
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-6, January 2012

336 Retrieval Number: F0339121611/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication



Abstract— Lossless compression of a sequence of symbols is

important in Information theory as well as today’s IT field.

Huffman coding is lossless and is most widely used. However,

Huffman coding has some limitations depending on the stream of

symbols appearing in a file. In fact, Huffman coding generates a

code with very few bits for a symbol that has a very high

probability of occurrence and a larger number of bits for a symbol

with a low probability of occurrence [1]. In this paper, we present

a novel technique that subdivides the original symbol sequence

into two or more subsequences. We then apply Huffman coding on

each of the subsequences. This proposed scheme gives

approximately 10-20% better compression in comparison with that

of straightforward usage of Huffman coding.

Index Terms— Huffman decoding, Table lookup

I. INTRODUCTION

Huffman codes [1] have been widely used for source coding

and have shown high efficiency in exploiting the

sourceredundancy. Huffman codes along with run-length

codeshave been widely used in most international

multimediastandards (e.g., MPEG and ISO standards [5],

[7]).Huffman decoding can be implemented with a

lookup-table(LUT) [2] or multiple lookup-tables [3]. If a

single LUT isused, the decoder throughput can be one

codeword per cyclewhereas the throughput for multiple

lookup tables is notdeterministic and in the worst case it

equals the number of lookup tables (assuming each LUT is

processed in a single cycle). The single LUT approach is

usually adopted in high efficiency Huffman decoder while

the multiple LUTs approach is usually used in low-power

systems.In this work, we propose a novel LUT-based

approach for Huffman decoding. The decoder has an LUT for

a set of prefix templates for the table codewords. Each prefix

template is associated with a direct access table for the

children codewords. During decoding, the input bits after the

prefix template are used to directly address the associated

codeword table to retrieve the correct codeword and its

length. We propose a novel approach for designing the prefix

templates which depends on a generic optimization criterion

that can be adjusted to the system. We propose different

criteria that can be employed in typical systems.

 Manuscript Details Received on December 29, 2011

K.V.Satyanarayana, ECE Department ,St.Teressa Institute of
Engineering and technology.Vizianagaram,INDIA, email:

raju_satya93900@gmail.com).

B.Bhaskar Rao, HOD , ECE Department ,St.Teressa Institute of
Engineering and technology.Vizianagaram,INDIA email:

bhaskar6278@gmail.com).

II. DECODING PROCEDURE

2.1. Background

Any Huffman code can be represented by a non-balanced

binary tree. The tree leaves represent the codewords of the

code. Any codeword has three attributes: the length, the

value, and the corresponding source symbol. An example of a

Huffman table of size 8 is shown in table 1 and the

corresponding tree representation is shown in Fig. 1. The

value of each internal node in Fig. 1 is the sum of its children

values and it is a measure of the internal node probability.

Table 1. Example of Huffman Table of size 8.

Symbol Codeword Length Symbol Codeword Length

1 00111 5 5 3

2 00110 5 6 3

3 0010 4 7 2

4 011 3 8 2

Figure 1. Huffman Tree of the code in table 1

In general, the length of each codeword in the Huffman

tableis inversely proportional to the probability of the

corresponding source symbol.In our implementation, we use

a set of prefix templates that represent some internal nodes in

the Huffman tree. Each prefix template is parameterized by

three attributes: 1. length (L): the length of the prefix value

 2. value (V): the bit value of this prefix

3. Maximum child length (M): the maximum length of the

template children codewords. For example, the internal node

with label 12 in the Huffmantree of Fig. 1, has the following

attributes: L = 2, V = “00”

M = 5 (which is equivalent to codewords 1 and 2). The choice

of the prefix templates is discussed in section 4.

Implementation Of A New Binary Tree using

Huffman Encoder

K. V. Satyanarayana, B. Bhaskar Rao

Implementation Of A New Binary Tree using Huffman Encoder

337

Retrieval Number: F0339121611/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

2.2. Decoder structure

Each prefix template is associated with a sub-table that

contains all children codewords. The size of the sub-table is

2M−L, where M and L are the attributes of the prefix template

as defined earlier. The indexing within the sub-table is done

using the last M-L bits of the input word that follow the L bits

of the prefix template. The sub-table is filled with the

children codewords of the templates with possible repetition

of certain codewords. For example, if the node with

frequency 12 in the Huffman Tree of Fig. 1 is selected as a

prefix template, then the size of its sub-table will be 8 and it is

organized as:

Table 2. Memory map of the sub-table example
Sub-table
Address

No. of
symbols

Sub-table
Address

No. of
symbols

000 6 100 3

001 6 101 3

010 6 110 2

011 6 111 1

In this example we have only four codewords while the

overall memory is eight, i.e., we have a redundancy factor of

two. This redundancy is minimized by proper choice of the

prefix templates as will be discussed in section 4. Note that,

each symbol in the prefix sub-table has two attributes: the

value of the corresponding source symbol and the codeword

length. The prefix templates are chosen such that, no template

is a prefix of another template. Therefore when we match the

input bitstream with the prefix templates, one and only one

template will be matched. This is also a design criterion that

2.3. Decoding Procedure

The decoding process consists of three basic steps:

1. Matching the prefix templates

2. Getting the codeword symbol from the sub-table of the

selected prefix template using the bits that follow the

template for indexing within the sub-table.

3. Progressing in the input bitstream by a number of bits

equals the codeword length to decode the following symbol.

In step 1, to match a certain prefix template of attributes

(L,V,M), the first L bits of the bitstream should equal V. Two

attributes are associated with each prefix template, which are,

the number of indexing bits in its subtable, and the starting

address of its subtable. The overall decoding procedure is

illustrated in Fig. 2.

Figure 2: Huffman decoding procedure.

The input module is responsible for aligning the input

bitstream so that decoding starts at the correct word

boundary. The alignment is controlled by the length of the

last decoded codeword. The alignment procedure is similar to

previous algorithms (e.g., [2], [4]). The input to the prefix

LUT module has a length Lmax which is the maximum

template length. The inputs to the sub-table index generator

are the attributes L and M−L of the matched template and

Mmax bits of the input bitstream which is the maximum

codeword length in the Huffman table. The output is the M−L

bits from the bit stream starting from the (L+1)st bit. The

prefix LUT module is the most energy-demanding module in

the decoder. The objective of this work is to propose efficient

implementation of this module as will be discussed in the

following two sections.Equations.

III. PREFIX LUT IMPLEMENTATION

The prefix LUT module can be implemented in different

ways that depend on the structure of the Huffman table and

the target application.

The first choice is to use a programmable logic array (PLA)

as suggested in [4]. The cost of the PLA is proportional to the

number of templates which is significantly less than the size

of the Huffman table (which is used in [4]). In this case, the

refix template matching can be performed in a single cycle

regardless of the matched template.

The second choice is to use a single comparator for matching

the prefix templates one at a time. This would require a

number of registers equals the number of templates. To

minimize the matching time, the templates are arranged in

descending order according to their probabilities. The

template probability equals the sum of the probabilities of all

its children (assuming source symbols are independent). In

Huffman codes the probability of each source symbol is

inversely proportional to the length of the corresponding

codeword. Therefore the probability of each template is

inversely proportional to the sum of the lengths of its children

codewords. The more accurate probability for each template

is obtained by scaling all individual probabilities in (1) such

that they sum to one. In the worst case the number of cycles

for prefix LUT equals the number of the templates. However,

the average number of cycles is much less and equals

 M

 Nav =∑i.p(i) (1)

 i=1

Where p(i) denotes the probability of the ith ordered template

and M is the number of templates.

The prefix tree can be converted to a balanced tree where all

the leaves are in the last tree level. In this case, the template

matching can be viewed as a binary tree search. At each node

we perform a binary comparison upon which we decide the

next child node to investigate. If the number of templates is a

power of two then we have a complete binary tree. The

number of cycles needed for template matching equals the

tree depth if one comparison is performed per cycle. In

particular, assume we have 16 prefix templates, then we have

a binary tree of height 4 and 15 internal nodes. Each internal

node is associated with a reference parameter, or in other

words a threshold, that is

compared by the input

stream, i.e., we need a total

of 15 thresholds.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-6, January 2012

338 Retrieval Number: F0339121611/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

 We illustrate the previous arguments by an example

constructed using one of the mp3 Huffman tables code table

24 [5], which has 256 codewords. After running the prefix

template construction algorithm to be described in section 4,

we get the templates listed in table 3.

Table 3. Prefix templates of the mp3 Code Table 24

templ

ate

Value

(binary

)

Lengt

h

templ

ate

Value

(binary

)

Lengt

h

0 000 3 8 01001 5

1 1000 4 9 101 3

2 010000 7 10 00101 5

3 0110 4 11 010001 6

4 00100 5 12 01011 5

5 01010 5 13 0111 4

6 11 2 14 1001 4

7 0011 4 15 010000

1

7

The first step to compute the thresholds is to order the prefix

templates according to their values. For example, in the

above table the maximum template length is 7, therefore we

augment each template of length L bits by “7-L” zeros (from

right). then we order the augmented templates. After

ordering, we apply successive refinement to get the

thresholds. In particular, we take the eighth codeword as the

first level threshold, and the fourth and twelfth codewords as

the second level thresholds and so on. For the above tables,

the threshold binary tree is as shown in Fig. 3, where each

internal node is associated with the corresponding threshold.

The implementation of the search algorithm of the above

balanced thresholds tree requires four comparators and a set

of ultiplexers to decide each comparator reference value. The

balance tree implementation is also convenient if the

Huffman decoder is implemented on a general-purpose

hardware, e.g., a digital signal processor. In this case, the

templates may be stored in ROM and the comparators are

replaced by subtraction which is common on all general

purpose hardware. In this case, we search may be optimized

by stopping the search if the difference with between the

input and the reference threshold is zero (because the

thresholds are themselves valid templates). In this case the

average matching cycles is:

 D i

 Nav =ᵞ∑i∑p(Tj
(i))

 i=1j=1

Where ᵞ is the number of cycles per comparison, and p(Tj
(i))

is the probability of the jth template at the ith tree level.

IV. PREFIX TEMPLATES SELECTION

The proper design of the prefix templates is crucial for the

overall efficiency of the algorithm. In the following, we

describe an algorithm for generating a fixed number of

templates such that a certain objective function is optimized.

The algorithm is similar to the k-means algorithm for

constructing the codebooks in vector quantization schemes

[6]. The inputs to the algorithm are the Huffman table and the

maximum number of prefix templates N. The output is the

prefix templates. The algorithm proceeds as follows:

1. Start with the root node of the Huffman tree and split it to

its two children, add them to the templates table, and set the

number of templates to two.

2. For each node in the templates table compute the objective

function

3. Pick the template with the worst value of the objective

function and split it to its two direct children by padding zero

and one to the current template value and increase its length

by one. Then, increase the number of templates by one.

4. If the number of templates equals N or if the algorithm

converges, stop. Otherwise go to step 2.

The algorithm terminates if the objective function reaches a

global optimal value; otherwise it is terminated when the

number of templates reaches its maximum.

The objective function varies according to the system

requirements and the structure of the prefix template LUT

module. For example, if the template matching process is

performed using successive matching, then the objective

function is to minimize the overall matching cycles in (2) for

a given limit of the storage space of the sub-tables. Note that,

the minimum time would be when we have a single template,

but in this case the sub-table size will be 2Lmax words, where

Lmax is the maximum codeword length. The objective

function in this case is to minimize (2) subject to the

maximum storage limit. At each iteration we compute the

objective function after splitting each node, and split the node

that gives minimal increase in the objective function. The

optimization iteration stops when the overall subtables size is

below the maximum limit. In some Huffman tables (e.g., in

JPEG and MPEG-2 video tables), the Huffman tree is very

sparse away from the main branch (the branch of all ones or

all zeros), e.g., consider the following Huffman table of size

16, from the JPEG standard[7] (table K.3 for luminance DC

coefficients) :

Table 4. Table K.3 for luminance DC coefficients in the

Symbol codeword Symbol codeword

0 00 6 1110

1 010 7 11110

2 011 8 111110

3 100 9 1111110

4 101 10 11111110

5 110 11 11111111

JPEG Standard

In this case, the prefix templates may be chosen such that it is

either zero or a string of ones. The template matching

procedure in this case is reduced to counting the number of

leading ones (or leading zeros for zero-leading tables). This

procedure is in general very efficient for Huffman tables used

in video and image standard. However, in most audio

standards, minimum variance Huffman tables are frequently

encountered and these templates will be memory inefficient.

V. DISCUSSION

We propose a generic algorithm for universal variable length

decoding. The algorithm is suited for Huffman tables in

urrent international multimedia coding standards. However,

it is general to decode any existing prefix code. The algorithm

generates a set of prefix templates and associates each

codeword to one of the

templates.

Implementation Of A New Binary Tree using Huffman Encoder

339

Retrieval Number: F0339121611/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

 The decoding process includes template matching and

codeword retrieval using direct table access. We proposed an

efficient algorithm for generating the prefix templates to

optimize a generic objective function and we gave several

examples of the algorithms for implementing the template

matching using hardware and hybrid software/hardware

approaches. We evaluated the algorithm on a general purpose

digital signal processor using the objective function of

minimizing the overall memory requirement. The evaluation

was on all the Huffman tables of the two most common

MPEG audio standards, namely, mp3 and AAC. The results

are summarized in Table 5. The redundancy in this worst case

is

1.82; whereas if we use the templates of regular Huffman

tables (that is all zeros or all ones) the redundancy is 9.

Table 5. Total Storage requirement for the proposed

 TotalCodewords Algorithms

required(Words)

N=16 N=20

Mp3 1378 2516 2294

AAC 1362 1692 1672

algorithm with AAC and mp3 audio standards The proposed

decoding algorithm can be adapted in different ways

ccording to the underlying application. For fast Huffman

decoding with regular Huffman tables, the implementation of

the prefix template matching with counting the number of

leading ones or zeros is the most appropriate. For fast

Huffman decoding with minimum variance Huffman tables,

the prefix LUT using PLA is recommended along with

minimum sub-table storage. For low-power Huffman

decoding either the balanced tree template matching or a

multi-step comparison (using a single comparator) with the

templates designed to minimize the average number of

decoding cycles.

REFERENCES

1. D. Huffman, “A method for the construction of minimum redundancy

code”, Proc. IRE, vol. 40, pp. 1098-1101, 1952.

2. S. Choi, and M. Lee, “ High Speech Pattern Matching for a Fast
Huffman Decoder”, IEEE Transactions on Consumer Electronics, vol.

41, pp. 97-103, February 1995. [3] S. Cho, T. Xanthopoulos, and A.

Chandrakasan, “A lowpower Variable Length Decoder for MPEG-2
Based on Non uniform Fine-Grain Table Partitioning”, IEEE

Transactions on VLSI systems, vol. 7, no. 2, pp. 249-257, June 1999.

3. S. Lei, and M. Sun, “ An entropy coding system for digital HDTV
applications”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 2, No. 1, pp. 147- 155, March 1991.

4. ISO/iec 11172-3:1993 “Information Technology – coding of Moving
Pictures and associated audio for Digital Storage Media at up to about

1.5 Mbit/s –part 3 : Audio ”

5. A. Gersho, and A. Gray, “Vector Quantization and Signal
Compression”, Kluwer Academic Publications, 1991.

6. CCITT Recommendation T.81, “Digital compression

and coding of continuous-tone still images”, 1992.

AUTHOR’S PROFILE

K.V.Satyanarayana, is pursuing his M.Tech in St. Theressa Institute of

Engineering and Technology under the guidance of Mr. B.Bhaskar Rao,
Assoc. Professor, HOD,Department of ECE. My research interest include

VLSI design and digital signal processing.

Sri. B.Bhaskar Rao, working as Assoc. Professor and Head, Department of

ECE at St. Theressa Institute of Engineering and Technology,Vizianagaram .

His research interest include VLSI design and digital signal processing.

