
 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

407

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0707052312 /2012©BEIESP

Abstract: The continuing advances in the performance of

network servers make it essential for network interface cards

(NICs) to provide more sophisticated services and data

processing. Modern network interfaces provide fixed

functionality and are optimized for sending and receiving large

packets. Network interface cards allow the operating system to

send and receive packets through the main memory to the

network. The operating system stores and retrieves data from the

main memory and communicates with the NIC over the local

interconnect, usually a peripheral component interconnect bus

(PCI). Most NICs have a PCI hardware interface to the host

server, use a device driver to communicate with the operating

system and use local receive and transmit storage buffers. NICs

typically have a direct memory access (DMA) engine to transfer

data between host memory and the network interface memory. In

addition, NICs include a medium access control (MAC) unit to

implement the link level protocol for the underlying network

such as Ethernet, and use a signal processing hardware to

implement the physical (PHY) layer defined in the network. To

execute and synchronize the above operations NICs also contents

controller whose architecture is customized for network data

transfer. In this paper we present the architecture of application

specific controller that can be used in NICs.

Keywords: ALU, Fast adder, Network interface card, RAM,

ROM, Universal shit register, Instruction decoder.

I. INTRODUCTION

As the performance of network servers increases, network

interface cards (NIC) will have a significant impact on a

system performance. Most modern network interface cards

implement simple tasks to allow the host processor to

transfer data between the main memory and the network,

typically Ethernet. These tasks are fixed and well defined, so

most NICs use an Application Specific Integrated Circuit

(ASIC) controller to store and forward data between the

system memory and the Ethernet. However, current research

indicates that existing interfaces are optimized for sending

and receiving large packets [1]. Experimental results on

modern NICs indicate that when frame size is smaller than

500-600 bytes in length, the throughput starts decreasing

from the wire-speed throughput. As an example, the Intel

PRO/1000 MT NIC can achieve up to about 160 Mbps for

minimum sized 18-byte UDP packet (leading to minimum

sized 64-byte Ethernet packet). This throughput is far from

saturating a Gigabit Ethernet bidirectional link, which is

1420Mbps. Recent studies have shown that the performance

bottleneck of small packets traffic is because that there is not

enough memory bandwidth in current NICs [2] [3]. In a

Manuscript received on July, 2012. (Required Details)

 Suchita Kamble, Departemnt Name, Institute Name

N. N. Mhala. Departemnt Name, Institute Name

back-to-back stream of packets, as packet size decreases the

frame rate increases. This implies that the controller in the

NIC must be able to buffer larger number of incoming

smaller packets. If the controller does not provide adequate

resources, the result will be lost packets and reduced

performance. The other reason for this problem is that

current devices do not provide enough processing power to

implement basic packet processing tasks efficiently as the

frame rate increases for small packet traffic. Previous

research has shown that both increased functionality in the

network interface and increased bandwidth on small packets

can significantly improve the performance of today's network

servers. New network services like network interface data

caching improve network server performance by offloading

protocol processing and moving frequently requested content

to the network interface. Such new services may be

significantly more complex than existing services and it is

costly to implement and maintain them in nonprogrammable

ASIC-based NICs with a fixed architecture. Software-based

programmable network interfaces excel in their ability to

implement various services. These services can be added or

removed in the network interface simply by upgrading the

code in the system. However, programmable network

interfaces suffer from instruction processing overhead.

Programmable NICs must spend time executing instructions

to run their software whereas ASIC based network interfaces

implement their functions directly in hardware. To address

these issues, an intelligent, configurable network interface is

an effective solution. A reconfigurable NIC allows rapid

prototyping of new system architectures for network

interfaces [4]. The architectures can be verified in real

environment, and potential implementation bottlenecks can

be identified. Thus, what is needed is a platform, which

combines the performance and efficiency of special- purpose

hardware with the versatility of a programmable device [5].

Architecturally, the platform must be processor-based and

must be largely implemented using a configurable hardware.

An FPGA with an embedded processor is a natural fit with

this requirement [6]. Also, the reconfigurable NIC must have

different memory interfaces providing including high

capacity memory and high speed memory for adding new

networking services [1].

II. FUNCTIONALITY OF NETWORK INTERFACE

CARD

Network interface cards allow the operating system to send

and receive packets through the main memory to the

network. The operating system stores and retrieves data from

the main memory and communicates with the NIC over the

local interconnect,

Controller for Network Interface Card on FPGA
Suchita Kamble, N. N. Mhala

Controller for Network Interface Card on FPGA

408

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0707052312 /2012©BEIESP

usually a peripheral component interconnect bus (PCI).

 Most NICs have a PCI hardware interface to the host server,

use a device driver to communicate with the operating system

and use local receive and transmit storage buffers. NICs

typically have a direct memory access (DMA) engine to

transfer data between host memory and the network interface

memory. In addition, NICs include a medium access control

(MAC) unit to implement the link level protocol for the

underlying network such as Ethernet, and use a signal

processing hardware to implement the physical (PHY) layer

defined in the network [4]. To send packets, the host

processor first instructs the NIC to transfer packets from the

main memory through a programmed I/O in step 1. In step 2,

the NIC initiates DMA transfers to move packets from the

main memory to the local memory. In step 3, packets need to

be buffered in the Buffer-TX, waiting for the MAC to allow

transmission. Once the packet transfer to local memory is

complete, the NIC sends the packet out to the network

through its MAC unit in step 4. Finally, the NIC informs the

host operating system that the packet has been sent over the

network in step 5. The steps for sending packets from the

main memory to the network are shown in Figure 1 [1].

Figure 1 Network Interface card Functionality

III. ARCHITECTURE OF CONTROLLER

 The implementation of processor that consists of several

blocks such as ALU, instruction fetch and decoding logic,

data memory, program memory, control unit, data registers

and interrupt controller. Our objective is to designed

processor such that data can continuously stream between the

MAC processor and operating system. To achieve the

continuous stream, data memory is used in the processor to

hold the block of data to be transferred between MAC and

operating system. In addition, we can heavily apply a

clock-gating scheme in order to achieve low power

consumption. The features of controller used in the network

interface card are as follows.

 8 bit Processor (8 bit Data bus)

 8 bit ALU for performing arithmetic and logical

operations on signed and unsigned numbers such as

Addition, Subtraction, AND, OR, NOT, 1’s & 2’s

Complement and Universal shift register.

 31 Registers 8 bit each for storing partial results during

operation.

 Address and data register to buffered store current

address and data.

 Program counter to hold the address of the current

instruction.

 Instruction decoder

 control unit

 Data Memory

o 4 Kbytes,

o 8 bit data lines

o Store data during transmitting and receiving.

o Stack memory

 Program Memory

o 4 kbytes,

o 8 bit data lines

o Store program (instructions)

 Interrupt Controller

o Hardware interrupts

 2 hardware interrupts (one for DMA and other for

MAC)

 Interrupts to inform the status of controller

 Software interrupts

o 3 software interrupt instructions to transfer the

control of program

IV. INSTRUCTION SET

The controller consist of processor whose instruction set is

customize to processes the network data. The instructions in

the controller are as follows

 Binary addition and subtraction.

 Bit-wise logical AND, OR, and NOT.

 Compare, Shift / rotate left and right logical.

 Bit-manipulation commands: set, clear, test, and

flip.

 General purpose registers transfer.

 Control Instructions such as software interrupts and

Call and Ret subprograms.

 Addressing Modes

o Direct addressing mode

 Address of the data specified in

instruction

 Data transfer

o Indirect addressing mode

 Address not specified in

instruction

 Block data transfer

o Implicit addressing mode

 Used for bit manipulation

commands

 Call & Ret instructions

The block diagram of the controller is shown in figure 2.

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

409

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0707052312 /2012©BEIESP

Figure 2: Block Diagram of Controller

V. IMPLEMENTATION

Xilinx Synthesis tool (VHDL) and ModelSim Simulator

can be used for implementation of the controller [5] [7] [8].

Xilinx ISE Design Tool is the ideal downloadable solution

for FPGA and CPLD design offering HDL synthesis and

simulation, implementation, device fitting, and JTAG

programming.

Following are the steps of designing digital circuits in FPGA

using VHDL [5].

1. Start

2. Use a schematic or a Hardware Description Language

(HDL) to design the logic block.

3. Use the tool to synthesis the logic block.

4. Use Timing Analyzer to find and optimize the critical

path(s).

5. Use Floor planner and FPGA Editor to optimize the area

and routing length of the block.

6. Use FPGA Editor to map the function block into a hard

macro.

7. Delay-matching hard macro, which has a comparative

delay and dimension with the function block.

8. Finish

VI. CONCLUSIONS

We presented the architecture of processor that consists of

several blocks such as ALU, instruction fetch and decoding

logic, data memory, program memory, control unit, data

registers and interrupt controller. Clock gating scheme

reduces static and dynamic power consumption in the circuit.

The processor can be implemented using VHDL (Xilinx

Synthesis Tool and / or NI Modelsim Simulator and / or

Altera Quartus II Design Software) and targeted for

implementation in FPGA. Thus a reconfigurable NIC allows

rapid prototyping of new system architectures for network

interfaces. The architectures can be verified in real

environment, and potential implementation bottlenecks can

be identified.

 REFERENCES

1. Toshio Fujisawa, et al, “A Single-Chip 802.11a MAC/PHY With a 32-b

RISC Processor”, in IEEE Journal Of Solid-State Circuits, Vol. 38, No.

11, November 2003.

2. J. R. Allen, et al, “IBM PowerNP network processor: Hardware, software,

and applications,” in IBM Journal of Research & Development, Vol. 47,

No. 2/3 March/May 2003.

3. Xiaoning Nie, et al, “A New Network Processor Architecture for

High-speed Communications,” in IEEE Workshop on Signal Processing

Systems, 1999.

4. H. Peter Hofstee, “Power Efficient Processor Architecture and The Cell

Processor,” in Proceedings of the 11th International Symposium on

High-Performance Computer Architecture, 2005.

5. D. L. Perry, “ VHDL”, Tata Mcgraw Hill Edition, 4th Edition, 2002.

6. C. Maxfiled, “The Design Warriors Guide to FPGAs”, Elsevier, 2004.

7. J. Bhaskar, “ VHDL Primer”, Pearson Education, 3
rd

 Edition, 2000.

8. J. Bhaskar, “ VHDL Synthesis Primer”, Pearson Education, 1
st
 Edition,

2002.

