→ C ) or (A, B, C ).These episodes can 

thus safely be left out of the output, without any loss of 

information.Thus, if episode (A→B) is in the output, and 

episode (A, B) is not, we can safely conclude that the 

support of episode (A, B) is equal to the support of episode 

(A→B) Furthermore, we can conclude that if these two 

trains are both late,  then A will always depart/arrive first.  

If, however, episode (A, B) can be found in the output, and 

neither (A→B) nor (B→A) are frequent, we can conclude 

that these two trains are often late together, but not 

necessarily in any particular order. If both (A, B) and 

(A→B) are found in the output, then the support of (A, B) 

must be higher than the support of (A→B), and we can 

conclude that the two trains are often late together, and A 

mostly arrives/departs earlier than B. 

 

III. EXPERIMENTS 

In our experiments we have used the latest 

implementation of an algorithm, CloseEpi, for generating 

closed episodes, as described in [8]. 

A.  Data Pre-processing 

If we look at all data in the database as one long sequence 

of late trains coupled with time stamps, we will find patterns 

consisting of trains that never even cross paths.  

 

 

Fig 3: The schematic station layout of Vijayawada. 

     To avoid this, we generate one long sequence for each 

spatial reference point. In this way, we find trains that are 

late at approximately the same time, in the same place. 

 

B. Example 

      To test the CloseEpi algorithm the decision was made 

to focus on delays at departure of 3 or more minutes and 6 

or more minutes. These choices relate respectively to the 

blocking time and the official threshold for a train in delay. 

     For our experiments, we have chosen a window size of 

30 minutes (or 1800 seconds). Although the support of a 

pattern does not immediately translate into the number of 

days in which it occurs, this can be easily estimated or even 

simply counted in the original dataset. More specifically, the 

lower bound of the number of days the pattern occurs is the 
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support of the pattern divided by 1800, rounding the number 

upwards, and the upper bound is given by the minimum of 

the upper bounds of all its sub-patterns. 

 

       We tested the algorithm on the data collected in 

Vijayawada, a medium-sized station in the south-north of 

India. Vijayawada was chosen as it has an intelligible 

infrastructure, as shown on Figure 3.  The total number of 

trains leaving Vijayawada station in the month of August 

2011 is 241. There are 396 trains with a departure delay at 

Vijayawada of more than 3 minutes and 180 trains have a 

delay at departure which is equal or larger than 6 minutes. 

The delays are mainly situated during peak hours.  Because 

the number of trains with a delay passing through 

Vijayawada is relatively small, the output can be manually 

evaluated. The two lines intersecting at Vijayawada are: line 

89 connecting Rajahmundry with Tenali and line 122 

connecting Repalle-tenali–Gnt-Hyb. The station layout of 

Vijayawada (Figure 3) line 89 is situated horizontally on the 

scheme and line 122 goes diagonally from lower left corner 

to the upper right corner. This intersection creates potential 

conflict situations which add to the station‟s complexity. 

Moreover, the station must also handle many connections, 

which can also cause the transmission of delays. 

      The trains passing through Vijayawada are 

categorized as local trains (numbered as the1 series and the 

18 series), a city rail (22 series) going to and coming from 

Vijayawada, an intercity connection (23 series) with fewer 

stops than a city rail or local train, and the peak hour trains 

(89 series). 

     The output of the ClosEpi algorithm is a rough text file 

of closed episodes with a support larger than the predefined 

threshold. An episode is represented by a graph of size (n, k) 

where n is the number of nodes and k is the number of 

edges.  Note that a graph of size (n, 0) is an itemset. We 

aimed to discover the top 20 episodes of size 1 and 2, and 

the top 5 episodes of size 3 and 4, so we varied the support 

threshold accordingly. In Tables 5–7 some of the episodes 

which were detected in the top 20 most frequently appearing 

patterns are listed. For example, the local train no. 67239 

from Vijayawada to Guntur is discovered as being 3 or more 

minutes late at departure on 15 days, and 6 or more minutes 

on 8 days in the month of January 2011. 

 

Table 5:   Episodes of size (1, 0) representing the delay at 

departure in station Vijayawada during evening peak hour 

(16h – 19h) for January 2011. 

 

 

 

Figure 4: Station layout of Vijayawada 

                     A paired pattern can be a graph of size (2, 

0), meaning the trains appear together but without a specific 

order, or of size (2, 1), where there is an order of appearance 

for the two trains. For example, train no. 67239 and train 

no.12764 appear together as being 3 or more minutes late on 

at least 9 days and at most on 15 days in January 2011. The 

pattern trains no.12764 and 67239 have a delay at departure 

of 3 or more minutes, and train no.  12764 leaves before 

67239 appears on at least 8 days and at most 15 days in 

January 2011. 

     Among the top 20 patterns with pairs of trains (Table 

6), it can be noticed that the pattern 67239→ 565 was only 

discovered in the search for 6 or more Minutes delay at 

departure. This means that the pattern will also appear while 

searching for 3 or more minutes of delay at departure but the 

support of this pattern is not high enough to appear in the 

top 20 output. The patterns which include lots of 

information are to be found in the output of episodes of size 

3 and up, as can be seen in Tables 6 and 7.  But to discover 

the episodes of sizes (3, k) and (4, k) the threshold had to be 

lowered to 5500 which corresponds to a minimal appearance 

of the pattern on 4 days.  The question remains if this really 

is an interesting pattern. 

     In the example the peak-hour train no. 12764 often 

departs from the station with a delay of 3 minutes with a 

support of 28800 and a support of 18000 for a delay of 6 

minutes (see Table 5). In real-time the peak-hour train no.  

4266 follows train no.  12764 on the same trajectory, 4 

minutes later.  This can also be detected by looking at the 

occupation of the tracks in Figure 4. It is, therefore, obvious 

that whenever no. 12764 has a delay, the 4266 will also have 

a delay. Trains nos. 67239 and 565 both offer a connection 

to nos. 12764 and 4266. So, if train 12764 has a delay, it 

will be transmitted to trains 67239 and 565. This is also 

stated in Table 7, which shows an episode of size four, 

found by the ClosEpi algorithm, where trains no. 12764, 

67239, 4266, and 565 are all late at departure and 12764 

departs before the other three trains. 

 

 

Tr

ai

n  

I

D 

      Route Sup 

Delay≥3‟  

pport 

Delay≥6

‟ ≥≥6 6‟ 

 

672

39 

 Viujayawada–Guntur 27000 1440

0 
 

127

64 

 Chirala– Vijayawada 28800 1800

0  

426

6 

 Chirala – Tenali 27000 1440

0  

565 

 Repalle-tenali– 

Gnt-Hyb  

2520 1260

0 
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Table 6:   Episodes of size (2, k) representing the delay 

at departure in station Vijayawada during evening peak 

hour (16h – 19h) for January 2011.  

Train  id 

67239 

Relation 
Train  id 

12764 

Delay ≥ 

3‟ 

150

79 

Delay≥6

‟ 

- 67239 ← 12764 13557 - 

67239  4266 18341 - 

67239 ← 4266 12995 - 

67239  565 18828 8888 
67239 → 565 - 5327 

12764 → 4266 18608 9506 

12764  565 18410 1039

1 
12764 → 565 16838 8819 

12764  565 20580 1060

8 12764 → 565 13325 5078 

12764 ← 565 - 5530 

 

       Looking at the data for February 2011 (not included 

here) the pattern described in Table 7 is discovered for 3 or 

more minutes of delay with a support of 12126. In the cases 

of 6 or more minutes delay the pattern is discovered under 

the stronger form 12764 → 4266 →565 → 67239 with a 

support of 4604, meaning that if these trains have a delay at 

departure of 6 or more minutes, peak hour train no. 12769 

departs before no. 4266, which leaves before no. 565, which 

in turn leaves before the local train no. 67239. 

                        

 

Episode                                                   Support    

Train ID          Relation    Train ID   Delay≥3‟   Delay ≥6‟  

______________________________________________     

                               67239        10024   6104 

12764              

                                4266 

                          

                                 565 

Table 7: Episode of size (4, k) representing the delay at 

departure in station Vijayawada during evening peak hour (16h 

– 19h) for January 2011. 

IV. CONCLUSION AND FUTURE ENHANCEMENT 

       There are still many opportunities for improvement, 

however. As we have studied the possibility of applying 

state-of-the-art pattern mining techniques to discover knock-

on train delays in the Indian railway network using a 

database of data ,containing the times of trains passing 

through characteristic points in the network.  Our 

experiments show that the ClosEpi algorithm is useful for 

detecting interesting patterns in the database. For example a 

good visualization of the discovered patterns would 

certainly help in identifying the most interesting patterns in 

the data more easily. Also, next to the support measure, 

other interestingness measures could also be considered. 

Selecting patterns solely based on the support measure still 

hides a lot of potentially interesting patterns, which could be 

found using other criteria.  

In order to avoid finding too many patterns consisting of 

trains that never even cross paths, we only considered trains 

passing in a single spatial reference point. As a result, we 

can not discover knock-on delays over the whole network. 

In order to tackle this problem, the notion of a pattern needs 

to be redefined, but also the interestingness measures or 

other data pre-processing techniques need to be investigated. 
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