
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

460

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: A0480032212 /2012©BEIESP

Abstract:- Distributed operating system is nothing but the more

than one CPU are connected with each other, but user can feel it

as virtual uniprocessor. Now as more than one CPU are

connected with each other its obvious that load will be increase.

To compete with this load it is necessary to balance it. So in this

paper I have focus on process migration technique for load

balancing. For that I have describe two algorithms. 1) sender-

initiated algorithm. 2) receiver-initiated algorithm.

Keyword: Distributed operating system, CPU, virtual

uniprocessor, process

I. INTRODUCTION

A. Load Balancing

To understand Load balancing, it is necessary to

understand load. Load may be define as number of tasks are

running in queue, CPU utilization, load average, I/O

utilization, amount of free CPU time/memory, etc., or any

combination of the above indicators. Load balancing can be

done among interconnected workstations in a network or

among individual processors in a parallel machine. Load

balancing is nothing but the allocation of tasks or jobs to

processors to increase overall processor utilization and
throughput.

Actually load balancing is done by process migration.

But to balance the load it is necessary to measure the load of

individual node in network or in a distributed environment.

For calculating node above mentioned factor in a definition

of load are calculated. After calculating the node of

individual, mark the underloaded/free and overloaded/busy

node.

Now to balancing load transfer the process from

overloaded node to underloaded node. In this way load can

be balance in network of work station or in a distributed
environment.

A. Process Migration

 Process migration is the transfer of process from

one node to another node in network of workstations or

nodes. It is very useful mechanism for balancing the load on

distributed system. Load balancing in a distributed system

can be done through transferring a process form heavily

loaded node to lightly loaded node.

There are two types of process migration. (1)

Preemptive Process Migration (2) Non-preemptive Process
migration. Preemptive process transfers [3] involve the

transfer of a process that is partially executed.

Revised Manuscript Received on March 2012.
Vatsal Shah, Post Graduate Student of Computer Engineering, Birla

Vishwakarma Mahavidyalaya, V.V.Nagar, Anand, INDIA, Mobile No.:

+91 94291 59259, vatsalshah95@yahoo.com .

Mr. Viral Kapadia, Asst. Prof at Computer Engineering department,

Birla Vishwakarma Mahavidyalaya, V.V.Nagar, Anand, INDIA, Mobile

No.: +91 94281 65939, vvkapadia@bvmengineering.ac.in .

This transfer is an expensive operation as the collection

of a process’s state (which can be quite large and complex)

can be difficult. Typically, a process state consists of a

virtual memory image, a process control block, unread I/O

buffers and messages, file pointers, timers that have been

set, etc. Non-preemptive process transfers [3], on the other

hand, involve the transfer of processes that have not begun

execution and hence do not require the transfer of the

process’s state. In both types of transfers, information about

the environment in which the process will execute must be

transferred to the receiving node.

II. MECHANISM

Process migration mechanism consists following four steps

[3]:

1) Freezing the process on its source node and restarting it

on its destination node.

2) Transferring the process’s address space from its source

node to its destination node.

3) Forwarding messages meant for the migrant process.

4) Handing communication between cooperating processes

that have been separated (placed on different nodes) as

a result of process migration.
Process migration can be done in homogeneous as well as

heterogeneous environment. First of all we will focus on

homogeneous environment because it is efficient.

For implementing preemptive as well as non-preemptive

process migration there are two type of algorithm [1]:

1) Sender-initiated algorithm

2) Receiver-initiated algorithm

In Sender-initiated algorithm, I have implemented non-

preemptive migration because sender means overloaded

node wants to send(transfer) its process to another node. So
it will directly transfer the newly arrived process rather than

executing process.

While in receiver-initiated algorithm underloaded node

wants to receive a process from another node which is

overloaded. So whenever its requesting to node for process

then overloaded directly transfer its executing process. Thus

I have implemented non-preemptive migration for sender-

initiated algorithm while preemptive migration for receiver-

initiated algorithm. In the following section I have describe

my implementation details for load balancing by process

migration.

Load Balancing by Process Migration in

Distributed Operating System

Vatsal Shah, Viral Kapadia

mailto:vatsalshah95@yahoo.com
mailto:vvkapadia@bvmengineering.ac.in

Load Balancing by Process Migration in Distributed Operating System

361

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: A0480032212 /2012©BEIESP

III. IMPLEMENTATION

A. Calculating CPU Load

I have measured the load at user level. At user level we

can measure system load by reading the information

residing in the /proc file system or using sys-info system call

(/usr/include/sysinfo.h) [1]. I have used both approaches for
measuring the load.

We can use sysinfo system call (include/sysinfo.h) to get the

current load of the CPU.

int sysinfo(struct sysinfo *s).

sysinfo system call gathers the current CPU statistics in

sysinfo structure.

struct sysinfo

{

unsigned long uptime; /*time in jiffies since boot*/

unsigned long totalram; /*total memory*/

unsigned long freeram; /*free memory*/
unsigned long totalswap; /*size of swap area*/

unsigned long freeswap; /*size of free swap area*/

unsigned short procs; /*no of running process*/

unsigned long buffers; /*buffer memory*/

unsigned long cached; /*cached memory*/

………….

…………

 };

Another way to gather the CPU statistics is to read the

/proc/stat file and measure the following factors.

CPU – Total jiffies (1/100ths of a second) that the processor

spent on user, nice, and system processes. Obtain a

percentage of total I/O – Blocks read/written to disk per

second.

Memory – Page operations per second. Example: a virtual

memory page fault requiring a page to be loaded into

memory from disk.

Interrupts – System interrupts per second. Example:

incoming Ethernet packet.

Context Switches – How many times the processor switched

between processes per second.

Determine thresholds for each of these parameter using

Micro Benchmark programs. The function

GetCurrentCPULoad () determines current CPU load.

Determine whether node is busy/free

The function GetCurrentCPULoad () determines current

CPU load.

For each load factor such as number of processes (CPU
queue length), memory usage, swap area usage, etc.,

determine two thresholds: low watermark and high

watermark. Mark the node free if most of the factors are

below low water marks. Mark the node busy if most of the

factors are above the high watermarks. The function

IsCPUBusy () marks the computer as busy/free.

B. Process Migration Policy

Process migration incurs considerable amount of

performance overhead and network traffic. Moreover,

there exist possibilities that some of the message

interactions with migrating process initiated by a

migration underway application may experience a

timeout and thus pose on adverse effect on the semantic

transparency of such an application. Therefore, we need

some policies to guide and justify process migration

decision.

1. When to migrate a process? [2]

We could base this decision on the processor load of the

host machine, and the presence of idle processors in the

distributed system.

2. Which process to select for migration? [2]

We could decide this by estimating the overhead involved

in migrating the process, like the size of the address space

to migrate, the number of connections to break and setup,

the dependence of the process on the host machine for

services or IPC with other host machine processes, etc.

Preemptive migration involves checkpoint/restart of process
image.

3. When to allow remote processes to execute on a

system? [2]

When should a processor send back the remote processes

if the load on that machine increases? Should it just be

based on a threshold or should we migrate back to the

host machine once the remote processor becomes non-

idle due to its own processes.

4. How to migrate a process? [2]

Should we do a total-copy (transfer the whole address

space), or should we do demand fetching of pages in the
address space.

C. Migration Algorithm for Sender-Initiated Algorithm

To achieve this I have created my own shell because we

are not authorized to make changes in in-built shells. I have

assumed homogeneous environment in the distributed

system. For the node communication in the distributed

system, I have used socket programming.

The modified shell is working as follow:

 Shell parses command line argument: To execute any

executable file, when we enter the file name at the shell
prompt, the shell parses the command line argument.

 Shell calls IsCPUBusy (): After parsing the command

line argument, the shell will call IsCPUBusy () to check

whether the host node is underloaded/free or

overloaded/busy.

 Host node is underloaded /free: In this case, the shell

will fork the process and call exec () system call to

execute the process locally.

 Host node is overloaded /busy: If the host node is busy,

the shell will poll other nodes randomly in the

distributed system to determine underloaded/free

remote node.

 Free node is found: If any free node is found in the

distributed system, the newly arrived process is

migrated via socket on this free node. The remote free

node will fork the process and execute the migrated

process.

 Finally, this remote node will send the results back to

the original node.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

362

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: A0480032212 /2012©BEIESP

D. Migration Algorithm for Receiver-Initiated Algorithm

1. Checkpointing the process

After process has been selected for migration we need

to save the process states. The process checkpoint is the

process of saving process state to the file at arbitrary point

of execution.
For process migration we need to save following states

Process’s task_struct

Process’s mm_struct

Process address space (stack, data, code, heap etc)

Open files (regular files, pipes, sockets etc.)

Signals

Current working directory and current root.

a) Process’s task_struct

Each process in Linux has task_struct associated with it.

The information in the task structure are user id, group id,

process priority, process state, process id etc. Save all these
information in checkpoint file.

b) Process’s mm_struct

Each process has memory map structure known as

mm_struct whose address is stored in process’s task_struct

structure. It contains pointer to the page directory, start and

end address of virtual memory areas like heap, stack, data

and code regions. It also contains address of argument

vector and environment vector passed to process. Save all

these information to checkpoint file to reconstruct the

memory map on destination node.

c) Process address space (Process’s virtual memory

areas)

On Linux, each process runs in its own address space

which ranges from 0 to 4GB, but only small part of it is

actually used. Each process has an associated memory map

structure (mm_struct) which contains pointer to the first

virtual memory area (vm_area_struct) in the list of

vm_area_structs. We need to traverse this list to save

process address space.

During the checkpoint we need to access the target

process' address space from the kernel. Common C
functions like strcpy () wouldn't work because pointers in

kernel and user space have completely different meanings.

Instead, the Linux provides a set of helper functions

(copy_from_user (), copy_to_user (), etc) that allow data

transfer between kernel and the current process. But now we

want to access a process's address space that is not the

current one, so we can't use these functions either.

Each process has its own page directory and page tables that

are initialized in a fork and switched to in a context switch.

All the processes have an address space from 0 to 4GB, but

mapped to different physical memory regions due to their
different page structures.

The kernel also has its own page directory and page

tables, but it is special because it just maps the physical

address to itself. For instance, a pointer of 0x00004000 in a

process may actually points to a physical address of

0x01234000, but in the kernel a virtual address is exactly its

physical address. Save the list of vm_area_struct page by

page so that it is easy to recover on destination.

d) Open files

Linux supports several types of files like regular files,
directories, symbolic links, pipes, sockets, block special

files, character special files etc. But I have considered only

regular files. Process refers files by file descriptors. Kernel

refers each file by struct file. I have assumed NFS file

system for my implementation. In NFS, each machine in the

cluster mounts its file system on the NFS server. So we do

not have to explicitly transfer the file contents along with
the checkpoint file. This will reduce the network overhead.

2. Checkpointing Regular File

Since we are using NFS file system. We do not have to save

the contents of the file but we only have to save the

information in the struct files_struct and struct file. The

files_struct contains information like number of open files,

bit map for the open file, files to be closed on exec, array of

pointers to the file objects. For every with an entry in the fd

array, the array index is the file descriptor. A process can

not use more than NR_OPEN file descriptors. The file

object contains information like file object usage counter,
process access mode, current file offset etc. so for each open

file we need to save these information. The function

DumpRegularFile () saves the information like file

descriptor, file open mode, file offset, flags etc. to the

checkpoint file.

3. Restarting the process

Process is reconstructed from the checkpoint file. Ideally,

restarting should be invoked as soon as checkpoint file

reaches to the receiver node. Restart module does the

following things.
Create a new empty process.

Recover task_struct and mm_struct

Recover register set

Recover address space

Recover open files (regular files, pipes and sockets).

a) Recover task_struct and mm_struct

After new process has been forked on the receiver node, the

restart module reads the task structure information like uid,

gid, euid, egid, state etc. to the fields of task_struct of newly

created process. It also reads the information about memory

map from the checkpoint file. RestoreTaskStructure ()
function will restore the information about task_struct from

the checkpoint file. Same way RestoreMMStructure ()

function will restore the information about memory map

(mm_struct).

b) Recover register set

The register set in the checkpoint file is copied in to the

register set of the newly created process. RestoreRegisters ()

function will restore the register set from the checkpoint file.

c) Recover process address space
In checkpoint file, we have saved the process’s virtual

memory areas. So restart module will call mmap () function

to map the contents of virtual memory areas in checkpoint

file to the process address space. We will recover all the

regions of process like code, data, heap, stack etc.

RestoreVMAreas () function will restore the virtual

memory areas of process from the checkpoint file.

Load Balancing by Process Migration in Distributed Operating System

363

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: A0480032212 /2012©BEIESP

d) Recover open(Regular) files

Since we are using NFS file system, we do not save the

contents of the file at the time of migration. The restart

module reopens the file with same file descriptors. For each

open file, it will restore the file permission mode, flags, file

offset etc. So the process can continue with file operations
after restart on new node. RestoreOpenFiles () function will

restore the information about open files.

E. Algorithm

 Shell parses command line argument: To execute any

executable file, when we enter the file name at the shell

prompt, the shell parses the command line argument.

 Shell calls IsCPUBusy (): After parsing the command

line argument, the shell will call IsCPUBusy () to check

whether the host node is underloaded/free or

overloaded/busy.

 Host node is overloaded /busy: In this case, the shell

will fork the process and call exec () system call to

execute the process locally.

 Host node is underloaded /free: If the host node is free,

the shell will poll other nodes randomly in the

distributed system to determine overloaded/busy remote

node.

 Busy node is found: If any busy node is found in the

distributed system, a process is selected on that node for

the migration. Then checkpoint process is used to save

process state to the file at arbitrary point of execution.

The file is migrated via socket on the receiver node.
Process is reconstructed from the checkpoint file and

executed on the receiver node.

 Finally, the receiver node will send the results back to

the original node.

IV. CONCLUSION

So the final conclusion is that using process migration one

can easily balance the load of distributed operating system

efficiently and quickly.

REFERENCES

1. M Beck, H Bohme, M Dziadzka, U Kunitz, R Magnus, and D

Verworner, “Linux Lernel Internals.” Second Edition, Pearson

Education Asia, Addison-Wesley.

2. Partha Dasgupta and Ravikanth Nasika. "Transparent migration of

distributed communicating processes”, Arizona state university.

3. Pradeep K. Sinha, “Distributed Operating Systems: Concepts and

Design”, 1997 by IEEE, Prentce-Hall of India.

4. Narayan Joshi, Dr. D. B. Choksi, “Checkpointing Process Virtual

Memory Area for Process Migration”; International journal of

Emerging Technologies and Applications in Engineering Technology

and Sciences; June-2010; pp-42-44

