
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

534 Retrieval Number: B0644042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract—The OPB GPIO design provides a general purpose

input/output interface to a 32-bit On-Chip Peripheral Bus (OPB).

The GPIO IP core is user-programmable general-purpose I/O

controller. That is use is to implement functions that are not

implemented with the dedicated controllers in a system and

require simple input and/or output software controlled signals. It

is one of the important peripheral that is listed on any FPGA

board. In this project we are atomizing the operation of the GPIO

by writing the code in SYSTEM-VERILOG and simulating it in

QUESTA MODELSIM. The main aim of this project is to verify

the output by using GPIO pins depending up on the preference the

code. We verify the GPIO modules by using OVM [Open

verification Methodology]. The functional verification of the RTL

design of the GPIO is carried out for the better optimum design.

Index Terms— GPIO,OPB,QUESTA MODELSIM, System

Verilog, FPGA.

I. INTRODUCTION

The GPIO module is part of Inicore's IP module family.

This general purpose input/output controller provides some

unique features that eases system integration and use. Each

GPIO port can be configured for input, output or bypass

mode. All output data can be set in one access. Single or

multiples bits can be set or cleared independently. Every

GPIO port can serve as an interrupt source and has its own

configuration options:

• Level sensitive, single edge triggered or level change

• Active high or low respectively rising edge or falling

edge

• Individual interrupt enable register and status flags The

core provides several synthesis options to ease the system

integration and minimize the gate count:

• Selectable CPU bus width: default options are 8/16/32-bit

• Selectable number of GPIO ports

• CPU read back enable

Manuscript received on April 26, 2012.

L. VeeraRaju, M.tech VLSI, K L University, Vijayawada, India,

9966461747., (e-mail: veera.raju143@gamil.com).
B. KaliVara Prasad, E.C.E Dept, K L University, Vijayawada, India,

Phone 9440568944. (e-mail: baditakali@rediffmail.com).

A. L. G. N. Aditya, M.tech VLSI, K L University, Vijayawada, India,
Phone 9014936978, (e-mail: adityasind@hotmail.com).

A. Jhansi Rani, M.tech VLSI, K L University, Vijayawada, India,

9985799965., (e-mail:Jhansi.atluri@gamil.com).
D. NagaDilip Kumar, M.tech VLSI, K L University, Vijayawada, India,

9052290361., (e-mail:dilipnaga@gamil.com)

II. GPIO(GENERAL PURPOSE I/O)

Is a generic pin on a chip whose behavior (including

whether it is an input or output pin) can be controlled

(programmed) through software. GPIO pins have no special

purpose defined, and go unused by default. The idea is that

sometimes the system integrator building a full system that

uses the chip might find useful to have a handful of additional

digital control lines, and having these available from the chip

can save the hassle of having to arrange additional circuitry to

provide them. For example, the Realtek ALC260 chips

(audio codec) have 4 GPIO pins, which go unused by default.

Some system integrators (Acer laptops) employing the

ALC260 use the first GPIO (GPIO0) to turn on the amplifier

used for the laptop's internal speakers and external

headphone jack.

A. Architecture of GPIO

Fig.1 Architecture of GP I/O

i.Clocks : The GPIO core has two clock domains. All

registers except RGPIO_IN are in system

clock domain.RGPIO_IN register can be clocked by

system clock or by external clock reference.

ii. APB Interface: The host interface is implemented using

a 32 bit APB compliant slave interface.GPIO Registers.The

GPIO IP Core has several software accessible registers. Most

registers have the samewidth as number of general-purpose

I/O signals and they can be from 1 – 32 bits. Thehost through

these registers programs type and operation of each

general-purpose I/Osignal.

L. Veera Raju, B. Kali Vara Prasad, A. L. G. N. Aditya, A. Jhansi Rani, D. Naga Dilip Kumar

Functional Verification of GPIO Core using

OVM

mailto:adityasind@hotmail.com

Functional Verification of GPIO Core using OVM

535

Retrieval Number: B0644042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

iii. Auxiliary Inputs:The auxiliary inputs can bypass

RGPIO_OUT outputs based on programming

ofRPGIO_AUX register. Auxiliary inputs are used to

multiplex other on-chip peripheralson GPIO pins.Interface to

External I/O Cells and PadsExternal interface connects GPIO

core to external I/O ring cells and pads. To supportopen-drain

or three-state outputs, appropriate open-drain or three-state

I/O cells must beused.Part of external interface is also ECLK

register. It can be used to register inputs based on external

clock reference.

General-purpose inputs can generate interrupts so that

software does not have to be inpoll mode all the time when

sampling inputs.Switching output drivers into open-drain or

three-state mode will disable general-purposeoutputs.To

lower number of pins of the chip, other on-chip peripherals

can be multiplexedtogether with the GPIO pins. For this

purpose, auxiliary inputs can be multiplexed

ongeneral-purpose outputs.

iv.. Hardware Reset:

Following hardware reset all general-purpose I/O signals

are set into input mode.Meaning, all output drivers are

disabled. All interrupts are masked, so that inputs wouldnot

generate any spurious interrupts. Gpio_eclk signal is not used

to latch inputs intoRGPIO_IN register; instead system clock

is usedGeneral-Purpose I/O as Polled InputTo use

general-purpose I/O as input only, corresponding bit in

RGPIO_OE register mustbe cleared to select input mode. Bit

RGPIO_CTRL[INTE] and corresponding bit

inRGPIO_INTE register must be cleared as well, to disabled

generation of interrupts.Bit RGPIO_IN register reflects

registered value of general-purpose input signal.

RGPIO_IN is updated on positive edge of system clock or

if RGPIO_ECLK appropriatebit is set, on gpio_eclk edge.

Which clock edge is selected, is defined by value

ofRGPIO_NEC appropriate bit.

v. General-Purpose I/O as Input in Interrupt Mode:

To use general-purpose I/O as input with generation of

interrupts, corresponding bit inRGPIO_OE register must be

cleared to select input mode. Corresponding bit

inRGPIO_PTRIG register must be set to generate an interrupt

on positive edge event ongeneral-purpose input. To generate

an interrupt on negative edge event, corresponding bitin

RGPIO_PTRIG register must be cleared. If we are enabling

interrupts for the first time,we also need to clear interrupt

status register RGPIO_INTS. Last, RGPIO_CTRL[INTE]bit

and corresponding bit in RGPIO_INTE register must be set to

enable generation ofinterrupts.Bit RGPIO_IN register

reflects registered value of general-purpose input

signal.RGPIO_IN is updated on positive edge of system

clock or if RGPIO_ECLK appropriatebit is set, on gpio_eclk

edge. Which clock edge is selected, is defined by value

ofRGPIO_NEC appropriate bit.

Which input caused an interrupt is recorded in interrupt

status register RGPIO_INTS.Inputs that caused an interrupt

since last clearing of RGPIO_INTS have bits set.

Interruptcan be de-asserted by writing zero in RGPIO_INTS

register and control register bitRGPIO_CTRL[INTS].

Another way to de-assert interrupts is to disable them by

clearingcontrol bit RGPIO_CTRL[INTE].

vi.General-Purpose I/O as Output

To enable general-purpose I/O output driver,

corresponding bit in RGPIO_OE must beset. Corresponding

bit in RGPIO_OUT register must be set to the value that is

required tobe driven on output driver. Corresponding bit in

RGPIO_INTE register must be cleared todisable generation

of spurious interrupts.Clearing bit in RGPIO_OE register

will disable output driver and enable three-state

oropen-drain.General-Purpose I/O as Bi-Directional I/OTo

use general-purpose I/O as bi-directional signal,

corresponding bit in RGPIO_OEmust be toggled to enable or

disable three-state or open-drain mode of

bi-directionaldriver. Corresponding bit in RGPIO_OUT

register must be set to the value that isrequired to be driven on

output driver. Corresponding bit in RGPIO_INTE register

mustbe cleared to disable generation of spurious interrupts. If

input should generate interrupts,corresponding bit in

RGPIO_INTE register must be set and if required also

correspondingbit in RGPIO_PTRIG should be

set.Corresponding bit RGPIO_IN register reflects registered

value of general-purpose inputsignal. RGPIO_IN is updated

on positive edge of system clock or if RGPIO_ECLK bit

isset, on gpio_eclk edge.

Which clock edge is selected, is defined by value of

RGPIO_NEC bit. If an interrupt is enabled and pending, it

can be de-asserted by writing zero in RGPIO_INTS register

and control register bit RGPIO_CTRL[INTS]. Another way

to dessert interrupts is to disable them by clearing control bit

RGPIO_CTRL[INTE]General-Purpose I/O driven by

Auxiliary Input

To drive general-purpose output with auxiliary input,

corresponding bit in RGPIO_OEmust be set to enable output

driver. Corresponding bit in RGPIO_AUX must be set to

enable multiplexing of auxiliary input onto general-purpose

output.

III. OPEN VERIFICATION METHODOLOGY

OVM provides the best framework to achieve

coverage-driven verification (CDV). CDV combines

automatic test generation, self-checking test benches, and

coverage metrics to significantly reduce the time spent

verifying a design. The purpose of CDV is to:

■ Eliminate the effort and time spent creating hundreds of

tests.

■ Ensure thorough verification using up-front goal setting.

■ Receive early error notifications and deploy run-time

checking and error analysis to

Simplify debugging. The CDV flow is different than the

traditional directed-testing flow. With CDV, you start by

setting verification goals using an organized planning

process. You then create a smart test bench as shown in fig2

that generates legal stimuli and sends it to the DUT. Coverage

monitors are added to the environment to measure progress

and identify non-exercised functionality. Checkers are added

to identify undesired DUT behavior. Simulations are

launched after both the coverage model and testbench have

been implemented. Verification then can be achieved. Using

CDV, you can thoroughly

verify your design by changing

testbench parameters or

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

536 Retrieval Number: B0644042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

changing the randomization seed. Test constraints can be

added on top of the smart infrastructure to tune the simulation

to meet verification goals sooner. Ranking technology allows

you to identify the tests and seeds that contribute to the

verification goals, and to remove redundant tests from a

test-suite regression.

Fig 2 OVM Test Bench setup

OVC Overview

 The following subsections describe the

components of an OVC:

 Data Item (Transaction)

 Driver (BFM)

 Sequencer

 Monitor

 Agent

 Environment

A. Data Item:

Data items represent the input to the DUT. Examples

include networking packets, bus transactions, and

instructions. The fields and attributes of a data item are

derived from the data item’s specification. For example, the

Ethernet protocol specification defines valid values and

attributes for an Ethernet data packet. In a typical test, many

data items are generated and sent to the DUT. By intelligently

randomizing data item fields using System Verilog

constraints, you can create a large number of meaningful tests

and maximize coverage.

B. Driver (BFM):

A driver is an active entity that emulates logic that drives

the DUT. A typical driver repeatedly receives a data item and

drives it to the DUT by sampling and driving the DUT

signals. (If you have created a verification environment in the

past, you probably have implemented driver functionality.)

For example, a driver controls the read/write signal, address

bus, and data bus for a number of clocks cycles to perform a

write transfer.

Sequencer:

A sequencer is an advanced stimulus generator that

controls the items that are provided to the driver for

execution. By default, a sequencer behaves similarly to a

simple stimulus generator and returns a random data item

upon request from the driver. This default behavior allows

you to add constraints to the data item class in order to control

the distribution of randomized values. Unlike generators that

randomize arrays of transactions or one transaction at a time,

a sequencer captures important randomization requirements

out-of-the box. A partial list of the sequencer’s built-in

capabilities includes.

C. Monitor:

A monitor is a passive entity that samples DUT signals but

does not drive them. Monitors collect coverage information

and perform checking. Even though reusable drivers and

sequencers drive bus traffic, they are not used for coverage

and checking. Monitors are used instead. A monitor: Collects

transactions (data items). A monitor extracts signal

information from a bus and translates the information into a

transaction that can be made available to other components

and to the test writer.

■ Extracts events: The monitor detects the availability of

information (such as a transaction), structures the data, and

emits an event to notify other components of the availability

of the transaction. A monitor also captures status information

so it is available to other components and to the test writer.

■ Performs checking and coverage

Agent: Sequencers, drivers, and monitors can be reused

independently, but this requires the environment integrator to

learn the names, roles, configuration, and hookup of each of

these entities. To reduce the amount of work and knowledge

required by the test writer, OVM recommends that

environment developers create a more abstract container

called an agent. Agents can emulate and verify DUT devices.

They encapsulate a driver, sequencer, and monitor. OVCs

can contain more than one agent. Some agents (for example,

master or transmit agents) initiate transactions to the DUT,

while other agents (slave or receive agents) react to

transaction requests. Agents should be configurable so that

they can be either active or passive. Active agents emulate

devices and drive transactions according to test directives.

Passive agents only monitor DUT activity.

D. Environment :

The environment (env) is the top-level component of the

OVC. It contains one or more agents,as well as other

components such as a bus monitor. The env contains

configuration properties that enable you to customize the

topology and behavior and make it reusable. For example,

active agents can be changed into passive agents when the

verification environment is reused in system

verificationUnits

IV. RESULTS AND VERIFIACTION

The GP I/O is carried out for the functional verification

using the OVM technique for both the read and write

operation. The functional verification is of the RTL design is

of the GPIO is yields the

complete code coverage.

Functional Verification of GPIO Core using OVM

537

Retrieval Number: B0644042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig 3 simulation showing GPIO Functional Verification

for read operation

 As verification methodology plays a important phase in

the circuit design. The read operation of the GPIO is carried

out in XILINX for RTL design and the verification

methodology is carried out using Questasim 10.0b. The

design is carried out using in HDL and the verification is

carried out in OVM.

The GPIO is set up as DUT for the functional verification

and the code coverage is determined using Modelsim is

obtained for 100%

Fig 4 simulation results for GPIO functional verification

for write operation.

Fig 5 Functional code coverage of GPIO.

V. CONCLUSION

In this we have verified the GPIO core based on OVM

technique using Questasim simulator and Modelsim. The

code coverage is obtained for the RTL design and 100% code

coverage is extracted. This methodolgy provides the

complete coverage of the RTL design so as to acquire the

fault free Protocol design of GPIO. So that can be

implemented in real time systems. This can be further

implemented for the ASIC implementation and SOC

Applications.

REFERENCES

1. D.Gajski et al, “Essential Issues for IP Reuse”, Proceedings of

ASP-DAC, pp.37-42, Jan. 2000
2. C.K.Lennard et al, “Industrially proving the SPIRIT Consortium

Specifications for Design Chain Integration”, Proceedings of DATE

2006, pp. 1-6, March 2006
3. K.Cho et al, “Reusable Platform Design Methodology For SOC

Integration And Verification”, Proceedings of ISOCC 2008, pp.

I-78-I-81, Nov. 2008
4. W.Kruijtzer et al, “Industrial IP integration flows based on IP-XACT

standards” proceedings of DATE 2008, pp. 32-37, March 2008

5. M.Strik et al, “subsystem Exchange in a Concurrent Design Process
Environment” Proceedings of DATE 2008, pp. 953-958, March 2008

6. GensysIO,

http://www.atrenta.com/solutions/gensys-family/gensys-io.htm
7. SocratesSpinner, http://www.duolog.com/technical-documents

AUTHORS PROFILE

L. VeeraRaju, was born in vijayawada, krishna (Dist.), AP, India. He
received B.Tech. in Electronics & Communication Engineering from Prasad

V. Potluri Siddhartha college of Engineering, Vijayawada (Dist.,),AP, India

,M.Tech from KL University , Vijayawada, AP, India.

B. K. V. Prasad, was born in Krishna(Dist.,),AP, India. He received B.E

inE.C.EfromBharathidaanuniversityTrichy,T.N.India,M.Tech from
RGMCET, Kurnool(Dist.,) affiliated to JNTUHyderabad. Pursuing

part-time Ph.D.from JNTUH, Hyderabad, AP, India. Hisresearchinterest

include automatic circuitreconfiguration and design of fault modelcircuits.
He has published 10 publicationsin various journals, conferences at National

and Internationallevel and contributed papers in conferences held at

Lasvegas,USA in 2009.

A. L. G. N. Aditya, was born in vizag,(dist),AP, India. He received B.Tech.

in Electronics & Communication Engineering from TPIST,AP. India
,M.Tech from KL University , Vijayawada, AP, India. He has undergone 8

international conferences and 1 publishment in IEEE

Jhansirani.Atluri, was born in Narasaraopet, Guntur (Dist.), AP, India. She

received B.Tech. in Electronics & Communication Engineering from St.

Ann’s College of Engg. ,Chirala ,prakasam (Dist.,),AP, India ,M.Tech from
KL University , Vijayawada, AP, India

D. NagaDilip Kumar, was born inpagulapadu, PrakasamDist.,),AP, India.

HereceivedB.Tech in E.C.E from JntuniversityHyderabad, A.P, india.

Pursuing M.Techfrom KLU. His research interest includesTesting and

Verification of fault models

http://www.atrenta.com/solutions/gensys-family/gensys-io.htm

