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 

Abstract— Lossless compression of a sequence of symbols is 

important in Information theory as well as today’s IT field. 

Huffman coding is lossless and is most widely used. However, 

Huffman coding has some limitations depending on the stream of 

symbols appearing in a file. In fact, Huffman coding generates a 

code with very few bits for a symbol that has a very high 

probability of occurrence and a larger number of bits for a symbol 

with a low probability of occurrence [1]. In this paper, we present 

a novel technique that subdivides the original symbol sequence 

into two or more subsequences. We then apply Huffman coding on 

each of the subsequences. This proposed scheme gives 

approximately 10-20% better compression in comparison with that 

of straightforward usage of Huffman coding. 

Index Terms— Huffman decoding, Table lookup 

I. INTRODUCTION 

Huffman codes [1] have been widely used for source coding 

and have shown high efficiency in exploiting the 

sourceredundancy. Huffman codes along with run-length 

codeshave been widely used in most international 

multimediastandards (e.g., MPEG and ISO standards [5], 

[7]).Huffman decoding can be implemented with a 

lookup-table(LUT) [2] or multiple lookup-tables [3]. If a 

single LUT isused, the decoder throughput can be one 

codeword per cyclewhereas the throughput for multiple 

lookup tables is notdeterministic and in the worst case it 

equals the number of lookup tables (assuming each LUT is 

processed in a single cycle). The single LUT approach is 

usually adopted in high efficiency Huffman decoder while 

the multiple LUTs approach is usually used in low-power 

systems.In this work, we propose a novel LUT-based 

approach for Huffman decoding. The decoder has an LUT for 

a set of prefix templates for the table codewords. Each prefix 

template is associated with a direct access table for the 

children codewords. During decoding, the input bits after the 

prefix template are used to directly address the associated 

codeword table to retrieve the correct codeword and its 

length. We propose a novel approach for designing the prefix 

templates which depends on a generic optimization criterion 

that can be adjusted to the system. We propose different 

criteria that can be employed in typical systems. 
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II. DECODING PROCEDURE 

2.1. Background  

Any Huffman code can be represented by a non-balanced 

binary tree. The tree leaves represent the codewords of the 

code. Any codeword has three attributes: the length, the 

value, and the corresponding source symbol. An example of a 

Huffman table of size 8 is shown in table 1 and the 

corresponding tree representation is shown in Fig. 1. The 

value of each internal node in Fig. 1 is the sum of its children 

values and it is a measure of the internal node probability. 

 

Table 1. Example of Huffman Table of size 8. 

Symbol Codeword Length Symbol Codeword Length 

1 00111 5 5  3 

2 00110 5 6  3 

3 0010 4 7  2 

4 011 3 8  2 

 

       
Figure 1. Huffman Tree of the code in table 1 

 

In general, the length of each codeword in the Huffman 

tableis inversely proportional to the probability of the 

corresponding source symbol.In our implementation, we use 

a set of prefix templates that represent some internal nodes in 

the Huffman tree. Each prefix template is parameterized by 

three attributes: 1. length (L): the length of the prefix value 

 2. value (V): the bit value of this prefix 

3. Maximum child length (M): the maximum length of the 

template children codewords. For example, the internal node 

with label 12 in the Huffmantree of Fig. 1, has the following 

attributes: L = 2, V = “00”  

M = 5 (which is equivalent to codewords 1 and 2). The choice 

of the prefix templates is discussed in section 4. 
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2.2. Decoder structure 

Each prefix template is associated with a sub-table that 

contains all children codewords. The size of the sub-table is 

2M−L, where M and L are the attributes of the prefix template 

as defined earlier. The indexing within the sub-table is done 

using the last M-L bits of the input word that follow the L bits 

of the prefix template. The sub-table is filled with the 

children codewords of the templates with possible repetition 

of certain codewords. For example, if the node with 

frequency 12 in the Huffman Tree of Fig. 1 is selected as a 

prefix template, then the size of its sub-table will be 8 and it is 

organized as: 

Table 2. Memory map of the sub-table example 
Sub-table 
Address 

No. of 
symbols 

Sub-table 
Address 

No. of 
symbols 

000 6 100 3 

001 6 101 3 

010 6 110 2 

011 6 111 1 

 

In this example we have only four codewords while the  

overall memory is eight, i.e., we have a redundancy factor of 

two. This redundancy is minimized by proper choice of the 

prefix templates as will be discussed in section 4. Note that, 

each symbol in the prefix sub-table has two attributes: the 

value of the corresponding source symbol and the codeword 

length. The prefix templates are chosen such that, no template 

is a prefix of another template. Therefore when we match the 

input bitstream with the prefix templates, one and only one 

template will be matched. This is also a design criterion that 
 

2.3. Decoding Procedure 

The decoding process consists of three basic steps: 

1. Matching the prefix templates 

2. Getting the codeword symbol from the sub-table of the 

selected prefix template using the bits that follow the 

template for indexing within the sub-table. 

3. Progressing in the input bitstream by a number of bits 

equals the codeword length to decode the following symbol. 

 

In step 1, to match a certain prefix template of attributes 

(L,V,M), the first L bits of the bitstream should equal V. Two 

attributes are associated with each prefix template, which are, 

the number of indexing bits in its subtable, and the starting 

address of its subtable. The overall decoding procedure is 

illustrated in Fig. 2. 
 

 
Figure 2: Huffman decoding procedure. 

 

 

 

The input module is responsible for aligning the input 

bitstream so that decoding starts at the correct word 

boundary. The alignment is controlled by the length of the 

last decoded codeword. The alignment procedure is similar to 

previous algorithms (e.g., [2], [4]). The input to the prefix 

LUT module has a length Lmax which is the maximum  

template length. The inputs to the sub-table index generator 

are the attributes L and M−L of the matched template and 

Mmax bits of the input bitstream which is the maximum 

codeword length in the Huffman table. The output is the M−L 

bits from the bit stream starting from the (L+1)st bit. The 

prefix LUT module is the most energy-demanding module in 

the decoder. The objective of this work is to propose efficient 

implementation of this module as will be discussed in the 

following two sections.Equations. 

III. PREFIX LUT IMPLEMENTATION 

The prefix LUT module can be implemented in different 

ways that depend on the structure of the Huffman table and 

the target application. 

The first choice is to use a programmable logic array (PLA) 

as suggested in [4]. The cost of the PLA is proportional to the 

number of templates which is significantly less than the size 

of the Huffman table (which is used in [4]). In this case, the  

refix template matching can be performed in a single cycle 

regardless of the matched template. 

The second choice is to use a single comparator for matching 

the prefix templates one at a time. This would require a 

number of registers equals the number of templates. To 

minimize the matching time, the templates are arranged in 

descending order according to their probabilities. The 

template probability equals the sum of the probabilities of all 

its children (assuming source symbols are independent). In 

Huffman codes the probability of each source symbol is 

inversely proportional to the length of the corresponding 

codeword. Therefore the probability of each template is 

inversely proportional to the sum of the lengths of its children 

codewords. The more accurate probability for each template 

is obtained by scaling all individual probabilities in (1) such 

that they sum to one. In the worst case the number of cycles 

for prefix LUT equals the number of the templates. However, 

the average number of cycles is much less and equals 
 
          M 

 Nav =∑i.p(i)   (1) 

                     i=1 

 

Where p(i) denotes the probability of the ith ordered template 

and M is the number of templates. 

The prefix tree can be converted to a balanced tree where all 

the leaves are in the last tree level. In this case, the template 

matching can be viewed as a binary tree search. At each node 

we perform a binary comparison upon which we decide the 

next child node to investigate. If the number of templates is a 

power of two then we have a complete binary tree. The 

number of cycles needed for template matching equals the 

tree depth if one comparison is performed per cycle. In 

particular, assume we have 16 prefix templates, then we have 

a binary tree of height 4 and 15 internal nodes. Each internal 

node is associated with a reference parameter, or in other 

words a threshold, that is 

compared by the input 

stream, i.e., we need a total 

of 15 thresholds. 
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 We illustrate the previous arguments by an example 

constructed using one of the mp3 Huffman tables code table 

24 [5], which has 256 codewords. After running the prefix 

template construction algorithm to be described in section 4, 

we get the templates listed in table 3. 

 

Table 3. Prefix templates of the mp3 Code Table 24 

templ

ate 

Value 

(binary

) 

Lengt

h 

templ

ate 

Value 

(binary

) 

Lengt

h 

0 000 3 8 01001 5 

1 1000 4 9 101 3 

2 010000 7 10 00101 5 

3 0110 4 11 010001 6 

4 00100 5 12 01011 5 

5 01010 5 13 0111 4 

6 11 2 14 1001 4 

7 0011 4 15 010000

1 

7 

 
The first step to compute the thresholds is to order the prefix 

templates according to their values. For example, in the 

above table the maximum template length is 7, therefore we 

augment each template of length L bits by “7-L” zeros (from 

right).  then we order the augmented templates. After 

ordering, we apply successive refinement to get the 

thresholds. In  particular, we take the eighth codeword as the 

first level threshold, and the fourth and twelfth codewords as 

the second level thresholds and so on. For the above tables, 

the threshold binary tree is as shown in Fig. 3, where each 

internal node is associated with the corresponding threshold. 

The implementation of the search algorithm of the above 

balanced thresholds tree requires four comparators and a set 

of  ultiplexers to decide each comparator reference value. The 

balance tree implementation is also convenient if the 

Huffman decoder is implemented on a general-purpose 

hardware, e.g., a digital signal processor. In this case, the 

templates may be stored in ROM and the comparators are 

replaced by subtraction which is common on all general 

purpose hardware. In this case, we search may be optimized 

by stopping the search if the difference with between the 

input and the reference threshold is zero (because the 

thresholds are themselves valid templates). In this case the 

average matching cycles is: 

 
              D   i 

 Nav =ᵞ∑i∑p(Tj 
(i)) 

                         i=1j=1 

 

Where ᵞ is the number of cycles per comparison, and p(Tj 
(i)) 

is the probability of the jth template at the ith tree level. 

IV. PREFIX TEMPLATES SELECTION 

The proper design of the prefix templates is crucial for the 

overall efficiency of the algorithm. In the following, we 

describe an algorithm for generating a fixed number of 

templates such that a certain objective function is optimized. 

The algorithm is similar to the k-means algorithm for 

constructing the codebooks in vector quantization schemes 

[6]. The inputs to the algorithm are the Huffman table and the 

maximum number of prefix templates N. The output is the 

prefix templates. The algorithm proceeds as follows:  

1. Start with the root node of the Huffman tree and split it to 

its two children, add them to the templates table, and set the 

number of templates to two. 

2. For each node in the templates table compute the objective 

function 

3. Pick the template with the worst value of the objective 

function and split it to its two direct children by padding zero 

and one to the current template value and increase its length 

by one. Then, increase the number of templates by one. 

4. If the number of templates equals N or if the algorithm 

converges, stop. Otherwise go to step 2. 

The algorithm terminates if the objective function reaches a 

global optimal value; otherwise it is terminated when the 

number of templates reaches its maximum. 

The objective function varies according to the system 

requirements and the structure of the prefix template LUT 

module. For example, if the template matching process is 

performed using successive matching, then the objective 

function is to minimize the overall matching cycles in (2) for 

a given limit of the storage space of the sub-tables. Note that, 

the minimum time would be when we have a single template, 

but in this case the sub-table size will be 2Lmax words, where 

Lmax is the maximum codeword length. The objective 

function in this case is to minimize (2) subject to the 

maximum storage limit. At each iteration we compute the 

objective function after splitting each node, and split the node 

that gives minimal increase in the objective function. The 

optimization iteration stops when the overall subtables size is 

below the maximum limit. In some Huffman tables (e.g., in 

JPEG and MPEG-2 video tables), the Huffman tree is very 

sparse away from the main branch (the branch of all ones or 

all zeros), e.g., consider the following Huffman table of size 

16, from the JPEG standard[7] (table K.3 for luminance DC 

coefficients) : 

 

Table 4. Table K.3 for luminance DC coefficients in the 

Symbol  codeword Symbol  codeword 

0 00 6 1110 

1 010 7 11110 

2 011 8 111110 

3 100 9 1111110 

4 101 10 11111110 

5 110 11 11111111 

JPEG Standard 

 

In this case, the prefix templates may be chosen such that it is 

either zero or a string of ones. The template matching 

procedure in this case is reduced to counting the number of 

leading ones (or leading zeros for zero-leading tables). This 

procedure is in general very efficient for Huffman tables used 

in video and image standard. However, in most audio 

standards, minimum variance Huffman tables are frequently 

encountered and these templates will be memory inefficient. 

V. DISCUSSION 

We propose a generic algorithm for universal variable length 

decoding. The algorithm is suited for Huffman tables in  

urrent international multimedia coding standards. However, 

it is general to decode any existing prefix code. The algorithm 

generates a set of prefix templates and associates each 

codeword to one of the 

templates. 
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 The decoding process includes template matching and 

codeword retrieval using direct table access. We proposed an 

efficient algorithm for generating the prefix templates to 

optimize a generic objective function and we gave several 

examples of the algorithms for implementing the template 

matching using hardware and hybrid software/hardware 

approaches. We evaluated the algorithm on a general purpose 

digital signal processor using the objective function of 

minimizing the overall memory requirement. The evaluation 

was on all the Huffman tables of the two most common 

MPEG audio standards, namely, mp3 and AAC. The results 

are summarized in Table 5. The redundancy in this worst case 

is 

1.82; whereas if we use the templates of regular Huffman 

tables (that is all zeros or all ones) the redundancy is 9. 

 

Table 5. Total Storage requirement for the proposed 

 TotalCodewords Algorithms 

required(Words) 

N=16 N=20 

Mp3 1378 2516 2294 

AAC 1362 1692 1672 

 

algorithm with AAC and mp3 audio standards The proposed 

decoding algorithm can be adapted in different ways  

ccording to the underlying application. For fast Huffman 

decoding with regular Huffman tables, the implementation of 

the prefix template matching with counting the number of 

leading ones or zeros is the most appropriate. For fast 

Huffman decoding with minimum variance Huffman tables, 

the prefix LUT using PLA is recommended along with 

minimum sub-table storage. For low-power Huffman 

decoding either the balanced tree template matching or a 

multi-step comparison (using a single comparator) with the 

templates designed to minimize the average number of 

decoding cycles. 
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