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Abstract— In this paper we present a new method for 

modeling high frequency systems. This method combines the 

scattering formalism with the bond graph model in a new 

technique called scattering bond graph model. This method 

allows describing explicitly the distribution of electromagnetic 

waves of any high frequency system. We applied this method to 

deduce the reflection and transmission coefficient as function as 

frequency of a parallel computing matching network of a Planar 

Inverted F Antenna. 

 
Index Terms—Matching network, scattering   matrix, 

scattering formalism, bond graph modeling, scattering bond 

Graph model, PIFA. 

I. INTRODUCTION 

The scattering formalism which results in a matrix noted S 

can be used to study linear or nonlinear, multi-energy 

representations of physical system [1]. It’s an appropriate 

method to describe the behavior of microwave structure. This 

method represents the relations of transmission and reflection 

waves between different ports of structures. At the same, 

Bond graph is a graphical representation of a physical 

dynamic system. This technique is based on exchange of 

energy and can   give concise description of complex systems. 

By this approach, a physical system can be represented by 

symbols and lines, identifying the power flow paths [2].Many 

researchers proved the possibility of using bond graph model 

jointly with scattering formalism to study physical systems 

[3],[4]. The feasibility and efficiency of using formalism 

scattering jointly with bond graph approach as the 

representation technique of high frequency systems will be 

verified in our experiment with matching Network of Planar 

Inverted F Antenna.We will start this work by the description 

of the scattering method. Then we will show the relationship 

between the scattering formalism and the bond graph method. 

Finally, we will use the two methods jointly to study a 

matching network of Planar Inverted F Antenna. By a simple 

maple programme, we will extract the representation of 

reflection and transmission coefficient in Edges of  
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Antenna. And to validate the found results, we will compare 

them by the results of simulation circuit obtained by advanced 

design system (ADS). 

II. SCATTERING FORMALISM 

Scattering parameters or S-parameters (the elements of a 

scattering matrix or S-matrix) describe the electrical behavior 

of linear electrical networks, they may describe large and 

complex network. S-parameters are useful for electrical 

engineering, electronics engineering, and communication 

systems design, and especially for microwave engineering. 

Scattering matrix, are frequently used to characterize 

multiport networks, especially at high frequencies. They are 

used to represent microwave devices, such as amplifiers and 

circulators, and are easily related to concepts of gain, loss and 

reflection.  S-parameters are readily represented in matrix 

form and obey the rules of matrix algebra. The S-parameter 

matrix for the 2-port network is probably the most commonly 

used and serves as the basic building block for generating the 

matrix of one port network   or multi port networks. Consider 

a circuit or device inserted into a T-Line as shown in the 

Figure1, we can refer to this circuit or device as a two-port 

network. 

 

 
Figure1: Two port- network 

 

The scattering matrix is written as follows: 

 

  11 12

21 22

S S
S

S S

 
  
   

 

The scattering parameters represent ratios of voltage waves 

entering and leaving the ports: 

 
1 11 1 12 2

.V S V S V
  
 

                              [2] 
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2 21 1 22 2

.V S V S V
  
 

                                 [3] 

In matrix form this is written as: 

  

 

11 121 1

21 222 2

,
S SV V

S SV V

 

 


    
    

    
                 [4] 

      .V S V
 


 

 

2

1

11

1 0V

V
S

V 









                                                 [5]   

11S : is the input port voltage reflection coefficient 

  

 

1

1

12

2 0V

V
S

V 









                                          [6]  

 12S : is the reverse voltage gain 

   

 

2

2

21

1 0V

V
S

V 









                                         [7] 

21S : is the forward voltage gain 

 

1

2

22

2 0V

V
S

V 









                                            [8]       

22S :  is the output port voltage reflection coefficient. 

A network is reciprocal if it is equal to its transpose: 

 

 
    ,

t
S S

                                               [9] 

In terms of scattering parameters, a network is lossless if: 

 
     

*
,

t
S S U

                                     [11] 

 

Where [U] is the unitary matrix: 

 

 
1 0

[ ] .
0 1

U 
 
 
 

                                     [12] 

For a 2-port network, the product of the transpose matrix and 

the complex conjugate matrix yields: 

 

 

   
   

   

2 2 * *

11 21 11 12 21 22*

2 2* *

12 11 22 21 12 22

1 0

0 1

t
S S S S S S

S S

S S S S S S

 



 

 
        

   

[13] 

If the network is reciprocal and lossless: 

1
2

21

2

11  SS  

0*

2221

*

1211  SSSS
 

A. Scattering transfer parameters: 

The Scattering transfer parameters or W-parameters of a 

2-port network are expressed by the W-parameter matrix and 

are closely related to the corresponding S-parameter 

matrix[5]. The W-parameter matrix is related to the incident 

and reflected waves at each of the ports as follows: 

 

















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







2

2

2221

1211

1

1

b

a

WW

WW

a

b
               [14] 

However, they could be defined differently, as follows: 

















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







2

2

2221

1211

1

1

a

b

WW

WW

b

a
               [15] 

 11 Va                 
 22 Va  

 11 Vb                 
 22 Vb  

 

21

11

)det(

S

S
W                                             [16] 

21

11
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S

S
W                                                      [17] 

21

22
21

S

S
W                                                    [18] 

21

22

1

S
W                                                       [19] 

From W to S: 

22

12
11

W

W
S                                                  [20] 

22

12

)det(

W

W
S                                              [21] 

22

21

1

W
S                                                        [22] 
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22

21
22

W

W
S


                                                [23] 

Where )det(S indicates the determinant of the matrix  S . 

III. RELATION BETWEEN SCATTERING 

FORMALISM AND BOND GRAPH APPROACH 

Generally, any physical system exists in the form of a 

quadripole inserted between two particular ports P1 and P2 

which respectively represent the entry (source) and the exit 

(load) of the total system, [6]. This system can be represented 

by a generalized bond graph model transformed and reduced 

as the Figure2 indicates it. 

 
Figure 2: The reduced bond graph representation of 

physical system 

1  And 2 = respectively the reduced variable (effort) at the 

entry and the exit of the system. 1 And 2 = respectively the 

reduced variable (flow) at the entry and the exit of the system. 

0

i

effort

R
                                                                  [24] 

0*i flow R                                                         [25] 

 

These are (equation 24 and 25) the reduced effort (e) 

and flow (f) with respect to 0R  .  

To establish the output-input analytical relations, the 

bond graph model of the studied system must be transformed, 

reduced and especially be caused [6][7]. 

Depending on the direction of energy transfer we can get 

four cases of causality given below. For each type of reduced 

and causal bond graph model, we will have one matrix which 

connects the reduced wave-scattering variables to the 

integro-differentials operators ijH . 

 

A. Case 1: Flow-effort causality 

 

 

Figure3: Reduced bond graph model with flow-effort 

causality 
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 
 

       [27] 

 

11 22 12 21H H H H H                                              [28] 

B. Case 2: Effort- flow causality 

 
Figure4: Reduced bond graph model with effort-flow 

causality 
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   [30] 

C. Case 3: Flow- flow causality 

 

 
Figure5: Reduced bond graph model with flow-flow 

causality 
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[32] 

 

All title and author details must be in single-column format 

and must be center aligned. 

D. Case 4: Effort-effort causality: 

 
Figure 6: Reduced bond graph model with Effort-effort 

causality 
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 [34] 

 

We note that ijH are the integro-differentials operators which 

are based in their determination, on the causal ways and 

algebraic loops present in the associated bond graph model. 

 

1

N k k

ij k

G
H 


 


                                              [35]                                                                                                                                                                                

1 ... ( 1) ... ...m

i i j i j kL L L L L L         

                                                                                                     

[36] 

Where:  = the determinant of the causal bond graph. 

ijH = complete gain between jP and iP  

iP = input port. 

jP = output port. 

N= total number of forward paths between iP  and jP  

kG = Gain of the 
thk forward path between iP  

kG = Gain of the 
thk forward path between iP  and jP  

iL = Loop gain of each causal algebraic loop in the bond 

graph model. 

ji LL = Product of the loop gains of any two non touching 

loops (no common causal bond). 

kji LLL =product of the loop gains of any three pair 

non-touching loops. 

k = the factor value of  for the 
thk  forward path, with 

the loops touching the
thk  forward path removed; i.e., 

Remove those parts of the causal bond graph which form the 

loop, while retaining the parts needed for the forward path. 

IV. APPLICATION TO A MATCHING NETWORK 

OF A PLANAR INVERTED F ANTENNA 

The low bandwidth is one of the main disadvantages of 

micro strip antenna. One of the most reliable methods to 

increase the bandwidth of micro strip antenna is to introduce 

multiple resonances by introducing parasitic elements or 

reactive matching circuit between the generator and the 

antenna. 

 

This technique allows increasing the bandwidth not only 

for a single-band antenna, but also for a multi-band antenna. 

In this work we propose a circuit of PIFA antenna that 

resonates at 0.9GHz and 1.8GHz. This antenna is preceded by 

a matching circuit. 

From the scattering bond Graph method we extract the 

different variation of reflection and transmission coefficient   

of the matching circuit. 

The complete circuit is given below: 

 

 
 

Figure7: System of matching Network adding to PIFA 

 

L1= 1.529nH, L2=1.897nH, L3=2.162nH, C1=6.536pF, 

C2=4.865pF, C3=2.431pF 

 

The following bond graph (Figure8) is presented to modeling 

the circuit and to show the distribution of electromagnetic 

waves. Here the antenna is considered as load and it’s 

presented simply by resistance R. 

 

 
 

Figure8: bond graph model of circuit 

To extract the scattering parameters from the bond graph 

representation and by using the new 

method which is described previously, we must transform the 

bond graph model given by figure above(Figure8) into a 

causal bond graph model often named reduced bond graph 

model  only containing the decomposition junction 

(1-jonction or 0-jonction) and the reduced variables. 

The causal bond graph of circuit is given by Figure9. 
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Figure9: The reduced and transformed bond graph 

model 
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02 .
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                    03.

3
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By decomposition the reduced bond graph given by  

 

figure 9, we will have the following bond graph 

representation: 

 
Figure10: The tow bond graph sub-model 

 

Notice that: 

• iz : the reduced equivalent impedance of the element i put in 

series. 

• iy : the reduced equivalent admittance of the element i put in 

parallel. 

 

So we have: 
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0

1
1

R

R
r   

s: The laplace operator 

 

We have the integro differentials operators by taking into 

account to the previously equations from the   reduced bond 

graph model with effort-flow causality:  

11

1
.

1

yz
B  : Loop gain of the algebraic loop by the first 

sub- model 
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yz
B  : Loop gain of the algebraic loop by the 

second sub- model  
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1
.

1
1
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 : Determinant of causal bond graph of 

the first sub- model 
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2
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1
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yz
 : Determinant of causal bond graph of the 

second sub- model  
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: The all integro- differentials operators of the first sub model 
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: The all integro- differentials operators of the second sub- 

model 

From these operators, we can deduce directly the wave matrix 

of the first and second sub-model by taking into account to 

equations 30 of the reduced bond graph model with 

effort-flow causality: 











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The wave matrix of the complete system can be given by the 

product of the first and the second wave matrix such us: 









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2221

1211)2()1()( *
WW

WW
WWW T

 

V. SIMULATION RESULTS OF THE SCATTERING 

PARAMETERS 

A simple programming and simulation of the above 

scattering parameters equations, give the figure 12, figure 14, 

figure 16 and figure 18 below which represent respectively 

the reflection and transmission coefficients of the studied 

matching network. 

To validate the results of the scattering equations we 

simulated the circuit of matching network by ADS software, 

the results obtained are Figure 13, 15, 17 and 19. 

 
Figure11: circuit of matching network simulated by ADS 

 
 

 

 
 

 
 

 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-2 Issue-2, May 2012 

365 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  
Retrieval Number: B0617042212/2012©BEIESP 

 

 

 

We note that the results obtained from the scattering bond 

graph method are similar to the results obtained by ADS. That 

implies the effectiveness of the chosen method 

VI. CONCLUSION 

In this work we presented a new method to analyze high 

frequency systems. This method is based on the combination 

of scattering formalism with the bond graph model; it is 

applied scattering bond graph method. We applied it to 

analyze a matching network circuit of PIFA. To validate the 

obtained results we compared them with the results of 

simulation circuit by ADS. The advantage of scattering bond 

graph method is the simplicity and speed execution. It can 

also get an idea about a high frequency system before 

conception step, such as gain, bandwidth, reflection and 

transmission coefficient. 
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