
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

528 Retrieval Number: B0641042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract :- This paper contrasts physical implementation

aspects of the protocol through a number of recent Xilinx’s FPGA

families, showing up the protocol features are responsible of

substantial area overhead and power overhead. These help

designers to make careful and tightly tailored architecture

decisions. These RTL coding is carried out for the I2C protocol

using the HDL code. The verification methodology carries a

important role in design of the VLSI, As the functional

verification of the I2C is covered using Open Verification

Methodology (OVM) which does not interfere with DUT. This

verification method provides the I2C with fault free and useable

for modern day applications. The OVM is carried using

Questasim10.0b.

Index Terms:- I2C, FPGA, OVM, Functional verification,

HDL.

I. INTRODUCTION

The I2C bus was developed in the early 1980's by Philips

Semiconductors. Its original purpose was to provide an easy

way to connect a CPU to peripherals in a chipset. Peripheral

devices in embedded systems are often connected to the MCU

as memory-mapped I/O devices, using the microcontroller's

parallel address and data bus. This result in lots of wiring on

the PCB's to route the address and data lines, not to mention a

number of address decoders and glue logic to connect

everything. In mass production electronic equipment, this is

not acceptable. Furthermore, lots of control lines implies that

the systems is more susceptible to disturbances by

Electromagnetic Interference (EMI) and Electrostatic

Discharge (ESD). The bus is generally accepted in the

industry as a de-facto standard.

The Open Verification Methodology (OVM) is a

documented methodology with a supporting building-block

library for the verification of semiconductor chip designs. The

initial version, OVM 1.0, was released in January, 2008, and

regular updates have expanded its functionality. The latest

version is OVM 2.1.2, released in January, 2011. The current

release and all previous releases are available, under

the Apache License, on the OVM World site. Verifying a

Manuscript received on April 26, 2012.

 B. Santosh Kumar, M.tech VLSI, KL University, Vijayawada, India,

Mobile No 9705965999, (e-mail:88santu@gamil.com).

L. Ravi Chandra, ECE, KL University Vijayawada, India, Mobile No

9849224324.

A. L. G. N. Aditya, M.tech VLSI, KL University, Vijayawada, India,

Mobile No 9014936978, (e-mail:adityasind@gamil.com).

Fazal Noor Basha, ECE, KL University Vijayawada, India,(e-mail:

fazalnoorbasha@kluniversity.in)

T. Praveen Blessington , ECE, KL University Vijayawada, India,(

e-mail: praveentblessington@kluniversity.in)

design consists of two major parts: stimulus generation and an

analysis of the designs response. Stimulus generation sets up

the device and puts it in a particular state, then the analysis

part actually performs the verification. The analysis portion of

a test bench is made up of components that observe behavior

and make a judgment whether or not the device conforms to

its specification. Examples of specified behavior include

functional behavior, performance, and power utilization. The

process by which the analysis section makes its judgment

starts with observing response activity in the device under test

(DUT). This is done by one or more monitors that observe the

signal-level activity on the DUT through a virtual interface(s).

The monitor converts signal-level activity into TLM

transactions, and broadcasts the transactions to interested

analysis components using analysis ports which are connected

to subscribers. These subscribers capture the transactions and

perform their analysis.

II. I2C BUS PROTOCOL

The I2C bus is a multi-master bus. This means that more

than one IC capable of initiating a data transfer can be

connected to it. The I2C protocol specification states that the

IC that initiates a data transfer on the bus is considered the

Bus Master. Consequently, at that time, all the other ICs are

regarded to be Bus Slaves. As bus masters are generally

microcontrollers, let's take a look at a general 'inter-IC chat'

on the bus. Let’s consider the following setup and assume the

MCU wants to send data to one of its slaves.Proposed Delay

Element.

III. SLAVES CONNECTED TO MASTER

First, the MCU will issue a START condition. This acts as an

'Attention' signal to all of the connected devices. All ICs on

the bus will listen to the bus for incoming data.

Figure 1: I2C bus Architecture

Design and Functional Verification of I2C

Master Core using OVM

B. Santosh Kumar,

L. Ravi Chandra, A. L. G. N. Aditya, Fazal Noor Basha, T. Praveen

Blessington

Design and Functional Verification of I2C Master Core using OVM

529

Retrieval Number: B0641042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Then the MCU sends the ADDRESS of the device it wants

to access, along with an indication whether the access is a

Read or Write operation. Having received the address, all IC's

will compare it with their own address. If it doesn't match,

they simply wait until the bus is released by the stop

condition. If the address matches, however, the chip will

produce a response called the ACKNOWLEDGE signal.

Once the MCU receives the acknowledgment, it can start

transmitting or receiving DATA. We have had several unique

condition states on the bus in our example: START,

ADDRESS, ACKNOWLEDGE, DATA , STOP.

IV. I2C BUS EVENTS: TRANSMITTING A BYTE TO A

SLAVE

Once the start condition has been sent, a byte can be

transmitted by the MASTER to the SLAVE. This first byte

after a start condition will identify the slave on the bus

(address) and will select the mode of operation.

Figure 2: Timing analysis of the SDA and SCL

A number of addresses have been reserved for special

purposes. One of these addresses is reserved for the

"Extended Addressing Mode". Besides considering the

limitation of I2c, that the number of available addresses was

too small. Therefore, one of the reserved addresses has been

allocated to a new task to switch to 10-bit addressing mode. If

a standard slave doesn’t initiate for the reception of reserved

address.

I2C Bus Events: Receiving a byte from a slave

Once the slave has been addressed and the slave has

acknowledged this, a byte can be received from the slave if

the R/W bit in the address was set to READ (set to '1'). The

protocol syntax is the same as in transmitting a byte to a slave,

except that now the master is not allowed to touch the SDA

line. Prior to sending the 8 clock pulses needed to clock in a

byte on the SCL line, the master releases the SDA line. The

slave will now take control of this line. The line will then go

high if it wants to transmit a '1' or, if the slave wants to send a

'0', remain low.

Figure 3: Clock diagram

 All the master has to do is generate a rising edge on the

SCL line (2), read the level on SDA (3) and generate a falling

edge on the SCL line (4). The slave will not change the data

during the time that SCL is high. (Otherwise a Start or Stop

condition might inadvertently be generated) During (1) and

(5), the slave may change the state of the SDA line.In total,

this sequence has to be performed 8 times to complete the data

byte. Bytes are always transmitted MSB first.

Figure 4: Analysis of SDA and SCL

I. I2C BUS EVENTS: THE START AND STOP CONDITIONS

Prior to any transaction on the bus, a START condition

needs to be issued that enables the transmission/reception on

the bus and control shifts towards the bus. After a message has

been completed, a STOP condition is sent. This is the signal

enables the idle state.

1. I2C Bus Events: Getting Acknowledge from a slave

When an address or data byte has been transmitted onto the

bus then this must be acknowledged by the slave(s). In case of

an address: If the address matches its own then that slave and

only that slave will respond to the address with an ACK. In

case of a byte transmitted to an already addressed slave then

that slave will respond with an ACK as well. The slave that is

going to give an ACK pulls the SDA line low immediately

after reception of the 8th bit transmitted, or, in case of an

address byte, immediately after evaluation of its address. In

practical applications this will not be noticeable.

Figure 5: Timing diagram for SLAVES

V. I2C Bus Hardware

The bus physically consists of 2 active wires called SDA

(data) and SCL (clock), and a ground connection. Both SDA

and SCL are initially bi-directional. This means that in a

particular device, these lines can be driven by the IC itself or

from an external device. In order to achieve this functionality,

these signals use open collector or open drain outputs

(depending on the technology).

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

530 Retrieval Number: B0641042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Figure 6: Basic diagram of I2C

 The bus interface is built around an input buffer and an

open drain or open collector transistor. When the bus is IDLE,

the bus lines are in the logic HIGH state (note that external

pull-up resistors are necessary for this which is easily

forgotten). To put a signal on the bus, the chip drives its

output transistor, thus pulling the bus to a LOW level. The

"pull-up resistor" in the devices as seen in the figure is

actually a small current source or even non-existent. If the bus

is "occupied" by a chip that is sending a 0, then all other chips

lose their right to access the bus this is referred as Built-in

mastering technique. However, the open-collector technique

has a drawback, too. If you have a long bus, this will have a

serious effect on the speed you can obtain. Long lines present

a capacitive load for the output drivers. Since the pull-up is

passive, you are facing an RC constant which will reflect on

the shapes of the signals. The higher this RC constant, the

slower the bus. This is due to the effect that it influences the

slew rate of the edges on the I2C bus, this undifferentiated the

logic ‘0’ and ‘1’.

At high speed the reflection is unavoidable can be so bad

that "ghost signals" disturb your transmission and corrupt the

data you transmit. The device developed by Philips consists

of a twin charge pump. The moment the state changes, the

dynamic resistor provide a large current (low dynamic

resistance) to the bus, so it can charge the parasitic capacitor

very quickly. Once the voltage has been increased the

threshold level, the high current mode cuts out and the output

current drops sharply. As long as the bus is kept low

(transistor C is on), the charge pump is disabled because the

gate of transistor B is kept low by transistor

Figure 7: Influence of line length and bus termination on

waveforms

As soon as the chip releases the bus (A and C turn off), the

capacitor will start charging, drawing current trough all four

of the resistors (1 - 4). The voltage drop over resistor 2 will

cause the transistor B to turn on, shorting out resistor 3. Since

resistor 3 is a relatively low value, the current will rise. At a

certain point in time, the drop between transistor B's gate and

source will not be big enough to keep it switched on. It will

then switch off and the charge injection will stop. At that time,

only the external pull-up resistor remains to overcome the

charge leakage on the bus.

VI. I2C Bus Arbitration

The I2C bus is explained with one master in operation but

in practical it was originally developed as a multi-master bus.

When using only one master on the bus there is no real risk of

corrupted data, except if a slave device is malfunctioning or if

there is a fault condition involving the SDA / SCL bus lines.

This situation changes with 2 MCU's:

Fig 8 Master-Salve-Master with I2C bus

When MCU 1 issues a start condition and sends an address,

all slaves will listen (including MCU 2 which at that time is

considered a slave as well). If the address does not match the

address of CPU 2, this device has to hold back any activity

until the bus becomes idle again after a stop condition. As

long as the two MCU's monitor what is going on the bus (start

and stop) and as long as they are aware that a transaction is

going on because the last issued command was not a STOP,

there is no problem.

Let's assume one of the MCU's missed the START

condition and still thinks the bus is idle, or it just came out of

reset and wants to start talking on the bus which could very

well happen in a real-life scenario. This could lead to

problems. But the physical bus setup helps us out as the bus

structure is a wired AND (if one device pulls a line low it stays

low), you can test if the bus is idle or occupied. When a master

changes the state of a line to HIGH, it MUST always check

that the line really has gone to HIGH. If it stays low then this is

an indication that the bus is occupied and some other device is

pulling the line low. Therefore the general rule of thumb is: If

a master can't get a certain line to go high, it lost arbitration

and needs to back off and wait until a stop condition is seen

before making another attempt to start transmitting.

Figure 9: Analysis of SDA SCL

Design and Functional Verification of I2C Master Core using OVM

531

Retrieval Number: B0641042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

VII. CLOCK SYNCHRONIZATION

All masters generate their own clock on the SCL line to

transfer messages on the I2C-bus. Data is only valid during

the HIGH period of the clock. A defined clock is therefore

needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND

connection of I2C interfaces to the SCL line. This means that

a HIGH to LOW transition on the SCL line will cause the

devices concerned to start counting off their LOW period and,

once a device clock has gone LOW, it will hold the SCL line

in that state until the clock HIGH state is reached.

Figure 10: Block diagram of generic system using I2C

However, the LOW to HIGH transition of this clock may

not change the state of the SCL line if another clock is still

within its LOW period. The SCL line will therefore be held

LOW by the device with the longest LOW period.

VIII. I2C BUS EVENTS

A. Giving Acknowledge to a slave

Upon reception of a byte from a slave, the master must

acknowledge this to the slave device. The master is in full

control of the SDA and the SCL line.

 After transmission of the last bit to the master (1) the

slave will release the SDA line. The SDA line should then go

high (2). The Master will now pull the SDA line low (3) Next,

the master will put a clock pulse on the SCL line (4). After

completion of this clock pulse, the master will again release

the SDA line (5). The slave will now regain control of the

SDA line (6). Note: The above waveform is slightly

exaggerated. You will not notice SDA going high in (2) and

(5). A small spike might barely be visible.

If the master wants to stop receiving data from the slave, it

must be able to send a stop condition. Since the slave regains

control of the SDA line after the ACK cycle issued by the

master, this could lead to problems. Let's assume the next bit

ready to be sent to the master is a 0. The SDA line would be

pulled low by the slave immediately after the master takes the

SCL line low. The master now attempts to generate a Stop

condition on the bus. It releases the SCL line first and then

tries to release the SDA line - which is held low by the slave.

Conclusion: No Stop condition has been generated on the bus.

This condition is called a NACK : Not Acknowledge . Do not

confuse this with No Acknowledge

B. No Acknowledge (from slave to master)

This is not exactly a condition. It is merely a state in the

data flow between master and slave. If, after transmission of

the 8th bit from the master to the slave the slave does not pull

the SDA line low, then this is considered a No ACK

condition.

C. Enhanced I2C (FAST mode)

In the FAST mode, the physical bus parameters are not

altered. The protocol, bus levels, capacitive load etc. remain

unchanged. However, the data rate has been increased to 400

Kbit/s and a constraint has been set on the level of noise that

can be present in the system. The input of the FAST mode

devices all include Schmitt triggers to suppress noise. The

output buffers include slope control for the falling edges of

the SDA and SCL signals. If the power supply of a FAST

mode device is switched off, the bus pins must be floating so

that they do not obstruct the bus.

IX. OPEN VERIFICATION METHODOLOGY

OVM provides the best framework to achieve

coverage-driven verification (CDV). CDV combines

automatic test generation, self-checking test benches, and

coverage metrics to significantly reduce the time spent

verifying a design. The purpose of CDV is to:

■ Eliminate the effort and time spent creating hundreds of

tests.

■ Ensure thorough verification using up-front goal setting.

■ Receive early error notifications and deploy run-time

checking and error analysis to

Simplify debugging. The CDV flow is different than the

traditional directed-testing flow. With CDV, you start by

setting verification goals using an organized planning

process. You then create a smart test bench that generates

legal stimuli and sends it to the DUT. Coverage monitors are

added to the environment to measure progress and identify

non-exercised functionality. Checkers are added to identify

undesired DUT behavior. Simulations are launched after both

the coverage model and testbench have been implemented.

Verification then can be achieved. Using CDV, you can

thoroughly verify your design by changing testbench

parameters or changing the randomization seed. Test

constraints can be added on top of the smart infrastructure to

tune the simulation to meet verification goals sooner. Ranking

technology allows you to identify the tests and seeds that

contribute to the verification goals, and to remove redundant

tests from a test-suite regression.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

532 Retrieval Number: B0641042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Figure 12: OVM test bench setup

CDV environments support both directed and

constrained-random testing. However, the preferred approach

is to let constrained-random testing do most of the work

before devoting effort to writing time-consuming,

deterministic tests to reach specific scenarios that are too

difficult to reach randomly. Significant efficiency and

visibility into the verification process can be achieved by

proper planning. Creating an executable plan with concrete

metrics enables you to accurately measure progress and

thoroughness throughout the design and verification project.

By using this method, sources of coverage can be planned,

observed, ranked, and reported at the feature level. Using an

abstracted, feature-based approach (and not relying on

implementation details) enables you to have a more readable,

scalable, and reusable verification plan.

OVC Overview

The following subsections describe the components of an

OVC:

Data Item (Transaction)

Driver (BFM)

Sequencer

Monitor

Agent

Environment

Data Item:

Data items represent the input to the DUT. Examples

include networking packets, bus transactions, and

instructions. The fields and attributes of a data item are

derived from the data item’s specification. For example, the

Ethernet protocol specification defines valid values and

attributes for an Ethernet data packet. In a typical test, many

data items are generated and sent to the DUT. By intelligently

randomizing data item fields using System Verilog

constraints, you can create a large number of meaningful tests

and maximize coverage.

Driver (BFM):

A driver is an active entity that emulates logic that drives

the DUT. A typical driver repeatedly receives a data item and

drives it to the DUT by sampling and driving the DUT signals.

(If you have created a verification environment in the past,

you probably have implemented driver functionality.) For

example, a driver controls the read/write signal, address bus,

and data bus for a number of clocks cycles to perform a write

transfer.

Sequencer:

A sequencer is an advanced stimulus generator that

controls the items that are provided to the driver for

execution. By default, a sequencer behaves similarly to a

simple stimulus generator and returns a random data item

upon request from the driver. This default behavior allows

you to add constraints to the data item class in order to control

the distribution of randomized values. Unlike generators that

randomize arrays of transactions or one transaction at a time,

a sequencer captures important randomization requirements

out-of-the box. A partial list of the sequencer’s built-in

capabilities includes.

Monitor:

A monitor is a passive entity that samples DUT signals but

does not drive them. Monitors collect coverage information

and perform checking. Even though reusable drivers and

sequencers drive bus traffic, they are not used for coverage

and checking. Monitors are used instead. A monitor: Collects

transactions (data items). A monitor extracts signal

information from a bus and translates the information into a

transaction that can be made available to other components

and to the test writer.

■ Extracts events: The monitor detects the availability of

information (such as a transaction), structures the data, and

emits an event to notify other components of the availability

of the transaction. A monitor also captures status information

so it is available to other components and to the test writer.

■ Performs checking and coverage

Agent: Sequencers, drivers, and monitors can be reused

independently, but this requires the environment integrator to

learn the names, roles, configuration, and hookup of each of

these entities. To reduce the amount of work and knowledge

required by the test writer, OVM recommends that

environment developers create a more abstract container

called an agent. Agents can emulate and verify DUT devices.

They encapsulate a driver, sequencer, and monitor.. Agents

should be configurable so that they can be either active or

passive. Active agents emulate devices and drive transactions

according to test directives. Passive agents only monitor DUT

activity.

Environment :

The environment (env) is the top-level component of the

OVC. It contains one or more agents,as well as other

components such as a bus monitor. The env contains

configuration properties that enable you to customize the

topology and behavior and make it reusable. For example,

active agents can be changed into passive agents when the

verification environment is reused in system verification.

X. RESULTS

 The I2C is implemented using the VHDL with full duplex

mode which allows the communication between the master

and the salve through the handshaking protocol. When a slow

slave is attached to the bus then problems may occur. This

mechanism works on the SCL line only. The slave that wants

the master to wait simply pulls the SCL low as long as needed.

If the SCL gets stuck due to an electrical failure of a circuit,

the master can go into deadlock and this can be handled by

timeout counters. Another drawback is speed. The bus is

locked at that moment.. Other masters cannot use the bus at

that time either. his technique does not interfere with the

previously introduced arbitration mechanism because the low

SCL line will lead to back-off

situations in other devices which

possibly would want to "claim"

the bus. So there is no real

Design and Functional Verification of I2C Master Core using OVM

533

Retrieval Number: B0641042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

drawback to this technique except the loss of speed /

bandwidth and some software overhead in the masters. You

can use this mechanism between masters in a multi-master

environment. As soon as you have three or more masters this

is very handy rather than 2 masters. So the implementation is

carried with three slaves and master.

Fig 11 simulation of I2C bus

B. Functional Verifiaction of I2C using OVM

 The functional verifiaction of the I2C is carried using the

Questasim10.0b for the complete coverage of the RTL design

of the I2C. The verification is carried for both the read and

writre operation.

Fig 12. Simulation of the I2C Functional verification for

Read operation

Fig 13. Simulation of the I2C functional verification for

write operation

XI. CONCLUSION

 The I2C IP core for intercommunication bus is designed

using the HDL for master and salve and for the master to

master communication in full duplex mode. This RTL design

is carried out the functional verification using OVM in

Questasim and Xilinx. This methodolgy provides the

complete coverage of the RTL design so as to acquire the fault

free Protocol design of I2C. So that can be implemented in

real time systems.

REFERENCES

1. AN_108_Command_Processor_for_MPSSE_anMCU_Host_Bus_Em

ulation_Modes. Philips I2C datasheet.

2. D2XX Programmer‟s Guide

3. Datasheet for FT2232H V202 I2C protocol

4. Datasheet for Microchip 24LC256 – 2K I2C Serial EEPROM.

5. “Introduction to I2C Bus”: Available at

http://www.semiconductors.philips.com/i2c.

6. P. Venkateswaran, “FPGA Based Efficient Interface Model for

Scalefree Computer Network using I2C Bus Protocol”; Spl. Issue –

Advances in Computer Sci. & Engg., ISSN 1870-4069, Pub. By

7. National Polytechnic Institute, Mexico, Vol.23, pp. 191- 198, Nov.

21-24, 2006.

AUTHORS PROFILE

B.santosh kumar was born in vijayawada, krishna (Dist.), AP, India. He

received B.Tech. in Electronics & Communication Engineering from

Bapatla engg college. ,Bapatla ,prakasam (Dist.,),AP, India ,M.Tech from

KL University , Vijayawada, AP, India

L.Ravi Chandra Assistant professor, ECE department, K.L.UNIVERSITY,

He received his M.TECH in the branch of VLSI, His interests are in digital

front end design.

A.L.G.N Aditya was born in vizag, vizag(dist),AP, India. He received

B.Tech. in Electronics & Communication Engineering from TPIST,AP.

India ,M.Tech from KL University , Vijayawada, AP, India. He has

undergone 8 international conferences and 1 publishment in IEEE

Dr. Fazal Noorbasha, Presently working as an Assistant Professor,

Department of Electronics and Communication Engineering, KL University,

Guntur, Andhra Pradesh, India, where he has been engaged in teaching and

research, VLSI Research Group Head, Department Curriculum Committee

(DCC) Member. His interest of research and development is Low-power

VLSI, High-speed CMOS VLSI SoC, Memory Processors LSI’s, Digital

Image Processing, Embedded Systems and Nanotechnology. He has

published and presented over 35 Science and Technical papers in various

International and National reputed journals and conferences. He is a

Scientific and Technical Committee & Editorial Review Board Member in

Engineering and Applied Sciences of World Academy of Science

Engineering and Technology (WASET), Advisory Board Member of

International Journal of Advances Engineering & Technology (IJAET), Life

Member of Indian Society for Technical Education (ISTE-India), Member of

International Association of Engineers (IAENG-China) and Senior Member

of International Association of Computer Science and Information

Technology (IACSIT-Singapore).

E-Mail: fazalnoorbasha@kluniversity.in

T.Praveen Blessington, Presently working as an Associate Professor &

research scholar in Department of ECE, KL University, Guntur, Andhra

Pradesh, India, where he has been engaged in teaching and research in VLSI

& embedded designs. He is a member of VLSI Research Group, Department

Curriculum Committee (DCC) Member. His interest is research and

development in SOC, NOC Architectures, Low-Power VLSI & Embedded

Systems. He has published and presented various International and National

reputed journals and conferences. He is a life member of IETE, ISTE and

SCIEI. E-Mail: praveentblessington@kluniversity.in

mailto:fazalnoorbasha@kluniversity.in
mailto:praveentblessington@kluniversity.in

