
 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-1, Issue-6, January 2012

318

Mining Train Delays by Using Frequent

Itemsets

D.Kishore Babu,

Y.Nagasatish, P.M.Prasuna

Abstract- The Indian railway network has a high traffic

density with Vijayawada a s i ts g r a v i t y c e n t e r . The

s t a r -shape of the network implies heavily loaded

bifurcations in which knock-on delays are likely to occur.

Knock-on d e la ys should b e minimized to improve th e total

punctuality in the netwo rk . Based o n experience, t h e most

c r i t i c a l j u n c t i o n s in the traffic flow are known, but

others mig ht be hidden. To reveal the hidden patterns of

trains passing d e l a y s t o e a c h o t h e r , we study, adapt and

apply the state-of-the-art techniques for mining frequent

episodes to this specific problem.

Keywords: Train delays, Data Analysis, Pattern mining,

frequent itemsets, Hidden trains.

I. INTRODUCTION

The Indian railway network, as shown in Figure 1, is

very complex because of the numerous bifurcations and

stations at relatively short distances. It belongs to the

group of the most dense railway networks. Moreover, its

star-shaped structure creates a huge bottleneck in its

center, Vijayawada, as approximately 40% of the daily

Indian trains pass through the Vijayawada North-South

junction.

 During the past three years, the punctuality of the Indian

trains has gradually decreased towards a worrisome level.

Meanwhile, the number of passengers, and therefore also the

number of trains necessary to transport those passengers, has

increased. Even though the infrastructure capacity is also

slightly increasing by doubling the number of tracks on the

main lines around Vijayawada, the punctuality is still

decreasing. To solve the decreasing punctuality problem,

its main causes should be discovered, but because of the

complexity of the network, it is hard to trace their true

origin. It may happen that a structural delay in a particular

part of the network seems to be caused by busy traffic,

although in reality this might be caused by a traffic operator

in a seemingly unrelated place, who makes a bad decision

every day, unaware of the consequences of his decision.

Manuscript Received on December 28, 2011

D.Kishore Babu, Asst. Professor, Dept. of CSE, BVCITS
Amalapuram, E.G. Dis t , A.P. , Ind ia (e -mai l :

domalak ishore@gmai l .com).
 Y.Nagasatish, Asst. Professor, Dept. of CSE, BVCITS

Amalapuram, E.G. Dis t , A.P. , Ind ia (e -mai l :

nagasa ti shyalla@gmai l .com).

P.M.Prasuna, Professor, Dept. of CSE, BVCITS Amalapuram,
E.G. Dis t , A.P. , Ind ia (e -mai l :

p rasunamanikya@yahoo.com).

 We study the application of data mining techniques in

order to discover related train delays in this data. Whereas,

Flier et al. [1] try to discover patterns underlying

dependencies of the delays, this paper considers the patterns

in the delays themselves but we search for patterns in the

delays themselves. Mirabadi and Sharafian [5] use

association mining to analyze the causes in accident data

sets, whereas we consider the so called frequent pattern

mining methods. Prototypical examples of these methods

can be found in a supermarket retail setting, where the

marketer is interested in all sets of products being bought

together by customers. A well known result being

discovered by a retail store in the early days of frequent

pattern mining is that “70% of all customers who buy

computer also buy software”. Such patterns could then be

used for targeted advertising, product placement, or other

cross-selling studies. In general, the identification of sets of

items, products, symptoms, characteristics, and so forth that

often occur together in the given database can be seen as one

of the most basic tasks in Data Mining [7, 3].

 Fig.1 the Indian Railway Network

Here we use a database of containing the times of trains

passing through characteristic points in the railway network

mailto:domalakishore@gmail.com
mailto:nagasatishyalla@gmail.com
mailto:prasunamanikya@yahoo.com

Mining Train Delays by Using Frequent Itemsets

319

is being used. In order to discover hidden patterns of trains

passing delays to each other, our first goal is to find

frequently occurring sets of train delays. More specifically,

we try to find all delays that frequently occur within a

certain time window, counted over several days or months

of data [5]. In this study, we take into account the train

(departure) delays larger than or equal to 3 or 6 minutes. For

example, we consider patterns such as: Trains A, B, and C,

with C departing before A and B, are often delayed at a

specific location, approximately at the same time.

Computing such patterns, however, is intractable in practice

[4] as the number of such potentially interesting patterns

grows exponentially with the number of trains. Fortunately,

efficient pattern mining techniques have recently been

developed, making the discovery of such patterns possible.

A remaining challenge is still to distinguish the interesting

patterns from the irrelevant ones. Typically a frequent

pattern mining algorithm will find an enormous amount of

patterns amongst which many can be ruled out by

irrelevance. For example, two local trains which have no

common characteristic points in their route could, however

appear as a pattern if they are both frequently delayed, and

their common occurrence can be explained already by

statistical independence. In the next Section, we explain the

studied pattern mining techniques. In Section 3, we discuss

the collected data at characteristic points and report on

preliminary experiments, showing promising results, and we

conclude the paper with suggestions for future work.

II. PATTERN MINING

A. Item sets

 The simplest possible patterns are itemsets [7].

Typically, we look for items (or events) that often occur

together, where the user, by setting a frequency threshold,

decides what is meant by „often‟.

 Formally, let I = {x1, x2. . . xn} be a set of items. A set

X I is called an itemset. The database D consists of a

set of transactions, where each transaction is of the form

(t, X) where t is a unique transaction identifier, and X is an

itemset. itemset.Given a database D, the support of an item

set Y in D is defined as the number of transactions in D

that contain Y , or

 Sup(Y, D) = | {t|((t , X)Є D and Y X }|.

Y is said to be frequent in D if sup(Y, D) ≥ minsup, where

minsup is a user defined minimum support threshold

(often referred to as the frequency threshold).Support has a

very interesting property - it is downward-closed. This

means that the support of an itemset is always smaller than

or equal to the support of any of its subsets. This

observation is crucial for many frequent pattern

algorithms, and can also be used to reduce the output size

by leaving out everything that can be deduced from the

patterns left in the output.

A typical transaction database can be seen in Table.1

TID Items Bought

TID Items Bought

1

2

3

4

 {monitor,keyboard,mouse}

 {mobile,battery,charger}

 { computer, software, mouse}

 {Milk, Diapers, Bread, Butter}

1

2

3

4

{Bread, Butter, Milk}

{Bread, Butter, Cookies}

{Beer, Bread, Diapers}

{Milk, Diapers, Bread, Butter}

[Table-1]

As can be seen in Table 2 the database does not consist of

transactions of this type.

 In order to mine frequent itemsets in the

traditional way, the database would need to be

transformed. Therefore a transaction database can be

created, in which each transaction consists of train IDs of

trains that were late within a given period of time. Table 3

shows a part of the data from Table 2 transformed into a

transaction database with each transaction consisting of

trains delayed within a period of five minutes. Each

transaction represents one such period. Mining frequent

itemsets would then result in obtaining sets of train IDs

that are often late „together‟.

Table 2: A simplified example of a train delay database.

In the example given in Table 3, assuming a support

threshold of 2, the frequent itemsets are

{A}, {B}, {C}, {A, B} and {B, C}

Table 3: Transformed version of an extract of the data in Table 2.

TID Delayed

 trains

. . .

06:00 15/02/2011 - 06:04 15/08/2011

06:01 15/02/2011 - 06:05 15/08/2011

06:02 15/02/2011 - 06:06 15/08/2011

06:03 15/02/2011 - 06:07 15/08/2011

06:04 15/02/2011 - 06:08 15/08/2011

06:05 15/02/2011 - 06:09 15/08/2011

06:06 15/02/2011 - 06:10 15/08/2011

06:07 15/02/2011 - 06:11 15/08/2011

06:08 15/02/2011 - 06:12 15/08/2011

06:09 15/02/2011 - 06:13 15/08/2011

06:10 15/02/2011 - 06:14 15/08/2011

. . .

{ }

{A}

{A}

{A,B}

{A,B}

{A,B,C}

{B,C}

{B,C}

{C}

{C}

{ }

Time stamp Train ID

. . .

06:05 15/08/2011

06:07 15/08/2011

06:09 15/08/2011

06:35 15/08/2011

. . .

 A

 B

 C

 D

Mining Train Delays by Using Frequent Itemsets

320

 Table 3 illustrates why the frequent itemset method is

not the most intuitive to tackle our problem. First of all, it

requires a lot of preprocessing work in order to transform

the data into the necessary format. Second, the

transformation results in a dataset full of redundant

information, as there are many empty or identical

transactions. This problem is further multiplied when we

refine our time units to seconds instead of minutes. Finally,

as will be shown later, itemsets are quite limited and other

methods allow us to find much better patterns.

B. Temporal Pattern

 An episode is a temporal pattern that can be

represented as a directed acyclic graph, or DAG. In such a

graph, each node represents an event (an item, or a symbol),

and each directed edge from event x to event y implies that x

must take place before y. Clearly, if such a graph contained

cycles, this would be contradictory, and could never occur

in a database. Note that both itemsets and sequences can be

represented as DAGs. An itemset is simply a DAG with no

edges (events can then occur in any order), and a sequence

is a DAG where the events are fullyordered (for example, a

sequence s1 s2 ... sk corresponds to graph (s1→ s2→··

sk)).However, we can now find more general patterns, such

as the one given in Figure 2. The pattern depicted here tells

us that A always occurs before B and C, while B and C both

occur before D, but the order in which B and C occur may

vary.
 B

 A C D

 Fig. 2.A general temporal pattern

C. Closed pattern

 Another problem that we have already touched upon

is the size of the output. Often, much of the output can be

left out, as a lot of patterns can be inferred from a certain

smaller set of patterns. We have already mentioned that for

each discovered frequent pattern (in our case, episode), we

also know that all its sub patterns must be frequent.

However, should we leave out all these sub episodes, the

only thing we would know about them is that they are

frequent, but we would be unable to tell how frequent. If we

wish to rank episodes, and we do, we cannot remove any

information about the frequency from the output.

 Another way to reduce output is to generate only

closed patterns [7]. In general, a pattern is considered

closed, if it has no super pattern with the same support. This

holds for episodes, too.

 As an example, consider a sequence of delayed trains

ABC X Y Z ABC. Assume the time stamps to be

consecutive. Given a sliding window of size 3 minutes, and

a support threshold of 2, we find that the episode (A→B→C

), meaning that train A is delayed before B, and B before C,

has frequency 2, but so do all its sub episodes of size 3, such

as(A→ B, C), (A, B→ C) or (A, B, C).These episodes can

thus safely be left out of the output, without any loss of

information.Thus, if episode (A→B) is in the output, and

episode (A, B) is not, we can safely conclude that the

support of episode (A, B) is equal to the support of episode

(A→B) Furthermore, we can conclude that if these two

trains are both late, then A will always depart/arrive first.

If, however, episode (A, B) can be found in the output, and

neither (A→B) nor (B→A) are frequent, we can conclude

that these two trains are often late together, but not

necessarily in any particular order. If both (A, B) and

(A→B) are found in the output, then the support of (A, B)

must be higher than the support of (A→B), and we can

conclude that the two trains are often late together, and A

mostly arrives/departs earlier than B.

III. EXPERIMENTS

In our experiments we have used the latest

implementation of an algorithm, CloseEpi, for generating

closed episodes, as described in [8].

A. Data Pre-processing

If we look at all data in the database as one long sequence

of late trains coupled with time stamps, we will find patterns

consisting of trains that never even cross paths.

Fig 3: The schematic station layout of Vijayawada.

 To avoid this, we generate one long sequence for each

spatial reference point. In this way, we find trains that are

late at approximately the same time, in the same place.

B. Example

 To test the CloseEpi algorithm the decision was made

to focus on delays at departure of 3 or more minutes and 6

or more minutes. These choices relate respectively to the

blocking time and the official threshold for a train in delay.

 For our experiments, we have chosen a window size of

30 minutes (or 1800 seconds). Although the support of a

pattern does not immediately translate into the number of

days in which it occurs, this can be easily estimated or even

simply counted in the original dataset. More specifically, the

lower bound of the number of days the pattern occurs is the

Mining Train Delays by Using Frequent Itemsets

321

support of the pattern divided by 1800, rounding the number

upwards, and the upper bound is given by the minimum of

the upper bounds of all its sub-patterns.

 We tested the algorithm on the data collected in

Vijayawada, a medium-sized station in the south-north of

India. Vijayawada was chosen as it has an intelligible

infrastructure, as shown on Figure 3. The total number of

trains leaving Vijayawada station in the month of August

2011 is 241. There are 396 trains with a departure delay at

Vijayawada of more than 3 minutes and 180 trains have a

delay at departure which is equal or larger than 6 minutes.

The delays are mainly situated during peak hours. Because

the number of trains with a delay passing through

Vijayawada is relatively small, the output can be manually

evaluated. The two lines intersecting at Vijayawada are: line

89 connecting Rajahmundry with Tenali and line 122

connecting Repalle-tenali–Gnt-Hyb. The station layout of

Vijayawada (Figure 3) line 89 is situated horizontally on the

scheme and line 122 goes diagonally from lower left corner

to the upper right corner. This intersection creates potential

conflict situations which add to the station‟s complexity.

Moreover, the station must also handle many connections,

which can also cause the transmission of delays.

 The trains passing through Vijayawada are

categorized as local trains (numbered as the1 series and the

18 series), a city rail (22 series) going to and coming from

Vijayawada, an intercity connection (23 series) with fewer

stops than a city rail or local train, and the peak hour trains

(89 series).

 The output of the ClosEpi algorithm is a rough text file

of closed episodes with a support larger than the predefined

threshold. An episode is represented by a graph of size (n, k)

where n is the number of nodes and k is the number of

edges. Note that a graph of size (n, 0) is an itemset. We

aimed to discover the top 20 episodes of size 1 and 2, and

the top 5 episodes of size 3 and 4, so we varied the support

threshold accordingly. In Tables 5–7 some of the episodes

which were detected in the top 20 most frequently appearing

patterns are listed. For example, the local train no. 67239

from Vijayawada to Guntur is discovered as being 3 or more

minutes late at departure on 15 days, and 6 or more minutes

on 8 days in the month of January 2011.

Table 5: Episodes of size (1, 0) representing the delay at

departure in station Vijayawada during evening peak hour

(16h – 19h) for January 2011.

Figure 4: Station layout of Vijayawada

 A paired pattern can be a graph of size (2,

0), meaning the trains appear together but without a specific

order, or of size (2, 1), where there is an order of appearance

for the two trains. For example, train no. 67239 and train

no.12764 appear together as being 3 or more minutes late on

at least 9 days and at most on 15 days in January 2011. The

pattern trains no.12764 and 67239 have a delay at departure

of 3 or more minutes, and train no. 12764 leaves before

67239 appears on at least 8 days and at most 15 days in

January 2011.

 Among the top 20 patterns with pairs of trains (Table

6), it can be noticed that the pattern 67239→ 565 was only

discovered in the search for 6 or more Minutes delay at

departure. This means that the pattern will also appear while

searching for 3 or more minutes of delay at departure but the

support of this pattern is not high enough to appear in the

top 20 output. The patterns which include lots of

information are to be found in the output of episodes of size

3 and up, as can be seen in Tables 6 and 7. But to discover

the episodes of sizes (3, k) and (4, k) the threshold had to be

lowered to 5500 which corresponds to a minimal appearance

of the pattern on 4 days. The question remains if this really

is an interesting pattern.

 In the example the peak-hour train no. 12764 often

departs from the station with a delay of 3 minutes with a

support of 28800 and a support of 18000 for a delay of 6

minutes (see Table 5). In real-time the peak-hour train no.

4266 follows train no. 12764 on the same trajectory, 4

minutes later. This can also be detected by looking at the

occupation of the tracks in Figure 4. It is, therefore, obvious

that whenever no. 12764 has a delay, the 4266 will also have

a delay. Trains nos. 67239 and 565 both offer a connection

to nos. 12764 and 4266. So, if train 12764 has a delay, it

will be transmitted to trains 67239 and 565. This is also

stated in Table 7, which shows an episode of size four,

found by the ClosEpi algorithm, where trains no. 12764,

67239, 4266, and 565 are all late at departure and 12764

departs before the other three trains.

Tr

ai

n

I

D

 Route Sup

Delay≥3‟

pport

Delay≥6

‟ ≥≥6 6‟

672

39

 Viujayawada–Guntur 27000 1440

0

127

64

 Chirala– Vijayawada 28800 1800

0

426

6

 Chirala – Tenali 27000 1440

0

565

 Repalle-tenali–

Gnt-Hyb

2520 1260

0

Mining Train Delays by Using Frequent Itemsets

322

Table 6: Episodes of size (2, k) representing the delay

at departure in station Vijayawada during evening peak

hour (16h – 19h) for January 2011.

Train id

67239

Relation
Train id

12764

Delay ≥

3‟

150

79

Delay≥6

‟

- 67239 ← 12764 13557 -

67239 4266 18341 -

67239 ← 4266 12995 -

67239 565 18828 8888
67239 → 565 - 5327

12764 → 4266 18608 9506

12764 565 18410 1039

1
12764 → 565 16838 8819

12764 565 20580 1060

8 12764 → 565 13325 5078

12764 ← 565 - 5530

 Looking at the data for February 2011 (not included

here) the pattern described in Table 7 is discovered for 3 or

more minutes of delay with a support of 12126. In the cases

of 6 or more minutes delay the pattern is discovered under

the stronger form 12764 → 4266 →565 → 67239 with a

support of 4604, meaning that if these trains have a delay at

departure of 6 or more minutes, peak hour train no. 12769

departs before no. 4266, which leaves before no. 565, which

in turn leaves before the local train no. 67239.

Episode Support

Train ID Relation Train ID Delay≥3‟ Delay ≥6‟

__

 67239 10024 6104

12764

 4266

 565

Table 7: Episode of size (4, k) representing the delay at

departure in station Vijayawada during evening peak hour (16h

– 19h) for January 2011.

IV. CONCLUSION AND FUTURE ENHANCEMENT

 There are still many opportunities for improvement,

however. As we have studied the possibility of applying

state-of-the-art pattern mining techniques to discover knock-

on train delays in the Indian railway network using a

database of data ,containing the times of trains passing

through characteristic points in the network. Our

experiments show that the ClosEpi algorithm is useful for

detecting interesting patterns in the database. For example a

good visualization of the discovered patterns would

certainly help in identifying the most interesting patterns in

the data more easily. Also, next to the support measure,

other interestingness measures could also be considered.

Selecting patterns solely based on the support measure still

hides a lot of potentially interesting patterns, which could be

found using other criteria.

In order to avoid finding too many patterns consisting of

trains that never even cross paths, we only considered trains

passing in a single spatial reference point. As a result, we

can not discover knock-on delays over the whole network.

In order to tackle this problem, the notion of a pattern needs

to be redefined, but also the interestingness measures or

other data pre-processing techniques need to be investigated.

REFERENCES

[1] Flier, H., Gelashivili, R., Graffagnino, T., and Nunkesser, M.,
“Mining Railway Delay Dependencies in Large-Scale Real-World

Delay Data”, Robust and Online Large- Scale Optimization,
Lecture Notes in Computer Science, vol. 5868, 354–36, 2009.

[2] Agrawal,R.and Srikant,R.,“Mining sequential patterns”, Proc.

of the 11th International Conference on Data Engineering, vol. 0,
3–14, 1995.

[3] Goethe‟s,B.,“Frequent Set Mining”, The Data Mining and
Knowledge Discovery Handbook, chap. 17, 377–397, Springer,

2005.

[4] Gunopulis, D., Khardon, R., Labbuka, H., Saluja, S., Toivonen,
H., and Sharma, R.S., “Discovering all most specific sentences”,

ACM Transactions on Database Systems, vol. 28(2), pp. 140–
174, 2003.

[5] Mirabadi, A. and Sharifian, S., “Application of Association

rules in Iranian Railways (RAI) accident data analysis”, Safety
Science, vol. 48, 1427–1435, 2010.

[6] Mannila, H., Toivonen, H., and Verkamo, A.I., “Discovery of
Frequent Episodes in Event Sequences”, Data Mining and

Knowledge Discovery, vol. 1, 259–298, 1997.

[7] Tan, P.-N., Steinbach, M., and Kumar. Introduction to Data
Mining, Pearson Addi- son Wesley, 2006.

[8] Tatti, N., and Cule, B., “Mining Closed Strict Episodes”, Proc.
of the IEEE International Conference on Data Mining, 2010.

[9] Wang, J. T.-L., Chirn, G.-W., Marr, T.G., Shapiro, B., Shasha,

D., and Zhang, K., “Combinatorial pattern discovery for scientific
data: some preliminary results”, ACM SIGMOD Record, vol. 23,

115–125, 1994.
[10]Data Mining Concepts and Techniques - J.Han & amp; M.Kamber.

ptpg_sit_2005.

Mining Train Delays by Using Frequent Itemsets

323

AUTHORS PROFILE

C. Kishore Babu M.E. in Computer

Science Engineering from

Sathyabama University, Chennai. He

is presently working as an Assistant

Professor in Computer Science

Department at BVC Institute of

Science & Technology amalapuram.

He has completed his B.Tech Degree

in Information Technology from

JNTU Hyderabad. His Research interest includes Data

Mining, Computer Network, Multimedia and Application

Development.

 Y. Naga Satish M.E. in Computer Science

Engineering from Sathyabama University,

Chennai. He is presently working as an

Assistant Professor in computer science

Department at BVC Institute of Science &

Technology amalapuram. He has completed

his B.Tech Degree in computer science from

JNTU Hyderabad. His Research interest

includes Data Mining, Artificial Intelligence

and Neural Network.

 Prof. P.M.Prasuna working as Professor

& Head, Department of CSE & CSIT. She

received her M.Tech degree from JNTU

Hyderabad and B.Tech degree from JNTU

Kakinada. She is a life member of ISTE and

member of Computer Society of India. She

received the award of Best Teacher in 2009

by JNTU Kakinada. She is pursuing her

Ph.D in data mining.

