
 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-2, Issue-3, July 2012

49

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0676052312/2012©BEIESP



Abstract: Typically, computer viruses and other malware are

detected by searching for a string of bits found in the virus or

malware. Such a string can be viewed as a “fingerprint” of the

virus identified as the signature of the virus. The technique of

detecting viruses using signatures is known as signature based

detection.

Today, virus writers often camouflage their viruses by using

code obfuscation techniques in an effort to defeat

signature-based detection schemes. So-called metamorphic

viruses transform their code as they propagate, thus evading

detection by static signature-based virus scanners, while keeping

their functionality but differing in internal structure. Many

dynamic analysis based detection have been proposed to detect

metamorphic viruses but dynamic analysis technique have

limitations like difficult to learn normal behavior, high run time

overhead and high false positive rate compare to static detection

technique. A similarity measure method has been successfully

applied in the field of document classification problem. We want

to apply similarity measures methods on static feature, API calls

of executable to classify it as malware or benign.

In this paper we present limitations of signature based

detection for detecting metamorphic viruses. We focus on

statically analyzing an executable to extract API calls and count

the frequency this API calls to generate the feature set. These

feature set is used to classify unknown executable as malware or

benign by applying various similarity function.

Index Terms: Metamorphic Virus, Malware Detection, API

calls, Similarity measures.

I. INTRODUCTION

 In today’s age, where a majority of the transactions

involving sensitive information access happen on computers

and over the internet, it is absolutely imperative to treat

information security as a concern of paramount importance.

Computer viruses and other malware have been in existence

from the very early days of the personal computer and

continue to pose a threat to home and enterprise users alike.

A computer virus by definition is “A program that

recursively and explicitly copies a possibly evolved version of

itself” [1]. A virus copies itself to a host file or system area.

Once it gets control, it multiplies itself to form newer

generations. A virus may carry out damaging activities on the

host machine such as corrupting or erasing files, overwriting

the whole hard disk, or crashing the computer. These viruses

Manuscript received on July, 2012

 Kevadia Kaushal, Department of Computer Engineering, BVM

Engineering College, Vallabh Vidyanagar, Gujarat, INDIA.

Prof. Prashat Swadas, Head of Computer Engineering Department, BVM

Engineering College, Vallabh Vidyanagar, Gujarat, INDIA.

Prof. Nilesh Prajapati, Associate Professor of Information Technology

Department, BVM Engineering College, Vallabh Vidyanagar, Gujarat, INDIA.

remain harmless but keep reproducing themselves. In any

case, viruses are undesirable for computer users. There are

several types of computer virus namely Stealth viruses,

Worms, Trojan horses, Rootkits, Spyware, Encrypted and

polymorphic viruses, metamorphic viruses etc.

The most popular virus detection technique used today is

signature detection, which looks for unique strings

pertaining to known viruses. Once detected, a virus is no

longer a threat if the signatures on the system are kept up to

date. Hence, signature-based detection is very effective for

known malware but the major drawback is the inability to

detect new, unknown malicious code that result in zero day

attacks. The signature of a virus is typically created by

disassembling the virus into assembly code, analysing it, and

then selecting those sections of code that seem to be unique to

the virus.

Metamorphic viruses alter the virus entire code without

changing its impact. Code obfuscation techniques like

garbage code insertion, register renaming, code reordering

using jumps or sub-routine permutations and equivalent code

substitution are used to generate various variants that belong

to a virus family. Metamorphic viruses are quite potent

against this signature based detection technique since they

can create variants of themselves by code-morphing and the

morphed variants do not necessarily have a common

signature.

Our research focuses on extracting the behaviour of the

malware through API call sequence analysis rather than the

typical "pattern matching" detection process that are evaded

by obfuscations of the byte sequence through metamorphic

and polymorphic techniques. We identify the features of the

extracted API calls in the unpacked executable binary. Our

goal is to use this API calls feature set to distinguish between

malicious and benign executable files.

II. MALWARE TYPES

Malware writers are continually trying to invent new

methods to defeat antivirus software. Their worst enemies are

the most commercially popular antivirus products. Since the

appearance of first virus on microcomputer the battle

between virus writers and anti-virus researchers never comes

to end. To challenge virus scanning products, virus writers

constantly develop new obfuscation techniques to make virus

code more difficult to detect. To escape generic scanning, a

virus can modify its code and alters its appearance on each

infection. The techniques that have been employed to achieve

this end range from encryption to

polymorphic techniques, to

modern metamorphic techniques.

Metamorphic Malware Detection using

Statistical Analysis

Kevadia Kaushal, Prashant Swadas, Nilesh Prajapati

Metamorphic Malware Detection using Statistical Analysis

50

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0676052312/2012©BEIESP

A. Polymorphic Malware

Polymorphic malware like any other malware is a

computer program that reproduces and causes harm to the

computer. However, the variant produced by polymorphic

malware constantly changes. This is done by filename

changes, compression, encrypting with variable keys etc. The

resulting variant has the same functionality as the parent

malware. The decryptor (D) changes shape from generation

to generation, but behind the encryption there is still a

constant virus body.

Figure 1: Polymorphic Malware Replication

Polymorphic malware produce different variants of itself

while keeping the inherent functionality as same. This is

achieved through polymorphic code. Concept of polymorphic

code is core to a polymorphic malware. It is a style of code

that mutates keeping the original algorithm the same.

The small section of polymorphic malware code

containing the key generator and encryption-decryption

module is responsible for morphing the malware and

creating variants that do not have the same fingerprint. The

problem of polymorphic malware is that the decryption block

remained mostly the same in all the variants. The 10% of the

can be used for as signature/fingerprint of the malware. The

main body of a polymorphic malware consists of Malicious

code and Encryption-Decryption code as shown in Figure 2.

Figure 2: Anatomy of a Polymorphic Malware

B. Metamorphic Malware

Creating a polymorphic virus is a very complex and

challenging task for virus writers. They often waste months

on creating a new polymorphic virus, a virus that can take an

antivirus vendor just a few hours to detect. The problem with

polymorphic viruses is that they eventually have to decrypt

themselves and present their constant body in memory in

order to function. Advanced detection techniques can wait

for the virus to decrypt its self and then detect it reliably.

Unlike, polymorphic malware, metamorphic malware

contain a morphing engine. The morphing engine is

responsible for obfuscating the whole malware. The body of a

metamorphic malware can be broadly divided into two parts

namely Morphing engine and Malicious code as shown in

Figure 3.

Figure 3: Anatomy of a Metamorphic Malware

The metamorphic virus uses no encryption - with some

exceptions - to hide its code. In fact, an advanced

metamorphic virus has no constant data anywhere between

generations; new generations look completely different.

Simply speaking, this virus changes its shape every time it

infects a new file or a new system, while preserving its

functionality. No hexadecimal search strings can be

extracted from it, thus detection using strings is virtually

impossible. Figure 4, illustrates the replication of a

metamorphic virus. It is obvious that no constant data exists

between different generations.

Figure 4: Metamorphic Virus Replication

Metamorphic malware represent the next class of virus

that can create an entirely new variant after reproduction.

The new variant produced is in no-way similar to the original

variant. Metamorphic malwares do not use encryption as

most polymorphic malware. Instead metamorphic malwares

reply on code obfuscation techniques. Since the metamorphic

malwares have do not produce variants having same body,

they easily evade signature based detection. Since, most

current anti-virus software primarily use signature based

detection, metamorphic malware currently are greatest

threat.

III. OBFUSCATION TECHNIQUES

To avoid detection, metamorphic viruses use several

different techniques to evolve their code into new generations

that look completely different, but have exactly the same

functionality. This section describes in detail many of these

techniques.

A. Garbage Code Insertion

Garbage or do-nothing codes are programming

instructions that are a part of the program physically but not

logically. They are not related to the program’s outcome.

Do-nothing instructions such as register exchanging (XCHG)

slow down code emulation. Other instructions such as

“NOP”,”MOV ax, ax”, ”SUB ax, 0”, etc make the virus look

different and thus possibly escape heuristic analysis. Garbage

instructions may also be branches of code that are never

executed or which have some calculations done on the

variables declared in other garbage blocks. The main idea of

this code obfuscation technique is to confuse and exhaust the

virtual machine or person traversing the virus code.

TABLE I GARBAGE CODE INSERTION

Original Code After Garbage Insertion

push ecx

push eax

pop ebx

push eax

pop ebx

mov ebp, [ebx]

pop ebx

push ecx

nop

push eax

pop ebx

push eax

nop

pop ebx

nop

mov ebp, [ebx]

pop ebx

B. Register Usage Exchange

This technique replaces the use of a register in an

instruction with another unused register. Though this

method has no impact on program behaviour, it does

serve to evade virus signature

based scanners.

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-2, Issue-3, July 2012

51

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0676052312/2012©BEIESP

TABLE II REGISTER USAGE EXCHANGE

Original Code After Register Exchange

pop edx

mov edi,0004h

mov esi,ebp

mov eax,000Ch

add edx,0088h

mov ebx,[edx]

mov [esi+eax*4],ebx

pop eax

mov ebx,0004h

mov edx,ebp

mov edi,000Ch

add eax,0088h

mov esi,[eax]

mov [edx+edi*4],esi

C. Subroutine Permutation

In this type of code obfuscation the order in which the

subroutines appear in the code is changed. This order is

irrelevant and does not impact the functionality of the

malware as the order in which a subroutine appears in the

program is totally irrelevant and does not affect the execution

of the program. As shown in Table III, the modules are

re-ordered.

TABLE III SUBROUTINE PERMUTATION

Original Code After Permutation

Function1:

 MOV EAX, [X]

Function2:

 MOV EBX, [Y]

Function3:

 ADD EAX, EBX

 MOV [X], EAX

Function2:

 MOV EBX, [Y]

Function1:

 MOV EAX, [X]

Function3:

 ADD EAX, EBX

 MOV [X], EAX

D. Code Reordering through Jump Instructions

Similar to Subroutine permutation, code reordering is a

kind of code permutation. This technique uses the JMP

instruction as the backbone for obfuscation. This helps in

basically creating different permutations of the code while

keeping the functionality constant. The number of additional

JMP instructions added will be proportional to the number of

lines that are re-ordered.

TABLE IV CODE REORDERING

Original Code After Code Reordering

E. Equivalent Instruction Replacement

Some metamorphic viruses are able to replace some of

their instructions with other equivalent instructions. For

example, the virus could replace the instruction “xor eax,

eax” with the instruction “sub eax, eax.” Both instructions

perform the same function - zeroing the content of the eax

register - but have a different opcode.

TABLE V EQUIVALENT INSTRUCTION

REPLACEMENT

Original Code After Replacement

push ebp

mov ebp, esp

mov esi, ptr [ebp + 08]

test esi, esi

mov edi, ptr [ebp + 0c]

or edi, edi

xor edx, edx

push ebp

push esp

pop ebp

mov esi, ptr [ebp + 08]

or esi, esi

mov edi, ptr [ebp + 0c]

test edi, edi

sub edx, edx

IV. PROPOSED METHODOLOGY

Malware detectors are used to scan a computer system to

identify malware, with the main purpose of preventing it

from adversely affecting the system. The current malware

detection methods usually rely on existing malware

signatures with limited heuristics and are unable to detect

those malware that can hide itself during the scanning

process and those metamorphic malware that apply

sophisticated obfuscation techniques. An anti-virus (AV)

engine must perform three main tasks to protect computers:

Scanning, Detection, Removal. A Malware detector D is

defined as a function whose determine the executable

program (p) which program is malicious or benign D: → P

{malicious, benign}. Modern and traditional anti-malwares

scan the programs (p) in a system for a byte sequence or

malware signature (s) which it stored in the database engine.

If the signature is found in the program (p), it will be

identified as a malware, otherwise it is declared as benign,

and this is represented in the equation below.

D(P) =







 

otherwisebenign

psifmalware

In this section we proposed our methodology to detect

metamorphic malware based on behavioural patterns using

statistical features of application programming interface

(API) calls from executables using similarity measurement to

detect and classify even unknown malware. Malware

detection using API feature was the first method started by

the New Maxico Tech's malware group. This method is

called SAVE (Static Analyzer for Vicious Executables). In

this method signature of malware is determined by its

sequence of API calls. Each sequence is denoted as a vector

[2]. In our proposed approach we use similarity measurement

functions on extracted API which gives us feature set for

classifying executables as malware or benign file.

Our proposed approach extracts the API call frequency

from binary files or executable files and applies similarity

measure for identification of malware. We proposed the

approach in form of four major steps as shown in Figure 5.

Metamorphic Malware Detection using Statistical Analysis

52

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0676052312/2012©BEIESP

Figure 5: Overview of Proposed Methodology

First step, disassemble binary executables to retrieve the

assembly program: We disassemble binary executable files

using freeware IDA Pro Disassemble. IDA Pro disassemble

binary file into assembly language and it also automatically

recognize API calls for various compilers.

Second step, extract features from assembly program: In

this step system processes the output from step 1 with the aid

of IDA Pro plug-in to extract features from assembly code.

Plug -in also stores this extracted features from binary

executable into Slate database for effective and batch

analysis.

Third step, extract frequency of important features: We

first count the frequency of each important feature. This

procedure gives vector of frequency distribution of each

important feature for a given malware and it is stored in

database. This database forms signature database for known

malware.

Fourth step, applying similarity measurement for

unknown binary executable: For identification of unknown

binary executable above three steps are similar. After step 3

outputs is compare with existing signature database using

similarity measure like Cosine, Extended Jacquard measure

and Pearson correlation. Mean value of three measure is used

to generate similarity score report. This similarity score

report is used for identification of malware by setting

appropriate threshold value. Value of threshold need to be

investigated by empirical testing.

V. SIMILARITY ANALYSIS

A signature is a frequency distribution of API calls of a

known virus that has been previously identified. Let’s denote

it Vs (vector of signature). The frequency distribution of API

calls of a suspicious PE binary file is denoted Vu (vector of

unknown). To identify whether the new executable with

signature Vu is an obfuscated version of the virus represented

by Vs, we measure the similarity between Vs and Vu.

We apply the traditional similarity functions on Vs’ and

Vu’. Cosine measure, extended Jaccard measure, and the

Pearson correlation measure are the popular measures of

similarity for vector. The cosine measure is given below and

captures a scale-invariant understanding of similarity.

A. Cosine Similarity

Cosine similarity is a measure of similarity between two

vectors of n dimensions by finding the angle between them.

Cosine Similarity = cos-1
















''

''

VuVs

VuVs

B. Extended Jaccard Measure

The extended Jaccard coeffi¬cient measures the degree of

overlap between two sets and is computed as the ratio of the

number of shared attributes of Vs’ AND Vu’ to the number

possessed by Vs’ OR Vu’.

Extended Jaccard Measure =

''''

''
22

VuVsVuVs

VuVs





C. Pearson Correlation

Correlation gives the linear relationship between two

variables. For a series of n measurements of variables Vs’

and Vu’, Pearson correlation is given by the formula below.

Pearson Correlation =

   

us VV

n

i
ii

SSn

VuVsnVuVs

''

1

''

)1(

''



 

where Vsi' and Vui are values of variable Vs’ and Vu ’,

respectively, at position i, n is the number of measurements,

Svs' and Svu' are standard deviations of Vs’ and Vu’,

respectively, and 'Vs and 'Vu are means of Vs’ and Vu’,

respectively.

 We calculate the mean value of the three measures. For

a particular measure between a virus signature and a

suspicious binary file, S(m) (Vsi', Vu'), which stands for the

similarity between virus signature i and a suspicious binary

file. Our similarity report is generated by calculating the S(m)

(Vsi', Vu') value for each virus signature in the signature

database. The index of the largest entry in the similarity

report indicates the most possible virus the suspicious file is

(a variant of). Let us denote the index as imax. By comparing

this largest value with a threshold, we make a decision

whether the binary file is a piece of malware and identify

which malware it is.

VI. CONCLUSION

Current signature based detection technique used by Anti

Virus scanners can be easily defeated by applying

polymorphic and metamorphic technique which generates

variants of existing virus. Metamorphic virus uses mutation

engine to evolve during propagation phase. Each evolved

version viruses are functionally similar but their code

structure changes considerably. So, signature based detection

technique fails to detect such variant if signature is not

present in its database. Mutation engine of metamorphic

virus uses various code obfuscation technique to produce new

variant each time virus propagate so it is believed that

metamorphic viruses are hard to detect.

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-2, Issue-3, July 2012

53

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0676052312/2012©BEIESP

Proposed methodology aimed at detecting metamorphic

virus, the key assumption is that to preserve functionality a

metamorphic virus should contain sufficiently similar API

calling sequence. So, we propose a statistical analysis of the

API calls from binary executable using similarity

measurement function. The similarity measure for finding

distance of unknown malware with known behavior so that

obfuscated malware could be detected efficiently.

Our aim is to develop a system that reverse engineers the

unknown binary executable code without any need for

manual inspection of assembly code & classify it as malware

or benign.

ACKNOWLEDGMENT

It is honour and pleasure to express my heartfelt gratitude

to those who helped me and also contributed towards the

preparation on this research. I am indebted to my guide

Prof.P.B.Swdas and Prof.N.B.Prajapati whose invaluable

guidance and timely suggestion and constructive

encouragement inspired me to complete the dissertation

work in the present form. I would like to thank to the entire

team of M.E. staff whose direct and indirect suggestion

helped me creating this work. I would like to pay a special

thanks to my parents for the sparing their invaluable time

and inspiring me. Although there remain some names but

none are remain un-thanked.

REFERENCES

1. P. Szor, The Art of Computer Virus Research and Defense Professional,

1st ed., Addison-Wesley, 2005.

2. Sung A H, Xu J, Chavez P, Mukkamala S, "Static Analyzer For Vicious

Executables (SAVE)," Proceedings of 20th Annual Computer Security

Applications Conference (ACSAC), pp. 326–334, IEEE Computer

Society Press, ISBN 0-7695-2252-1 , 2004.

3. Karnik Abhishek, Goswami Suchandra, Guha Ratan, "Detecting

Obfuscated Viruses Using Cosine Similarity Analysis," First Asia

International Conference on Modelling & Simulation, IEEE, pp. 165

-170,2007.

4. Madhu K Shankarapani, Subbu Ramamoorthy, Ram S Movva, Srinivas

Mukkamala, "Malware detection using assembly and API call sequences",

journal in Computer Virology ,Springer, 2010.

5. S. Momina Tabish, M. Zubair Shafiq and Muddassar Farooq, "Malware

Detection using Statistical Analysis of Byte-Level File Content", ACM,

978-1-60558-669-4, 2009.

6. V. Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar,

"Signature Generation and Detection of Malware Families",

Springer-Verlag Berlin Heidelberg 2008, pp . 336–349, 2008.

7. Wen Fu, Jianmin Pang, Rongcai Zhao, Yichi Zhang, Bo Wei, "Static

Detection of API-calling Behavior from Malicious Binary Executables",

International Conference on Computer and Electrical Engineering, IEEE,

2008.

8. Karnik Abhishek, Goswami Suchandra, Guha Ratan, "Detecting

Obfuscated Viruses Using Cosine Similarity Analysis," First Asia

International Conference on Modelling & Simulation, IEEE, pp.

165-170,2007.

9. S. Momina Tabish, M. Zubair Shafiq and Muddassar Farooq, "Malware

Detection using Statistical Analysis of Byte-Level File Content", ACM,

978-1-60558-669-4, 2009.

10. Babak Bashari Rad, Maslin Masrom, "Metamorphic Virus Detection in

Portable Executables Using Opcodes Statistic", Proceeding of the

International Conference on Advance Science, Engineering and

Information Technology 2011, ISBN 978-983-42366-4-9, 2011.

11. J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie and N.

Tawb, "Static Detection of Malicious Code in Executable Programs".

12. Mamoun Alazab, Sitalakshmi Venkataraman, Paul Watters, "Towards

Understanding Malware Behavi our by the Extraction of API calls",

Second Cybercrime and Trustworthy Computing Workshop, IEEE, 2010.

13. P Vinod, R Laxmi & Gaur M, “Survey on Malware Detection Methods”,

Hack vol. 74, 2009.

14. IDA Pro, Online, www.hex-rays.com/

15. MySQL, Online, www.Wikipedia.org/

16. Python Programming, Online, www.python.org/

