
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

51

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0507032212/2012©BEIESP

Approach to Software Maintainability Prediction

Versus Performance

Ram Kumar Singh, Akanksha Balyan

ABSTRACT:- The software maintainability is one of the most

significant aspects in software evolution for the software product.

Due to the complexity of chase maintenance demeanor, it is

difficult to accurately anticipate the price and risk of

maintenance afterward delivery of the software products. The

value of a software system results from the interaction between its

functionality and quality attribute (performance, reliability and

security) and the market-place. The software maintainability is

viewed considered as an inevitable evolution procedure driven

through maintenance demeanor. Traditional product cost model

have focused on the short term development cost of the software

product. A HMM (Hidden Markov Model) is applied to simulate

the maintenance demeanor demonstrated as their potential

occurrence probabilities. The software metric function is the

measurement of the software quality products and its

measurements results of a software product existence delivered

combined to from health index of the software product. When the

occurrence probabilities of maintenance demeanor reach certain

number which is calculate as the denotation of worsening

position of software product, the software product can be

considered as obsolete. The longer time, more beneficial the

maintainability would be. We believe on the architectural

approach to price-modeling will be able to capture these concerns

so that the software can reason about the risk I the system and

price of mitigating them.

 KEYWORDS: Software maintainability, HMM (Hidden

Markov Model), Performance modes between availability and

Software metrics.

I. INRODUCTION

The software evolution is inseparable by software

maintainability which emphatically goes worsening as time

goes along and alters keep implemented. Due to the

unpredictability of modification happening and kind of

faults, the range and price of software product

maintainability are indefinite later on software product

existence delivered. However, it is sensible to set a threshold

as the quantitative standards of software product

maintainability and then to decide the health condition of a

software product if there is a path to know the potential rate

of the software acquiring deteriorated. A HMM is preferred

to reflect the process of the software maintainability of a

software products, simulating the process through its

maintenance demeanors. The increase of its probabilities of

maintenance demeanors on with the Hidden Markov Model

evolvement is do as the delegate of the software product’s

deterioration rate. This paper, a potential threshold for the

deterioration rate is based upon the empirical data in table1.

Manuscript received on April 14, 2012.

Ram Kumar Singh, S.I.T.E, Swami Vivekanand Subharti University,
Meerut(Email: kumarcool88@gmail.com) ,

Akanksha Balyan, S.I.T.E, Swami Vivekanand Subharti University,

Meerut (Email: chaudharyakanksha@gmail.com).

In other case, software metrics measuring out the properties

of the software products covering influential element that

make construct impacts on software maintainability

technically and economically, e.g. price, hardware and

environment so as to circuitously assist assessment of a

software product in its circumstance on certain time. It can

also allow for the initial specification of however beneficial

a software product is on delivery time. In table surely can be

related on how long time a software product can be end.

Thus the attribute of a software product are evaluated and

forged in one fixed number. The number will affect the

growth of the probabilities of a software product’s

maintenance demeanors that finally will reach the

committed threshold. The time of a software product’s

maintenance demeanors reaching the committed threshold is

and delineate of the life cycle of the software product. In the

coming sections, the details of this approach are expanding.

II. ESTABLISHING THRESHOLD FOR

SOFTWARE MAINTAINABILITY

Software evolution has its own course of instruction other

than that bechancing in our natural biological cosmos. The

differences lie in the important element interacts in their

evolution. The software evolution is inseparable by software

maintainability. The influential element in software

evolution can be reckoned as existence equivalent to those

of software maintainability and then the effect of factor

interaction is denotable through probabilities of happening

of maintenance demeanor. Thus according to ISO/IEC

(International Organization for Standardization/International

Electro-technical Commission) 14764:2006, 2006, software

maintainability is all around modification management and

families’ maintenance as following,

 Corrective Maintenance: Any modification in software

product after being presented to find and correct any

existent error.

 Adaptive Maintenance: Any modification to a software

product after being presented to accommodate it to

modified or modifying environment.

 Perfective Maintenance: Any modification in a software

product after being presented to better performance or

maintainability.

 Preventive Maintenance: Any modification in a software

product after being presented to find and correct any

possible error.

Thus, it is reasonable to compute dissimilar type of

maintenance as the fundamental factors influencing software

maintainability and thereby software evaluation. The next

step will be to determine the

threshold.

mailto:kumarcool88@gmail.com
mailto:chaudharyakanksha@gmail.com

Approach to Software Maintainability Prediction Versus Performance

52

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0507032212/2012©BEIESP

 According to the economical study of dissimilar

type maintenance work in table [1], the modification

engaging flexible data structure pattern and customer report

generation potentiality are almost influential in software

maintenance. These two elements are subject to modified by

customers after delivery of products, which lay in the class

of adaptive maintenance. Therefore a mean percentage of

adaptive maintenance passing in software products can

ponder the health status of a characterized software product.

The data can derive by distributed table from [1]. Firstly, it

is potential to categorize the software maintenance exertion

by nature into the four type of maintenance as below,

Table 1 Percetage Maintenance Effort And Type Of

Maintenance

Software

Maintenance

Effort

Percentage

of

Distribution

Types of

Maintenance

Percentage

of

Distribution

Emergency

program fixes

11.4 Corrective

maintenance

11.4

Routine debug 8.3 Preventive

maintenance

8.3

Accommodati

on changes to

hardware, OS

16.4 Adaptive

maintenance

Accimmodati

on change to

input data files

5.2 Adaptive

maintenance

Enhancement

from user

40.8 Adaptive

maintenance

Improve code

documentation

5.5 Perfective

maintenance

8.5

Improve code

efficiency

4 Perfective

maintenance

Others 2.4

So the percentage of statistical distribution of dissimilar type

of maintenance depicts that 65.4% of maintenance attempts

come down into adaptive maintenance. That is to enounce, a

qualified specified software product in its life cycle ought to

none exceed its adaptive maintenance all over 65.4% for the

sake of price and complexity. Longer the time it accepts to

attain 65.4% of adaptive maintenance, more beneficial

software maintenance of a software product would-be. Thus,

the time towards a software product to reach 65.4% of

adaptive maintenance later on its delivery is utilized here as

threshold as the evolution software maintenance and thereby

software evolution.

III. SOFTWARE PERFORMANCE VERSE

AVAILABILITY ENGINEERING

Thirteen year later the term engineering was introduced,

Connie Smith coined the term Software Performance

Engineering (SPE) in her seminal paper published in 1981.

That paper brought attention to the fact that software

development was expressed out with the “fix-it-later

“attitude while it come to performance. In other word,

performance was never a design condition, but

reconsideration. The reason how come performance in SPE

is not yet redundant is that twenty year later Smith’s

introduction of the concept backside SPE, SPE has not yet

been integrated into the exercise of Software Engineering.

Thus, it is still significant to talk regarding SPE until the P

of SPE turns redundant, i.e., until it actually mix into SE.

The reasons why performance does not receive proper

attention during software design:

 Lack of Scientific Principle and Model: Conventional

engineering must use technological principle and model

depends upon mathematics, physics and computational

science, to hold their design process. There have been

many developments in terms of formal model to support

the software life cycle. Most of this work is centered on

methodologies to manage the complexity of the process

of software development, testing, maintenance and

evolution.

 Education: Graduate of computer science and related

engineering program are often unprepared to address

the software engineering problem faced by industry.

Majority of undergraduate computer science and

computer science related curricula do not include any

required course in computer system performance

evaluation and offer only minimal performance-related

hours, generally in operating system and computer

network courses.

 IT Workforce: U.S Information Technology (IT)

workforce estimate range from 2 to 10 million

depending upon source and definition of IT worker. A

more accurate estimate for “core IT workforce” that

only include only computer engineers, the computer

system analysts and scientists, computer programmers

and computer science teachers place the number at 2.5

million people in 1999 in the U.S

IV. MEASURING SOFTWARE QUALITY

In software quality model includes the measurement of the

attribute of constancy, analyzability, changeableness and

testability as sub-characteristics of a software product. Each

sub-characteristic can be measured by order through many

methods of metrics and each method of metrics can be

utilized to more than one sub-characteristics.

Though Multiplication Rule of Statistics, the indexes of all

attributes can be multiplied to get a joint statistics of all the

properties mixed. Based on this, the Table 2 below gives a

listing of metrics as each attribute so as to measure the

character of a completed software product, which is health

position of a completed software product on the time of

delivery.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

53

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0507032212/2012©BEIESP

Table 2 Metrics Measuring The Quality Of Completed

Software Products

Property Metrics

Implemented

Result Analysis

Changeablen

ess

1. LOC

2.Cyclomatic

Complexity

1. Changing requires

understanding of an

entire software

entity. The trouble

rises naturally if

LOC rises.

2. CC calculates the

number of linearly

autonomous path

and each change

must be right for all

execution path

Testability 1.LOC

2.Cyclomatic

Complexity

1. Finish testing

needs coverage of

all possible codes.

The trouble rises if

LOC increases.

2. Complete testing

need coverage of all

execution paths. So

testability reject if

CC raises

Analyzabilit

y

1.LOC

2.Cyclomatic

Complexity

1.LOC instantly has

hit on the time and

attempt needs to

diagnose mistakes,

and modules

associated to them

and required to be

changed

2. CC rises than

analyzability

declines, which

means the higher

complexity of the

control flow.

Constancy Coupling

between

Objects

Modules with high

coupling can affect

the constancy, So

constancy reductions

when the coupling

among objects rises.

The quantification of the attributes in Table 2 would be,

1. CKLOC
1

=Ratio of CKLOC

IA CKLOC
2

1
CKLOC-Bugs in 1k lines of codes;

2
IA CKLOC-Industry average CKLOC [5] =15 20CKLOC

2. CC
3
/10

4
=Ratio of CC

3
CC-Cyclomatic Complexity;

4
10-The threshold value recommended though McCabe in

[6]

3. CBO
5

5
CBO-Coupling between Objects

Whenever a software product has more beneficial

constancy, analyzability, changeableness and testability, it

surely will price less for its maintenance late on delivery,

especially in the aspect of adaptive maintenance. These sub-

characteristics can compose a perfect weight on the effect of

maintenance demeanors. Therefore, the method is to forge

the measurements of sub-characteristics into a constant C as

a weight upon the evolution process of a software product.

The constant symbolizes the health status of a software

product once delivered. The smaller C represents a more

beneficial health.

C=Ratio of CKLOC + Ratio of CC+CBO

V. CREATING A HMM

A HMM is a matrix with cells representing the states of a

matter in dissimilar timestamps exhibiting a process of a

matter’s status evolution. The status evolution of software

maintainability display in order, a HMM is a assemble,

using the probabilities of four cases of maintenance in Table

1 as the row detail and the probabilities of how the

maintenance demeanors induced by those in final

timestamps are oriented in the adjacent timestamp as the

column detail of HMM.

To make a HMM, the state’s s1, s2,……sn are arrange as

row details and each state shows the probabilities of each

form of maintenance demeanors coming individually. The

column details are the probabilities of a software product

changing from one kind of maintenance demeanor to

another, namely, merging the probabilities of the occurrence

of the two kinds of maintenance demeanor. Through

multiplication rules of statistics, the multiplication of two

probabilities can give the outcome of the probability of one

maintenance demeanor cased by another one. Beginning

from the initial state, the matrix can develop and give

prevision of the maintenance orientation to show how the

maintainability develops.

The algorithm code beginnings with initial states required.

Let us set si (1 ≤ I ≤ 4) to be the percentage of each form of

maintenance as the row details. And P(pt+1=sipt=si) shows

the probability of the state si causing that of the state sj from

to t+1.

 Thus, the cells of the HMM matrix can be computed as

below,

 bij = si * sj 1≤i, j≤4

Among which, si and sj are the percentages yielded by Table

1 because the probability of the occurrence of two forms of

maintenance demeanors. The multiplication of si and sj can

yield the results of the probability of the maintenance

demeanor sj caused through si. Thus the initial states of

maintenance would be like given 1 ≤ I ≤ 4,

i
P(pt+1=s1|pt=

si)

P(pt+1=s2|pt=

si)

P(pt+1=s3|pt=s

i)

P(pt+1=s4|pt=

si)

1 s1
b11=0.12

8
b12=0.096 b13=0.677

b14=0.09

8

2 s2 b21=0.128 b22=0.096 b23=0.677
b24=0.09

8

3 s3 b31=0.128 b32=0.096 b33=0.677
b34=0.09

8

Approach to Software Maintainability Prediction Versus Performance

54

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0507032212/2012©BEIESP

4 s 4 b41=0.128 b42=0.096 b43=0.677
b44=0.09

8

As needed by a HMM, the total of each row ought to be. So

the model is normalized by

 4

 bij = si*sj / si * sj 1≤i ≤4

j

 And the model becomes,

i

P(pt+1=s1|pt=

si)

P(pt+1=s2|pt=

si)

P(pt+1=s3|pt=

si)

P(pt+1=s4|pt=

si)

1 s1
b11=0.01
5 b12=0.012

b13=0.08
1

b14=0.01
2

2 s2

b21=0.01

2 b22=0.009

b23=0.06

1

b24=0.00

9

3 s3

b31=0.08

1 b32=0.061

b33=0.4

28

b34=0.0

62

4

s

4

b41=0.01

2 b42=0.009

b43=0.0

62

b44=0.0

09

From one moment t, the model evolves in moment t+1

beginning from this initial position. To computes however

long it accepts to achieve the threshold by 65.4% of adaptive

maintenance, the traditional algorithm is to assume that

Since each state si, define pt(i) = Probable state is si at time t

= P(qt = si)

The algorithm would be,

p0(i) = P(q0=si) = 1 if si is the start state, or 0 if

otherwise;

 4

pt+1(j) = P(qt+1=sj) = aij * pt (i)

 i

Now, given each software product its have evolving rate, the

weight representing the quality of a software product can be

applied here to build impact on the process of software

maintainability, dissimilar from the traditional HMM

algorithm above, Hence, the algorithm is changed as below,

p0(i)=P(q0=si)=1*C if si is the begin state, or 0 if otherwise;

 4

Pt+1(j) = P(qt+1 = sj) =aij * pt (i) * C

 i

Let assume a disciplinary maintenance demeanor beginnings

maintenance process of a software product towards the

cause that the first modification of a freshly delivered

software product is quite frequently build for correction of

any existing problem coming about usage. Therefore, the

algorithm be begins;

1. p0(1) = P(q0=s1) = 1*C

2. And, the model goes at the time of t+1,

 4

 pt+1 = P(qt+1=sj) = aij * pt (i) * C

 i

3. It the threshold is achieved, the time t shows the period of

time. Other than, precede step 2.

The step 2 and 3 are carried out recursively until the

threshold is achieved. The outcome is significant to outline

the evolution of a software product. Finally, complete

content and organizational editing earlier formatting.

VI. CONCLUSION

From the algorithm, it can be complete that software

maintenance is maybe measurable through using the HMM

algorithm given in this paper by more study should be set

into the data analysis of the occurrence of maintenance

demeanor in dissimilar types, in which case the practical

ground for the algorithm can be more solid and robust.

Therefore, the outline of software evolution is given in a

quantitative manner. With the many methods devised in

software metrics, the constant C could give accurate

indication of software product. Advance study shall be

expressed out to address matters. With the study in

maintenance demeanor analysis the algorithm can be further

refined.

REFERENCES

1. S. Balsamo, P. Inverardi and B. Selic, Proc. Third ACM Workshop on
software and Performance, Performance, Italy Rome, July 24-27,

2002.

2. Boehm B. , “Software Engineering Economics”, Prentice Hall (1981).
3. M. Hilton, “Information Technology Workers in the New Economy”,

Monthly Labor Review, June 2001, pp. 41-45.

4. ISO/IEC 14764:2006
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064

5. R.L Glass, “Frequently Forgotten Fundamental Facts about Software

Engineering”, IEEE Software, May/June 2001.
6. Cem Kaner, and Walter P. Bond “Software Engineering Metrics:

What Do They Measure and how Dow We Know?”, 10TH

INTERNATIONAL SOFTWARE METRICS SYMPOSIUM
METRIS, 2004.

7. Lawrence R. Rabiner (February 1989). “A tutorial on Hidden Markov

Models and selected applications in speech recognition”, Proceedings
of the IEEE 77 (2); 1989.

8. Steve Cornwell, “Code Complete: A Practical Handbook of

Software Construction”, Microsoft Press; 2nd edition (June 9, 2004).
9. Thomas McCabe, “A complicity Measure”, IEEE Transaction on

Software Engineering, VOL, SE-2, No. 4, 1986.

