
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

452

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0588042212/2012©BEIESP

Employing CoCoMo 81 for Comparing New

Proposed SDLC “VISHWAS” with Existing SDLC

Models

Vishwas Massey, K. J. Satao

Abstract:- Various SDLC models are available which are

employed by different organizations depending upon their need

and requirement of software being developed [1],[2]. Each

company either follows a fixed SDLC or randomly chooses

SDLC model. There were various SDLC models available but

none of them were capable in addressing the issue of release

management. We have developed a SDLC model – “SDLC

VISHWAS” which enables the developer in handling the concept

of release management along with the core SDLC phases

employed for software development. We have developed software

capable of generating schedules, effort, development time and

staffing needed for any specified software which employs the

concept of CoCoMo – 81[3],[4]. The software generates results

both in text and in graphic charts which makes clear

understanding for specified software being developed.

Keywords:- SDLC, CoCoMo-81, LOC, SDLC-VISHWAS,

Software.

I. INTRODUCTION

There are various SDLC models that are available for

developing software’s. Most commonly used SDLC models

are waterfall model, incremental model and spiral model.

Water fall model is generally used for development of

software that is small in terms of LOC (lines of codes) with

static (rigid) requirements. Incremental model is similar to

the waterfall model but the software is developed in

increments. It is generally employed where the product's

core functionality remains same but there is either change in

specific functionality or addition of new functionality. We

have proposed a new SDLC Model for software

development engulfing the concept of release management

within its core. The above model is well applicable where

needs of the client is changing constantly and new features

have to be added on a constant basis. Use of any suggested

SDLC model entirely depends upon the resources available

with the developers (organization that is involved in the

development of the software). Due to different architecture

of SDLC models, each of them leads to different LOC

provided that the same software is being developed. Simply

we can put this discussion as different SDLC if used for

developing same software then the amount of LOC that

would be coded will be different.

Manuscript received on April 26, 2012.

 Vishwas Massey, M.Tech(SE) Scholar, Computer Science department,
Rungta College of Engineering & Technology, Bhilai, India.

(Email-vishwasmassey2yahoo.com).

 Prof. K. J. Satao, Professor & HOD, CSE, IT ,& MCA Department,
Rungta College of Engineering & Technology, Bhilai, India.

(Email-kjsatao@rediffmail.com).

II. UNDERSTANDING LOGIC BEHIND

DIFFERENT SDLC ARCHITECTURE

For keeping the discussion simple here we will be

considering the most common SDLC models viz: waterfall

model and incremental model. We would be discussing the

architecture of these two models with the new SDLC

VISHWAS. The waterfall model follows the linear sequential

model in which the major SDLC phases viz: requirement

analysis, design, coding, testing, and implementation are

followed one after another in sequence in order to achieve a

final product (figure 1.1) [5]. Once the final product is

developed, the feedback from the end users, clients, market

etc is collected which is analyzed and recorded for future

developments. If the user remains unsatisfied

figure 1.1: Employing Waterfall model for software

development

from the final product then again the SDLC phases have

to be repeated and new release product is developed as a

result. Thus repetition of all the SDLC phases has increased

the total number of the LOC. Similarly if we discuss the

architecture of the incremental model then also the similar

situation arises (figure 1.2) [6]. SDLC phases are repeated

again and again but with each repetition either there is

release of somewhat a final product or without releasing the

resultant software is again pipe lined into the SDLC phases.

What so ever the condition arises the resultant remains the

same, that is, there is increase in total number of the lines of

codes.

 Figure 1.2: Employing Incremental model for

software development

mailto:Email-kjsatao@rediffmail.com

Employing Cocomo 81 For Comparing New Proposed SDLC “VISHWAS” With Existing SDLC Models

453

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B0588042212/2012©BEIESP

The new SDLC model “VISHWAS” that we had proposed

eliminates this as the architecture of VISHWAS is generated

in such a manner that for the final release the developer has

to code minimum number of the LOCs. SDLC “VISHWAS”

architecture is composed of 4 tier as developer end, release

manager end, client end and the end user end (figure 1.3).

Figure 1.3: New praposed model – SDLC

‘VISHWAS’

The release managers are entirely responsible for complete -

immediate negotiations - communications of the need,

requirement and changing functionality. Thus as soon as

there is change in the need of the client, the new

requirement is immediately passed on to the developer via

release managers thus enabling changed functionality to be

embedded in the software being developed. This helps in

reducing the amount of software’s codes (minimum LOC

sufficient in providing all the requirements of the client).

III. DEVELOPING SOFTWARE

Software is developed meant for automating the work of an

advocate office. Before the development, we have to

understand the needs - requirements of the advocate office.

Any advocate who is a regular practitioner maintains

records, dairies, files etc to keep current – updated records

of all his cases. The major records that are maintained by the

advocate are contact list (phone book for all concerned

colleagues), record of books (concerned journals, law

books, periodicals etc for references to be used in his cases),

client record (all the concerned clients whose cases he had

dealt and is currently dealing), case record (all cases either

being dealt currently or had being dealt in past). Thus on

the basis of the requirements the software is developed

which will satisfy the requirements and will automate the

official affairs of an advocate chamber (office). For this

particular task we have developed a software aoa (advocate

office automation) which is divided into four different

modules viz: security, entry, data manage and report (figure

3.1).

figure 3.1: Decomposition of forms(components) of the
software “aoa” into modules

Each of the modules contains different components (visual

basic dot net forms) in accordance to their functionality. The

security module contains the login form which has an

interface to accept user-name and password from the user. If

both are correct then only the user is allowed to enter into the

software else access to other modules is denied. Thus this

particular module as it is called security module provides

prime security to the other modules of the software as it

allows authenticated and authorized user to enter into the

software. Similarly other components were grouped and

divided into modules. The whole software aoa was developed

with the concept that all the basic needs-requirements of an

advocate must be fulfilled. The modules are linked (figure

3.2) in such a manner that a consistent flow of control exists.

Figure 3.2: logical flow of the “aoa” software

IV. SOFTWARE DEVELOPED BY TRADITIONAL

SDLC

A. Development of software by Waterfall and Incremental

model

We have developed the above mentioned software aoa by

traditional SDLC Model. Firstly we have employed

“Waterfall Model” for developing the software. The

software developed as a result

is named as aoa_1_0.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

454

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0588042212/2012©BEIESP

When this software was implemented there were many

reasons for rejecting by the client. Although all the aforesaid

features were present in aoa_1_0 but it lacked many user-

friendly features thus it was unable to satisfy the client. Now

to incorporate those user-friendly features into the software

another derivative of the actual software was developed as

its second version. The second version of aoa_1_0 was

named as aoa_1_1. This second version could have been

developed using the waterfall model but then we have to

start with scrap. Since architecture of waterfall model

doesn't allow this we have employed another most common

SDLC model.

Thus aoa_1_1 was developed by “Incremental

Model”. We have taken aoa_1_0 as the input to the

incremental model SDLC phases and finally developed

aoa_1_1. When this aoa_1_1 was subjected to tests for user

acceptance then there were little lacuna discovered as

compared to aoa_1_0 tests, but yes there were issues that

made this software to be rejected by the client. Again

aoa_1_1 was taken into the incremental model and we

developed aoa_1_2 that was successful in addressing all the

requirements of the client and were in accordance to his

needs. Thus aoa_1_2 was able to pass all test cases

successfully. This final release was termed as aoa_1 which

was developed in 3 stages as aoa_1_0 followed by aoa_1_1

and again modified into aoa_1_2. The final release aoa_1

was successful in all aspects but here what the difference

comes.

Say there were “i” LOC that were coded when

aoa_1_0 was developed, some of the LOC say “j” were

reused for developing aoa_1_1. So if there were m LOC in

aoa_1_1 then total LOC for development of aoa_1_1 results

to be “m-j”. Similarly when aoa_1_2 was developed we

again used say “x” LOC and “n” LOC from aoa_1_1 then

total LOC for developing aoa_1_2 results to be “x-n”. Thus

we have developed the final software product aoa_1 with “i”

LOC from aoa_1_0, “m+j” LOC from aoa_1_1 and “x+n”

LOC from aoa_1_2. LOC in aoa_1 equals {i+(m-j)+(x-n)}

which is quite high in number.

B. Software developed by SDLC “VISHWAS”

The same software that we had discussed above was

developed by using SDLC “VISHWAS” as aoa_2 and due to

its unique architecture that we have proposed in the SDLC

“VISHWAS” there were no issues of rejection. Very first

line of product software “aoa_2” got successfully accepted

by the client. Thus the total number of LOC that we had

used in developing the software aoa_2 was much less when

we compare it with the LOC needed for developing aoa_1

V. COMPARING MODELS ON THE BASIS OF

TEST CASES

To check whether each module of the software is in

accordance with the client's requirement we have conducted

tests. These tests have been done for each and every

individual module. These test cases were generated on the

basis of user-friendliness. The features of the software were

needed in such a manner that the client is satisfied with the

features and functionality.

Here we have discussed test cases (figure 5.1) that were

employed for acceptance of security module. Total ten test

cases were generated and the module was thoroughly

checked after each release viz: aoa_1_0, aoa_1_1, aoa_1_2

and aoa_2.

figure 5.1: Test cases generated for login page of the software

Employing Cocomo 81 For Comparing New Proposed SDLC “VISHWAS” With Existing SDLC Models

455

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B0588042212/2012©BEIESP

Figure 5.2 tabulates all the test cases that were generated for each and every module of software’s aoa_1_0, aoa_1_1,

aoa_1_2, aoa_1 and aoa_2.

Figure 5.2.1: Conclusive result of “aoa_1”

Figure 5.2.2: Conclusive result of “aoa_1_0”

Figure 5.2.3: Conclusive result of “aoa_1_1”

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

456

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0588042212/2012©BEIESP

Figure 5.2.4: Conclusive result of “aoa_1_2”

Figure 5.2.5: Conclusive result of “aoa_2”

Figure 5.2.6: Conclusive result of LOC

Employing Cocomo 81 For Comparing New Proposed SDLC “VISHWAS” With Existing SDLC Models

457

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B0588042212/2012©BEIESP

Figure 5.2.7: Conclusive result for test cases

VI. COMPARING MODELS ON THE BASIS OF

LOC

We had already seen in the above discussion that number

of LOC coded in much higher for aoa_1 as compared to

aoa_2. But why we are emphasizing on LOC[6],[7]?LOC is

the sole factor in deciding the related cost of development

for any software. The CoCoMo – 81[7] is the model that

helps in estimating effort (needed for software development

in terms of persons-month), development time (total time

that would be taken in developing the software in months),

staffing needs (total number of developers that must be

engaged for development, counted as persons) for any

software solely on the basis of LOC coded.

Total LOC = LOC (design) + LOC (application)

 We have counted the LOC needed for development

of software’s aoa_1 and aoa_2 and the results have been

laid down in the table as in figure5.2 . We have used the

above discussed concept of counting LOC, for aoa_1 we

have counted LOC as {i+(m-j)+(x-n)} (which has been

discussed in above section).

VII. GENERATING RESULTS FOR THE ABOVE

DISCUSSION

The above discussion is of theoretical nature that has

been automated in much simpler and easily understandable

computer generated charts and reports. For automating the

results we have developed software which we had named as

“cea” (cost effort analyzer). The software has an interface

that allows the user to generate effort, development time,

and staffing need entirely on the basis of CoCoMo – 81.

Schedules for the whole software as well as for individual

modules are developed. We have allowed entry of test case

results for individual modules that is summarized in a very

concise form. We had employed all the standards of IT

industry for the same. We had considered one working

month of 19 days instead of 28 days taken as standard

calendar month. This idea was even suggested by Dr. Barry

W Boehm while proposing CoCoMo Model. We have

generated schedules for each modules and software’s on the

basis of standard theoretical time that is allotted for each of

the SDLC task (SDLC phases in general is specifically

divided into different tasks)[8],[9],[10].

VIII. RESULTS

Finally we have developed two softwares aoa_1 and

aoa_2 employing two different SDLC models. For aoa_1

we had employed waterfall model and incremental model

and for aoa_2 we have used the new SDLC model

“VISHWAS”. The above two software’s are completely

identical in their functioning and features but LOC needed

for their development varies.

figure 7.1: generation of effort, development and staff

On the basis of LOC we had generated results employing

the software “cea”. This software “cea” generates

schedules, effort, development time and staffing needs for

individual software by employing CoCoMo – 81 model. On

the basis of LOC we have generated effort, development

time and staffing need (figure 7.1).

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

458

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0588042212/2012©BEIESP

Effort = a*(KLOC)
b

persons-month

where a = 2.4 and b = 1.05 (since the software being

developed is of organic type)

Development Time = c*(Effort)
d

months

where c = 2.5 and b = 0.38 (since the software being

developed is of organic type)

Staffing = (Effort/Development Time) persons

figure 7.2: generation of schedules on the basis of

development time

On the basis of total development time we have

generated schedule (figure 7.2) considering the standard

time division (figure 7.3) for each activity commonly stated

in the IT industries as we have generated the ideological

time that must be given for each and every specified activity

necessary for developing the concerned software. Major

SDLC phases is divided into more specific sub-phases.

SDLC Task Task Time In general

Analysis

Requirement

Definition
10

25
Requirement

Analysis
12

Design Design 15 15

Coding Coding 23 20

Testing
System Test 10

15
Acceptance Test 6.5

Deploy

Document 5

25

Implement 7

Support 8.5

Project

Management
3

Total 100 100

Figure 7.3: Ideal breakup of total development time

Similarly we have generated schedule for each module

and test case results (figure 7.4) on the basis of total test

conducted for specific module out of which how many were

successful and how many failed, finally generating defect

rate. On the basis of individual module test cases we

generate a concise test case summary for the whole

software displaying total number of modules, summation of

total test cases considering test cases performed for each

module (figure 7.5). Hence we provide concise report for

total tests, total successful tests, total failed tests and defect

rate (total failures against total test conducted) for the whole

software inclusive of all modules.

Figure 7.4: Schedules for modules and tested cases

Figure 7.5: total generated cases

The above results could be summarized either in form of

textual reports (figure 7.6) or graphical charts (figure 7.7)

Employing Cocomo 81 For Comparing New Proposed SDLC “VISHWAS” With Existing SDLC Models

459

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B0588042212/2012©BEIESP

Figure 7.5: concise textual report depicting total LOC, effort, development time, staff requirement and schedule

details for final released softwares

Figure 7.6: Report in form of chart depicting total LOC, effort, development time, staff requirement and schedule

details for final released softwares

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

460

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B0588042212/2012©BEIESP

IX. CONCLIUSION

All the SDLC models are theoretical in nature so the

SDLC “VISHWAS” model is. But these are the theoretical

practices that are highly accepted and widely used in

developing the software’s. The IT industry employs

different SDLC models for development depending upon

the resources available, client for whom the software is

being developed, developer capabilities, market trends,

team leaders and project manager’s skills etc. There is no

perfect ideological situation or condition that states use of

specific SDLC model for software development of specific

type. The SDLC “VISHWAS” is highly suitable and

recommended to be used when the client needs keeps on

changing at much rapid pace and market trends gets altered

quickly. Employing this model is highly recommendable

for stand alone software’s that are meant for specific

person, company or organization.

X. FUTURE SCOPE

The above model can be extended with risk

management, purchase management, incident management

and configuration management. The software cea (cost

effort analyzer) could even be developed by incorporating

much advance cost estimation models like CoCoMo – II or

COSYSMO.

REFERENCES

1. Software Development Life Cycle (SDLC) – the five common

principles.htm
2. Roger Pressman, titled Software Engineering - a practitioner's

approach

3. Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh,

Copyright © New Age International Publishers, 2007 42 Software

Project Planning(by narender sharma (istk))) The Constructive Cost

Model (CoCoMo) Constructive Cost model (CoCoMo) Basic
Intermediate Detailed Model proposed by B. W. Boehm’s through

his book Software Engineering Economics in 1981.

4. Barry Boehm. Software Engineering Economics. Englewood Cliffs,
NJ:Prentice-Hall, 1981. ISBN 0-13-822122-7

5. Roger S. Pressman, Software Engineering: A Practitioner's Approach

http://www.selectbs.com/analysis-and-design/what-is-the-waterfall-
model

6. Roger S. Pressman, Software Engineering: A Practitioner's Approach

http://en.wikipedia.org/wiki/Incremental_build_model#Incremental_
Model

7. Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani,

Bradford K. Clark, Ellis Horowitz, Ray Madachy, Donald J. Reifer,
and Bert Steece. Software Cost Estimation with CoCoMo II (with

CD-ROM). Englewood Cliffs, NJ:Prentice-Hall, 2000. ISBN 0-13-

026692-2
8. Software Release Management, 6th European Software Engineering

Conference, LNCS 1301, Springer, Berlin, 1997

9. Hoek, A. van der, Wolf, A. L. (2003) Software release management
for component-based software. Software—Practice & Experience.

Vol. 33, Issue 1, pp. 77–98. John Wiley & Sons, Inc. New York, NY,

USA.
10. Software Release Management: Proceedings of the 6th European

Software Engineering Conference, LNCS 1301, Springer, Berlin,

1997(Andre van der Hoek, Richard S. Hall, Dennis Heimbigner, and
Alexander L. Wolf Software Engineering Research Laboratory,

Department of Computer Science, University of Colorado, Boulder,
CO 80309 USA).

AUTHORS PROFILE

Vishwas Massey did his B.E from C.I.T.
Rajnandgaon, Chhattisgarh, India. Currently

pursuing M.Tech in software Engineering from

Rungta College of Engineering & Technology,
Bhilai, India.

 Prof. K. J. Satao is a Professor in Computer
Science & Engineering at Rungta College of

Engineering & Technology, Bhilai(C.G.). He has

obtained his M.S. degree in Software Systems from
BITS, Pilani(Rajasthan) in 1991. He has published

more than 25 Papers in various reputed Journals,

National & International Conferences. He is a Dean
of the Computer Engineering & Information

Technology in Chhattisgarh Swami Vivekanand

Technical University, Bhilai. He is a member of the Executive Council and
the Academic Council of the University. He is a member of CSI and ISTE

since 2000. He has worked in various other Engineering Colleges for

about 24 Years and has over 4 Years industrial experience as well. His
research & development work is equivalent to Ph.D. degree in Computer

Science & Engineering. His area of research includes Operating Systems,

Editors & IDEs, Information System Design & Development, etc.

http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikipedia.org/w/index.php?title=Software_Engineering_Economics_(book)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Special:BookSources/0138221227
http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikipedia.org/w/index.php?title=Software_Cost_Estimation_with_COCOMO_II_(book)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922

