
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

474

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F0316111611/2012©BEIESP

Abstract-- Classification makes a vital role to advancing

knowledge in both science and engineering. It is a process of

investigating the relationships between the objects to be

classified and identifies gaps in knowledge. Classification in

engineering also has a practical application. They can help

maturing Software Engineering knowledge, as classifications

constitute an organized structure of knowledge items. Till date,

in existing system, there have been few attempts at classifying in

test cases. In this research, we examine how useful

classifications in Software Engineering are for advancing

knowledge by trying to classify testing techniques. This paper

presents a preliminary classification of a set of unit testing

techniques. To obtain this classification, we enacted a generic

process for developing useful Software Engineering

classifications. The proposed classification has been proven

useful for maturing knowledge about testing techniques. SE

helps to: 1) provide a systematic description of the techniques,2)

understand testing techniques by studying the relationships

among techniques (measured in terms of differences and

similarities), 3) identify potentially useful techniques that do not

yet exist by analyzing gaps in the classification, and 4) support

practitioners in testing technique selection by matching

technique characteristics to project characteristics.

 Index Terms-- Classification, software engineering, software

testing, test design techniques, testing techniques, unit testing

techniques.

I. INTRODUCTION

In science and engineering, knowledge matures as the

investigated objects are classified. Mature knowledge is not a

sequential heap of pieces of knowledge, but an organized

structure of knowledge items, where each piece smoothly and

elegantly fits into place, as in a puzzle. Classification groups

similar objects to form an organization. Examples are the

classification of living beings in the natural sciences,

diseases in medicine, elements in chemistry, architectural

styles in architecture, materials in civil engineering, etc. The

unit testing process is composed of three phases that are

partitioned into a total of eight basic activities as follows:

1) Perform the test planning

 a) Plan the general approach, resources, and schedule

 b) Determine features to be tested

Manuscript received February 16, 2012.

 A.Nirmal Kumar, Assistant Professor,Department of CSE , Christian

College of Engineering and Technology, Dindigul, TamilNadu, India.

+91-9443998771, (e-mail: sa.nirmalkumar@gmail.com).

Dr.B.G.Geetha, Professor & Head, Department of CSE, KSR College of

Technology, Tiruchengode, TamilNadu, India. (e-mail:

geethaksrct@gmail.com).

 c) Refine the general plan

2) Acquire the test set

 a) Design the set of tests

 b) Implement the refined plan and design

3) Measure the test unit

 a) Execute the test procedures

 b) Check for termination

 c) Evaluate the test effort and unit

The major dataflows into and out of the phases are shown in

Fig A.

Within a phase, each basic activity is associated with its own

set of inputs and outputs and is composed of a series of tasks.

The inputs, tasks, and outputs for each activity are specified

in the body of this standard. When more than one unit is to be

unit tested (for example, all those associated with a software

project), the Plan activity should address the total set of test

units and should not be repeated for each test unit. The other

activities must be performed at least once for each unit.

II. UNIT TESTING ACTIVITIES

 Under normal conditions, these activities are sequentially

initiated except for the Execute and Check cycle

as illustrated in Fig 1. When performing any of the activities

except Plan, improper performance of a preceding activity or

external events (for example, schedule, requirements, or

design changes) may result in the need to redo one or more of

the preceding activities and then return to the one being

performed.

Achieving Software Engineering Knowledge

Items with an Unit Testing Approach

A.Nirmal Kumar, B.G.Geetha

Achieving Software Engineering Knowledge Items with an Unit Testing Approach

475

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F0316111611/2012©BEIESP

During the testing process, a test design specification and a

test summary report must be developed. Other test documents

may be developed. All test documents must conform to the

ANSI/IEEE Std 829-1983 [2]. In addition, all test documents

must have identified authors and be dated. The test design

specification will derive its information from the Determine,

Refine, and Design activities. The test summary report will

derive its information from all of the activities.

2.1 Plan the General Approach, Resources, and Schedule

General unit test planning should occur during overall test

planning and be recorded in the corresponding

planning document.

2.1.1 Plan Inputs

1) Project plans

2) Software requirements documentation

2.1.2 Plan Tasks

(1)Specify a General Approach to Unit Testing.

Identify risk areas to be addressed by the testing. Specify

constraints on characteristic determination (for example,

features that must be tested), test design, or

test implementation (for example, test sets that must be

used).

Identify existing sources of input, output, and state data (for

example, test files, production files, test data generators).

Identify general techniques for data validation. Identify

general techniques to be used for output recording,

collection, reduction, and validation. Describe provisions for

application Software that directly interfaces with the units to

be tested.

(2)Specify Completeness Requirements.

Identify the areas (for example, features, procedures, states,

functions, data characteristics, instructions) to be covered by

the unit test set and the degree of coverage required for each

area. When testing a unit during software development,

every software feature must be covered by a test case or an

approved exception. The same should hold during software

maintenance for any unit testing. When testing a unit

implemented with a procedural language (for example,

COBOL) during software

development, every instruction that can be reached and

executed must be covered by a test case or an approved

exception, except for instructions contained in modules that

have been separately unit tested. The same should hold

during software maintenance for the testing of a unit

implemented with a procedural language.

(3)Specify Termination Requirements.

Specify the requirements for normal termination of the unit

testing process. Termination requirements must include

satisfying the completeness requirements. Identify any

conditions that could cause abnormal termination of the unit

testing process (for example, detecting a major design fault,

reaching a schedule deadline) and any notification

procedures that apply.

(4)Determine Resource Requirements.

Estimate the resources required for test set acquisition, initial

execution, and subsequent repetition of testing activities.

Consider hardware, access time (for example, dedicated

computer time), communications or system software, test

tools, test files, and forms or other supplies. Also consider the

need for unusually large volumes of forms and supplies.

Identify resources needing preparation and the parties

responsible. Make arrangements for these resources,

including requests for resources that require significant lead

time (for example, customized test tools). Identify the parties

responsible for unit testing and unit debugging. Identify

personnel requirements

including skills, number, and duration.

(5)Specify a General Schedule.

Specify a schedule constrained by resource and test unit

availability for all unit testing activity.

2.1.3 Plan Outputs

(1) General unit test planning information (from

2.1.2 (1) through (5) inclusive)

(2) Unit test general resource requests if produced

from 2.1.2 (4)

2.2 Determine Features To Be Tested

2.2.1 Determine Inputs

(1) Unit requirements documentation

(2) Software architectural design documentation if

needed

2.2.2 Determine Tasks

(1)Study the Functional Requirements.

Study each function described in the unit requirements

documentation. Ensure that each function has a unique

identifier. When necessary, request clarification of the

requirements.

(2)Identify Additional Requirements and

Associated Procedures.

Identify requirements other than functions(for example,

performance, attributes, or design constraints) associated

with software characteristics that can be effectively tested at

the unit level. Identify any usage or operating procedures

associated only with the unit to be tested. Ensure that each

additional requirement and procedure has a unique

identifier. When necessary, request clarification of the

requirements.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

476

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F0316111611/2012©BEIESP

(3)Identify States of the Unit.

If the unit requirements documentation specifies or implies

multiple states (for example, inactive, ready to receive,

processing) software, identify each state and each valid state

transition. Ensure that each state and state transition has a

unique identifier. When necessary, request

clarification of the requirements.

(4)Identify Input and Output Data Characteristics.

Identify the input and output data structures of the unit to be

tested. For each structure, identify characteristics, such as

arrival rates, formats, value ranges, and relationships

between field values. For each characteristic, specify its valid

ranges.

Ensure that each characteristic has a unique identifier. When

necessary, request clarification of the requirements.

(5)Select Elements to be Included in the Testing.

Select the features to be tested. Select the associated,

procedures, associated states, associated state transitions,

and associated data characteristics to be included in the

testing. Invalid and valid input data must be selected. When

complete testing is impractical, information regarding the

expected use of the unit should be used to determine the

selections.

Identify the risk associated with unselected elements. Enter

the selected features, procedures, states, state transitions, and

data characteristics in the Features to be Tested section of the

unit’s Test Design Specification.

2.2.3 Determine Outputs

(1) List of elements to be included in the testing

(from 2.2.2 (5))

(2) Unit requirements clarification requests; if

produced from 2.2.2 (1) through (4) inclusive.

2.3 Refine the General Plan

2.3.1 Refine Inputs

(1) List of elements to be included in the testing

(from 2.2.2 (5))

(2) General unit test planning information (from

2.1.2 (1) through (5) inclusive)

2.3.2 Refine Tasks

(1)Refine the Approach.

Identify existing test cases and test procedures to be

considered for use. Identify any special techniques to be used

for data validation. Identify any special techniques to be used

for output recording, collection, reduction, and validation.

Record the refined approach in the Approach Refinements

section of the unit’s test design specification.

(2)Specify Special Resource Requirements.

Identify any special resources needed to test the unit (for

example, software that directly interfaces with the unit).

Make preparations for the identified resources. Record the

special resource requirements in the Approach Refinements

section of the unit’s test design specification.

(3)Specify a Detailed Schedule.

Specify a schedule for the unit testing based on support

software, special resource, and unit availability and

integration schedules. Record the schedule in the Approach

Refinements section of the unit’s test design specification.

2.3.3 Refine Outputs

(1) Specific unit test planning information (from

2.3.2 (1) through (3) inclusive)

(2) Unit test special resource requests; if produced

from 2.3.2 (2).

2.4 Design the Set of Tests

2.4.1 Design Inputs

(1) Unit requirements documentation

2) List of elements to be included in the testing

(from 2.2.2 (5))

(3) Unit test planning information (from 2.1.2 (1)

and (2) and 2.3.2 (1))

(4) Unit design documentation

(5) Test specifications from previous testing; if

available

2.4.2 Design Tasks

(1) Design the Architecture of the Test Set. Based on

the features to be tested and the conditions specified or

implied by the selected associated elements (for example,

procedures, state transitions, data characteristics), design a

hierarchically decomposed set of test objectives so that each

lowest-level objective can be directly tested by a few test

cases. Select appropriate existing test cases. Associate groups

of test-case identifiers with the lowest-level objectives.

Record the hierarchy of objectives and associated test case

identifiers in the Test Identification section of the unit’s test

design specification.

(2) Obtain Explicit Test Procedures as Required. A

combination of the unit requirements documentation, test

planning information, and test-case specifications may

implicitly specify the unit test procedures and therefore

minimize the need for explicit specification. Select existing

test procedures that can be modified or used without

modification.

Specify any additional procedures needed either in a

supplementary section in the unit’s test design specification

or in a separate procedure specification document. Either

choice must be in accordance with the information required

by ANSI/IEEE Std 829-1983 [2]. When the correlation

between test cases and procedures is not readily apparent,

develop a table relating them and include it in the unit’s test

design specification.

(3) Obtain the Test Case Specifications. Specify the

new test cases. Existing specifications may be referenced.

Record the specifications directly or by reference in either a

supplementary section of the unit’s test design specification

or in a separate document. Either choice must be in

accordance with the information required by ANSI/IEEE Std

829-1983 [2].

(4) Augment, as Required, the Set of Test-Case

Specifications Based on Design Information. Based on

information about the unit’s design, update as required the

test set architecture in accordance with 2.4.2 (1). Consider

the characteristics of selected algorithms and internal data

structures. Identify control flows and changes to internal data

that must be recorded. Anticipate special recording

difficulties that might arise, for example, from a need to trace

control flow in complex

Achieving Software Engineering Knowledge Items with an Unit Testing Approach

477

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F0316111611/2012©BEIESP

algorithms or from a need to trace changes in internal data

structures (for example, stacks or trees). When necessary,

request enhancement of the unit design (for example, a

formatted data structure dump capability)

to increase the test-ability of the unit. Based on information

in the unit’s design, specify any newly identified test cases

and complete any partial test case specifications in

accordance with 2.4.2 (3).

(5) Complete the Test Design Specification.

Complete the test design specification for the unit in

accordance

with ANSI/IEEE Std 829-1983 [2].

2.4.3 Design Outputs

(1) Unit test design specification (from 2.4.2 (5))

(2) Separate test procedure specifications; if

produced from 2.4.2 (2)

(3) Separate test-case specifications; if produced

from 2.4.2 (3) or (4)

(4) Unit design enhancement requests; if produced

from 2.4.2 (4)

2.5 Implement the Refined Plan and Design

2.5.1 Implement Inputs

(1) Unit test planning information (from 2.1.2 (1),

(4), and (5) and 2.3.2 (1) through (3) inclusive)

(2) Test-case specifications in the unit test design

specification or separate documents (from 2.4.2 (3)

and (4)

(3) Software data structure descriptions

(4) Test support resources

(5) Test items

(6) Test data from previous testing activities; if

available

(7) Test tools from previous testing activities; if

available

2.5.2 Implement Tasks

(1) Obtain and Verify Test Data. Obtain a copy of existing

test data to be modified or used without modification.

Generate any new data required. Include additional data

necessary to ensure data consistency and integrity. Verify all

data (including those to be used as is) against the software

data structure specifications. When the correlation between

test cases and data sets is not readily apparent, develop a table

to record this correlation and include it in the unit’s test

design specification.

(2) Obtain Special Resources. Obtain the test support

resources specified in 2.3.2 (2).

(3) Obtain Test Items. Collect test items including available

manuals, operating system procedures, control data (for

example, tables), and computer programs. Obtain software

identified during test planning that directly interfaces with

the test unit. When testing a unit implemented with a

procedural language, ensure that execution trace information

will be available to evaluate satisfaction of the code-based

completeness requirements. Record the identifier of each

item in the Summary section of the unit’s test summary

report.

2.5.3 Implement Outputs

(1) Verified test data (from 2.5.2 (1))

(2) Test support resources (from 2.5.2 (2))

(3) Configuration of test items (from 2.5.2 (3))

(4) Initial summary information (from 2.5.2 (3))

2.6 Execute the Test Procedures

2.6.1 Execute Inputs

(1) Verified test data (from 2.5.2 (1))

(2) Test support resources (from 2.5.2 (2))

(3) Configuration of test items (from 2.5.2 (3))

(4) Test-case specifications (from 2.4.2 (3) and (4))

(5) Test procedure specifications (from 2.4.2 (2)); if

produced

(6) Failure analysis results (from debugging

process); if produced

2.6.2 Execute Tasks

(1) Run Tests. Set up the test environment. Run the test set.

Record all test incidents in the Summary of Results section of

the unit’s test summary report.

(2) Determine Results. For each test case, determine if the

unit passed or failed based on required result specifications in

the case descriptions. Record pass or fail results in the

Summary of Results section of the unit’s test summary report.

Record resource consumption data in the Summary of

Activities section of the report. When testing a unit

implemented with a procedural language, collect execution

trace summary information and attach it to the report. For

each failure, have the failure analyzed and record the fault

information in the Summary of Results section of the test

summary report. Then select the applicable case and perform

the associated

 Case 1: A Fault in a Test Specification or Test Data. Correct

the fault, record the fault correction in the Summary of

Activities section of the test summary report, and rerun the

tests that failed.

Case 2: A Fault in Test Procedure Execution. Rerun the

incorrectly executed procedures.

Case 3: A Fault in the Test Environment (for example, system

software). Either have the environment corrected, record the

fault correction in the Summary of Activities section of the

test summary report, and rerun the tests that failed OR

prepare for abnormal termination by documenting the reason

for not correcting the environment in the Summary of

Activities section of the test summary report and proceed to

check for termination (that is, proceed to activity 2.7).

Case 4: A Fault in the Unit Implementation. Either have the

unit corrected, record the fault correction in the Summary of

Activities section of the test summary report, and rerun all

tests OR prepare for abnormal termination by documenting

the reason for not correcting the unit in the Summary of

Activities section of the test summary report and proceed to

check for termination (that is, proceed to activity 2.7).

Case 5: A Fault in the Unit Design. Either have the design

and unit corrected, modify the test specification and data as

appropriate, record the fault correction in the Summary of

Activities section of the test summary report, and rerun all

tests OR prepare for abnormal termination by documenting

the reason for not correcting the design in the Summary of

Activities section of the test summary report and proceed to

check for termination (that is, proceed to activity 2.7).

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

478

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F0316111611/2012©BEIESP

NOTE: The cycle of Execute and Check Tasks must be

repeated until a termination condition defined in 2.1.2 (3) is

satisfied (See Fig 3). Control flow within the Execute activity

itself is pictured in Fig 2.

Fig 3 Ñ Control Flow Within the Check Activity

2.6.3 Execute Outputs

(1) Execution information logged in the test

summary report including test outcomes, test incident

descriptions, failure analysis results, fault correction

activities, uncorrected fault reasons, resource consumption

data and, for procedural language implementations, trace

summary information (from 2.6.2 (1) and (2))

(2) Revised test specifications; if produced from

2.6.2 (2)

(3) Revised test data; if produced from 2.6.2 (2)

2.7 Check for Termination

2.7.1 Check Inputs

(1) Completeness and termination requirements

(from 2.1.2 (2) and (3))

(2) Execution information (from 2.6.2 (1) and (2))

(3) Test specifications (from 2.4.2 (1) through (3)

inclusive); if required

(4) Software data structure descriptions; if required

2.7.2 Check Tasks

(1) Check for Normal Termination of the Testing Process.

Determine the need for additional tests based on

completeness requirements or concerns raised by the failure

history. For procedural language implementations, analyze

the execution trace summary information (for example,

variable, flow).

If additional tests are not needed, then record normal

termination in the Summary of Activities section of the test

summary report and proceed to evaluate the test effort and

unit (that is, proceed to activity 2.8).

(2) Check for Abnormal Termination of the Testing Process.

If an abnormal termination condition is satisfied (for

example, uncorrected major fault, out of time) then ensure

that the specific situation causing termination is documented

in the Summary of Activities section of the test summary

report

together with the unfinished testing and any uncorrected

faults. Then proceed to evaluate the test effort and unit (that

is, proceed to activity 2.8).

(3) Supplement the Test Set. When additional tests are

needed and the abnormal termination conditions are not

satisfied, supplement the test set by following steps (a)

through (e).

(a) Update the test set architecture in accordance

with 2.4.2 (1) and obtain additional test-case specifications

in accordance with 2.4.2 (3).

(b) Modify the test procedure specifications in

accordance with 2.4.2 (2) as required.

(c) Obtain additional test data in accordance with

2.5.2 (1).

(d) Record the addition in the Summary of Activities

section of the test summary report.

(e) Execute the additional tests (that is, return to activity 2.6).

2.7.3 Check Outputs

(1) Check information logged in the test summary

report including the termination conditions and any test case

addition activities (from 2.7.2 (1) through (3) inclusive)

(2) Additional or revised test specifications; if

produced from 2.7.2 (3)

(3) Additional test data; if produced from 2.7.2 (3)

2.8 Evaluate the Test Effort and Unit

2.8.1 Evaluate Inputs

(1) Unit Test Design Specification (from 2.4.2 (5)

(2) Execution information (from 2.6.2 (1) and (2))

(3) Checking information (from 2.7.2 (1) through

(3) inclusive)

4) Separate test-case specifications (from 2.4.2 (3)

and (4)); if produced

2.8.2 Evaluate Tasks

(1) Describe Testing Status. Record variances from test plans

and test specifications in the Variances section of the test

summary report. Specify the reason for each variance. For

abnormal termination, identify areas insufficiently covered

by the testing and record reasons in the Comprehensiveness

Assessment section of the test summary report. Identify

unresolved test incidents and the reasons for a lack of

resolution in the Summary of Results section of the test

summary report.

(2) Describe Unit’s Status. Record differences revealed by

testing between the unit and its requirements documentation

in the Variances section of the test summary report. Evaluate

the unit design and implementation against requirements

based on test results and detected fault information. Record

evaluation information in the Evaluation section of the test

summary report.

Achieving Software Engineering Knowledge Items with an Unit Testing Approach

479

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F0316111611/2012©BEIESP

(3) Complete the Test Summary Report. Complete the test

summary report for the unit in accordance with ANSI/IEEE

Std 829-1983 [2].

(4) Ensure Preservation of Testing Products. Ensure that the

testing products are collected, organized, and stored for

reference and reuse. These products include the test design

specification, separate test-case specifications, separate test

procedure specifications, test data, test data generation

procedures, test drivers and stubs, and the test summary

report.

2.8.3 Evaluate Outputs

(1) Complete test summary report (from 2.8.2 (3))

(2) Complete, stored collection of testing products

(from 2.8.2 (4))

III. CONCLUSIONS

Testing entails attempts to cause failures in order to

detect faults, while debugging entails both failure analysis

to locate and identify the associated faults and subsequent

fault correction. Testing may need the results of debugging’s

failure analysis to decide on a course of action. Those actions

may include the termination of testing or a request for

requirements changes or fault correction. Progressively more

detailed information about the nature of a test unit is found in

the unit requirements documentation, the unit design

documentation, and finally in the unit’s implementation. As

a result, the elements to be considered in testing may be built

up incrementally during different periods of test activity.

For procedural language (for example, COBOL)

implementations, element specification occurs in three

increments. The first group is specified during the Determine

activity and is based on the unit requirements documentation.

The second group is specified during the Design activity and

is based on the unit design (that is, algorithms and data

structures) as stated in a software design description. The

third group is specified during the Check activity and is

based on the unit’s code. For nonprocedural language (for

example, report writer or sort specification languages)

implementations, specification occurs in two increments.

The first is during the Determine activity and is based on

requirements and the second is during Design and is based on

the nonprocedural specification. An incremental approach

permits unit testing to begin as soon as unit requirements are

available and minimizes the bias introduced by detailed

knowledge of the unit design and code.

REFERENCES

[1] V.R. Basili, F. Shull, and F. Lanubile, “Using Experiments to Builda Body

of Knowledge,” Proc. Third Int’l Performance Studies Int’l Conf., pp.

265-282, July 1999.

[2] L. Bass, P. Clements, R. Kazman, and K. Bass, Software Architecturein

Practice. Addison-Wesley, 1998.

[3] A. Bertolino, SWEBOK: Guide to the Software Engineering Body of

Knowledge, Guide to the Knowledge Area of Software Testing, 2004

version, chapter 5. IEEE CS, 2004.

[4] R. Chillarege, “Orthogonal Defect Classification,” Handbook of Software

Reliability Eng., chapter 9, Mc Graw-Hill, 1996.

 [5] R.L. Glass, Building Quality Software. Prentice Hall, 1992.

[6] R.L. Glass, “Questioning the Software Engineering Unquestionables,”

IEEE Software, pp. 119-120, May/June 2003.

 [7] R.L. Glass, I. Vessey, and V. Ramesh, “Research in Software Engineering:

An Analysis of the Literature,” Information and Software Technology,

vol. 44, no. 8, pp. 491-506, 2002.

[8] SWEBOK: Guide to the Software Engineering Body of Knowledge, 2004

version, IEEE CS, 2004.

[9] M. Knight, “Ideas in Chemistry,” A History of the Science, Athlone Press,

1992.

 [10] N.A.M. Maiden and G. Rugg, “ACRE: Selecting Methods for

Requirements Acquisition,” Software Eng. J., vol. 11, no. 3, pp. 183-192,

1996.

[11] R.M. Needham, “Computer Methods for Classification and Grouping,”

The Use of Computers in Anthropology, I. Hymes, ed., pp. 345-356,

Mouton, 1965.

 [12] D.E. Perry, A.A. Porter, and L.G. Votta, “Empirical Studies of Software

Engineering: A Roadmap,” Proc. Conf. Future of Software Eng., pp.

345-355, May 2000.

[13] V. Ramesh, R.L. Glass, and I. Vessey, “Research in Computer Science: An

Empirical Study,” J. Systems and Software, vol. 70,nos. 1/2, pp. 165-176,

2004.

[14] P.N Robillard, “The Role of Knowledge in Software

Development,”Comm. ACM, vol. 42, no. 1, pp. 87-92, Jan. 1998.

 [15] S. Vegas, “A Characterisation Schema for Selecting Software Testing

Techniques.” PhD thesis, Facultad de Informa´tica, Universidad

Polite´cnica de Madrid,

http://grise.ls.fi.upm.es/docs/Sira_Vegas_PhD_Dissertation.zip, Feb.

2002.

[16] S. Vegas and V.R. Basili, “A Characterization Schema for Software

Testing Techniques,” Empirical Software Eng., vol. 10, pp.

437-466,2005.

[17] S. Vegas, N. Juristo, and V.R. Basili, “A Process for Identifying Relevant

Information for a Repository: A Case Study for Testing Techniques,”

Managing Software Engineering Knowledge, chapter 10, pp. 199-230,

Springer-Verlag, 2003.

[18] I. Vessey, V. Ramesh, and R.L. Glass, “A Unified Classification System

for Research in the Computing Disciplines,” Information and Software

Technology, vol. 47, no. 4, pp. 245-255, 2005.

[19] W.G. Vincenti, What Engineers Know and How They Know It. The Johns

Hopkins Univ. Press, 1990.

[20] C.R. Woese, “Bacterial Evolution,” Microbiological Rev., vol. 51,pp.

221-271, 1987.

[21] H. Zhu, P.A.V. Hall, and J.H.R. May, “Software Unit Test Coverage and

Adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366-427, Dec.

1997.

