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Abstract—In this work, we present an algorithm to overcome 

the computational complexity of hyperspectral (HS) image data to 

detect multiple targets/endmembers accurately and efficiently by 

reducing time and complexity. In order to overcome the 

computational complexity standard deviation and chi square 

distance metric methods are considered. The number of 

endmembers is estimated by unbiased iterative correlation 

method. Hyperspectral remote sensing is widely used in real time 

applications such as; Surveillance, Mineralogy, Physics and 

Agriculture. 

 
Index Terms—Hyperspectral data, chi square, correlation, 

unbiased, Mat lab 

I. INTRODUCTION 

Hyperspectral remote sensing has been used for increasing 

knowledge and perception of the earth’s surface. 

Hyperspectral imaging is concerned with capacity, 

examination, and analysis of the spectra acquired from a 

given sensor in a short, medium or long distance by an 

airborne or satellite [1]. NASA’s Jet Propulsion Laboratory 

(JPL) began a revolt in remote sensing by developing new 

instruments such as the airborne imaging spectrometer. This 

concept of hyperspectral imagery was beginning in the 

1980’s by A. F. H. Goetz and his colleagues at NASA’s [1]. 

This system was used more than 200 spectral bands and able 

to cover the wavelength region from 0.4-2.5µm at a nominal 

spectral resolution of 10nm [2, 3]. Hyperspectral remote 

sensors concurrently collect image data in dozens or 

hundreds slight and neighboring spectral bands over 

wavelength that can range from the ultraviolet to the thermal 

infra-red at resolution of fine 10nm. 

This unique spectral resolution has opened the door to a 

series of civilian and military applications among which we 

refer to; land use, agriculture assessment, ecological and 

environmental monitoring, ground-cover classification, 

mineral exploitation, change detection, man-made materials 

identification and detection, target activities, and 

surveillance. Underlying all these applications is the fact that 

all substance's scatter electromagnetic energy, at specific 

wavelengths, in distinctive patterns related to their molecular 

 
Manuscript received on April 14, 2012.  

Muhammad Ahmad, Department of Electronics Engineering, Faculty of 

Engineering and Technology, International Islamic University, Islamabad, 

Pakistan 
(e-mail: mahmad00@yahoo.com). 

Sungyoung Lee, Department of Computer Engineering, Kyung Hee 

University (Global Campus), South Korea. 
Ihsan Ul Haq, Department of Electronics Engineering, Faculty of 

Engineering and Technology, International Islamic University (IIU), 

Islamabad, Pakistan. 
Qaisar Mushtaq, Department of Computer Science, National Textile 

University (NTU), Faisalabad, Pakistan 

 

composition. 

Data reduction is a consequence of the fact that the number 

of end members presents in the scene is usually much smaller 

than the number of bands. High dimensional data contains the 

significant amount of features information including 

hyperspectral data with redundant information in terms of 

spectral signatures. Therefore, reducing the dimensionality 

without missing important information or objects of interest 

is very important issue. Dimensional reduction is categorized 

in two ways; (1) Feature extraction is done by mapping the 

correlation of high dimensional data onto the uncorrelated 

low dimensional data, (2) Feature selection techniques do not 

alter the original representation of the variables, but merely 

select a subset of them, thus there is no need of any 

transformation while selecting a subset of features for 

dimensional reduction, but we have to concentrate on 

selecting features among the existing features [4].  

Hyperspectral data unmixing usually carried out by two 

steps; (1) End member detection is estimating the spectral 

signatures of different end members present in the data, and 

(2) Inversion is to find the abundance fractions of each end 

member. The spectrum of the target and the spectra of the 

background may also be used for end member detection to 

the observed mixed pixel spectrum [5].  

There are many algorithms to unmix hyperspectral data; 

most of algorithms assume that pure pixel is present in the 

data like independent component analysis (ICA) [6], Vertex 

Component Analysis (VCA) [7], Pixel Purity Index (PPI) [8], 

N-FINDR [9], Gift Wrapping Algorithm, Principal 

Component Analysis (PCA), Multi End Members Spatial 

Mixture Analysis (MESMA) based on the SMA algorithm. 

Due to the low resolution of hyperspectral sensor, more 

than one distinct substance may exist in a hyperspectral 

image pixel. Measured spectral is a composite of the 

individual spectrum of each material that is exist in that pixel 

[10]. Mixed pixels can also be due to a homogeneous mixture 

of distinct materials. This kind of mixed pixel is independent 

of sensor resolution [10]. Unmixing of hyperspectral image 

pixel is the decomposition estimation of the pixel spectrum 

into a collection of constituent spectra called endmember 

spectral signatures, and their corresponding abundance 

fractions [10, 11]. Spectral and spatial resolution can be 

changed with unmixing [12, 13]. Multispectral and 

hyperspectral image analysis can be classified as follows [14, 

15]: detect known or unknown objects or materials [16, 17]; 

classification [15, 16, 17]; estimate the materials and the 

respective area fractions that they occupy within a pixel [18, 

19]. The spectrum of the target and the spectrum or spectra of 

the background may also be used 

for sub pixel/endmember 

detection to the observed mixed 

pixel spectrum [20, 21].  
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End-members derivation methods can be grouped into two 

main classes. First type of algorithm assume that 

end-member exist in the image either in pure pixel or in 

mixed pixel. The algorithms which assume pure pixel are 

present in image data; use the selection of n-dimensional 

scatter plot method and the convex cone method [22, 23]. 

Second type of algorithm derives the spectra of end-members 

analytically [12, 13, 24, 25, 26]. 

Two models are widely used for modeling mixed pixels: 

linear mixture model [27, 28, 29] and non-linear mixture 

model [30]. Mostly linear mixing model (LMM) has been 

used for source separation in mixing activities [31, 32]. In 

LMM modeling, it is assumed that the observed pixel 

spectrum is the linear combination of a small number of 

unique and distinct constituent deterministic spectral 

signatures (endmembers/ targets). The LMM for 

hyperspectral mixed pixel can be expressed in mathematics 

in the following way [33].  

 

     

 

   

                                   

 

Where S = [s1 s2 …. sK] are the K end member spectra 

(targets). These target spectra are assumed to be linearly 

independent. a = [a1 a2 …. aK]
T
 are the corresponding 

abundance fractions, and W is an additive noise vector or can 

be interpreted as measurement error or a model error. If L the 

spectra bands then X is an L * 1 column pixel vector and S is 

a target signatures matrix of size L * K.  

If the endmember spectra are randomly and independently 

drawn from multivariate normal distributions, then stochastic 

mixing model [34] is considered. The choice of a pixel 

composition assumption (pure or mixed pixel), the selection 

of a model to account for spectral variability (subspace or 

probability distribution), and the selection of a mixing 

procedure leads to different types of target detection 

algorithms. The detection problem is typically formulated as 

a binary hypothesis test with two competing Hypotheses: 

background only (H0) or target and background (H1). Since 

the two hypotheses contain unknown parameters (for 

example, covariance matrix of the background) that have to 

be estimated from the data, the detector has to be adaptive, 

and it is usually designed using the generalized likelihood 

ratio test approach [31]. Most detection algorithms for full 

pixel and sub pixel (endmember) targets have been obtained 

by describing spectral variability using the multivariate 

normal distribution or a subspace model. Mixed pixels are 

usually modeled using the LMM. A target detection 

algorithm based on the stochastic mixing model, known as 

finite target matched filter, is discussed in [35] and [34]. 

In this paper a linear mixture model is used shown in 

equation (1). To illustrate this, assume that a linear 

combination of S = [s1 s2 …. sK], Signatures and their 

corresponding abundance fractions a = [a1 a2 …. aK]
T
, (i = 1, 

2… K), Where K is the total number of targets and L is the 

total number of bands. Thus                    , we assume that 

the signatures of the      end member can be written 

as    
 

 
       

 
 

  
    and also we assume that the sensor 

radiation pattern is ideal. So the      output of the channel 

at a given pixel is defined as        
 

 
   

  
        

 
   

        where         are directly proportional to 

        with wave length  respectively and the receiver 

electronic noise and the Poisson signal noise is defined as   

at the      channel. Since the values of a and b are depend 

on the sensor and sun light directions, atmosphere 

composition, the topology and on the scene materials and 

configurations. Where  
  

 denotes the reflectance of the end 

member   at the wave length    and     Shows the abundance 

fractions of the end member   at the considered pixel and also 

here   is denotes the number of end members. It is still linear 

and accounts for illumination fluctuations, signatures 

variability, and sensor noise.    

II. CHALINGE IN HYPERSPECTRAL IMAGERY 

The accuracy increases as the increment in spectral bands 

of hyperspectral imagery. Due to data redundancy, the 

convergence stability causes accurse. Furthermore, the 

variation due to noise in redundant data propagate trough a 

classification model. Since to over-come and sought-out the 

problems of computational requirements for processing large 

data might be prohibitive and the data subsets may be used. 

Since the hyperspectral imagery provides the vast amount of 

information about images or scene. To over-come the 

computational problems and for obtaining the good results, it 

is necessary to reduce the dimensions of the hyperspectral 

data. Following are some challenges of hyperspectral image 

analysis:  

 Data storage and transmitting the date due to huge data 

volume. 

 Data redundancy challenge. Information of all the bands 

may not un-correlated. 

 Processing time for both supervised and un-supervised 

techniques.  

 Hughes phenomenon is observed in hyperspectral 

imagery data classification because of limited training 

data and ratio of the training pixels to the number of 

bands is small. 

Increments in used features would not always increase the 

end member detection, unmixing, and classification accuracy. 

So, this is the fact that we need more samples in accurately 

specifying the decision boundary for classification for 

hyperspectral data.     

III. APPLICATIONS 

Hyperspectral remote sensing has been used in a large 

array of real life applications, although initially it was 

developed for mining and geology. The capability of 

hyperspectral imaging to classify various minerals makes it 

ideal for the mining and oil industries where it can be used to 

discover ore and oil [36, 37]. It has now spread into fields as 

wide spread as ecology and surveillance as well as historical 

manuscripts research such as; the imaging of the Archimedes 

palimpsest. 
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This know-how has persistently become more on hand to 

the public and has been used in a broad range of ways. 

Organizations such a NASA and USGS have catalogues of 

various minerals and their spectral signatures. They and have 

made them available online to be used by the research 

community, those data are categorized as following: 

 Surveillance 

 Mineralogy 

 Physics   

 Agriculture 

IV. POBLEM STATEMENT 

Our main consideration and interest is to enhance the 

results of hyperspectral data dimensional reduction and end 

member detection accurately by using the statistical 

parameters, suchas; mean absolute deviation, chi square 

distance, and correlation.    

The emergence of image data with large number of 

spectral bands has presented image processing and 

interpretation challenges yet they not experienced with 

hyperspectral imagery data set. There is a need to develop the 

detection, unmixing and classification methods to utilize the 

amount of information and reparability that hyperspectral 

images data offers while simultaneously avoiding the 

difficulties inherent in hyperspectral space. Since there is no 

doubt that more of information is contains in hundreds of 

narrow and adjacent bands of hyperspectral images data but 

some of them bands overlap the information or some of bands 

are un correlated.    

V. FORMULATION 

Assume that                                 is an L x N 

matrix where L is the total number of bands. 

Suppose that we have        
 
band images in hyperspectral 

image data, if each band image is of size     and    be the 

mean of the     band image then mean absolute deviation 

        for     band is calculated as, 

    
 

  
          

  

 

                                     

For the set of observations    
   , the K-means clustering 

method partitions the n observations into k sets      

                                    , minimizing the sum of squares 

with-in clusters as, 

                  
 

       

 

   

                          

Where    is the median of points in cluster   and    is the 

number of points in    For an m x n data matrix     
    the 

distance between the vector   and    is defined as,  

             
  
   

 
  
   

 
 

 

    
  
   

 
  
   

 
 

 

 

 

   

          

      

      
 

       
 

 

         
 
           

 
 

 

   

          

      

         
 
           

 
           

 
 

 

   

                      

Where     is the standard deviation of the r
th

 variable, 

similarly for      Notice that we need not subtract the r
th

mean 

from   and   because they will just cancel out in the 

differencing,        
 

       
the inverse of the r

th
&s

th
 

variance. Hence those bands are selected which carried the 

maximum mutual information relative to each band within 

cluster. 

Now assume that the hyperspectral data noise is white 

Gaussian distributed with covariance matrix    . The singular 

value decomposition of the matrix     can be written as 

                
 
                                             

Suppose that            
 
 be a projection matrix onto      

and the sample mean vector of the hyperspectral data set is 

calculated as  

      
 

 
                                                

 

   

 

      
 

 
         

 

 
                           

 

   

 

   

 

                    

 

   

                                          

where    is the data space and       is the white gussian noise. 

Let      be the projection of     onto the    . The estimation of 

      can be obtained by projecting    onto the decomposed data 

space    , i.e.           . Since the basis set is known so the 

approximation of mean square error is obtained by using the 

bias estimation of             However the expected values 

of the basis set is equal to the basis set thus it is an unbiased 

estimation of basis set. So the numbers of end members are 

estimated as, 
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VI. RESULTS 

We used a well-known Airborne Visible/ Infrared Imaging 

Spectrometer [38] for our research work. The Cuprite image 

is used to compare and evaluate the proposed research work. 

It was collected by 224 spectral bands with 10 nm spectral 

resolutions over the Cuprite mining site, NEVADA in 1997. 

Cuprite is a mining area in the south of Nevada with minerals 

and little vegetation. The geologic summary and mineral map 

can be found in [39]. Cuprite has been widely used for 

experiments in remote sensing and has become a standard test 

site to compare different techniques of hyperspectral image 

analysis. In our research work, a sub image of size 350×350 

with 224 bands of a data set taken on the AVIRIS flight. The 

instrument of AVIRIS covers 0.41 – 2.45 µm regions in 224 

bands with a 10 nm bandwidth and flying at an altitude of 20 

km, it has an instantaneous field of view (IFOV) of 20 m and 

views a swath over 10 km wide. Prior to the analysis of 

AVIRIS Cuprite image data, low SNR bands 1 – 3, 105 – 115 

and 150 – 170 have been removed and the remaining 189 

bands are used for experiments. Preserving the maximum 

information, the number of bands required are 10. 

Selected bands are shown in figure 1. The Spectral Angle 

Mapper (SAM) computes the spectral similarity between the 

found spectral signatures and the laboratory spectral 

signatures, shown in figure 2. The smaller the spectral angle 

the more similar the actual and found target spectra. The 

values of SAM among the same minerals are lower than 

others. The extracted end members are predominantly of 

Alunite, Calcite, Kaolinite, Muscovite and Buddingtonite on 

selected bands are shown in figure 3. Figure 4 shows the 

selected bands with respect to their Centroids.Figure 5 shows 

clustered data and their diagonal connectivity. Figure 6 

shows how the spectral angle mapper works for comparing 

the actual and found endmembers spectra.Figure 7 shows the 

correlation among the bad images and Figure 8 shows a flow 

chart of the algorithm.  

 

Fig. 1: Selected Bands 

 

 

Fig. 2: Spectral Similarity of found and actual signatures 

 

Fig. 3: End members locations 

 
 

Figure 4: Selected Bands Centriods 
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Figure 5: Data Clusters 

 

Figure 6: SAM.  

 

Fig 7: Correlation among the images 

 

 
 

Fig 8: Flow Chart 

 

VII. CONCLUSION 

Hyperspectral data dimensional reduction and target 

detection objective is to estimate the number of end members 

and cross-pounding their abundance fractions at each pixel 

using the only observed data. The performance of the 

proposed model is illustrated with real hyperspectral data 

from NASA data archives. The results achieved show the 

effectiveness of hyperspectral data dimensional reduction 

and target detection on hyperspectral data. In future work, the 

proposed algorithm shall be improved in order to set initial 

parameters for band extraction.  
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